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Abstract Let A be a finite-dimensional,basic and connected algebra

(associative, with 1) over an algebraically closed field. It is called

simply connected it it is triangular and, for any presentation of A

as a bound quiver algebra, the fundamental group of its bound

quiver is trivial. Let T(A) denote the trivialextension of A by its

minimal injective cogenerator. We show that,if A is simply con-

nected, then the following conditions are equivalent: (i) T{A) is

representation-infiniteand domestic, (ii) T(A) is 2-parametric, (iii)

there exists a representation-infinitetiltedalgebra B of Euclidean

type Dn or Ep such that T(A)2^T(B), (iv) A is an iterated tilted

algebra of type Dn or Ev.

Introduction.

Let k denote a fixed algebraically closed field,and A a finite-dimensional

^-algebra (associative, with an identity) which we shall moreover assume to be

basic and connected. We shall denote by mod A the category of finite-dimen-

sional right ^4-modules. The trivialextension T(A) of A by its minimal injec-

tive cogenerator bimodule ZM=Hom*(^4, k) is the algebra whose additive struc-

ture is that of the group A@DA, and whose multiplication is defined by:

{a, f)(b,g)={ab, ag+fb)

for a, b^A and /, g(EA{DA)A. Then T(A) is a self-injectiveand, in fact, a

svmmetric. algebra.

Trivial extension algebras have been extensively investigated in representa-

tion theory. First,in the representation-finitecase, they were studied by Miiller

F32], Green and Reiten [221 and Iwanaga and Wakamatsu F30] when the radical
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square of A equals zero. It was shown by Tachikawa [39] (see also [45]) that,

if A Is hereditary, then the cardinality of the set of isomorphism classes of

indecomposable T(J4)-moduIes is twice that of the set of indecomposable A-

modules. He also described the components of the Auslander-Reiten quiver of

T(A) if A is tame hereditary. In [46], Yamagata proved that,if T(A) is repre-

sentation-finite,then A is triangular, that Is, its ordinary quiver contains no

oriented cycles. Actually, as observed in [47], the proof shows that A is simply

connected in the sense of [13], that is, it is representation-finitewith a simply

connected Auslander-Reiten quiver. Later, Hughes and Waschbiich [29] proved

that, if A Is a tiltedalgebra of Dynkin type A, then T(A) is representation-

finiteof Cartan class A and conversely, if T(A) is representation-finiteof Cartan

class A, then there exists a tiltedalgebra B of Dynkin type A such that T(A)

2;T(B) (see also [27] [15]). Finally, it was shown in [2] that T(A) is repre-

sentation-finiteof Cartan class A if and only if A is an iterated tilted algebra

of Dynkin type A.

Our objective in this articleis to present a result corresponding to the last

two results in the representation-infinitecase. First, we shall restrict to the

case where the algebra A is simply connected in the sense of [6], that is, is

triangular and such that, for any presentation of A as a bound quiver algebra,

the fundamental group of its bound quiver [31] is trivial(in the representation-

finitecase, this notion of simple connectedness coincides with the notion intro-

duced in [13]). Next, we recall that an algebra A is called domestic [35] if

there exists a finitenumber of (parametrising) functors Ft: mod £[X]―>mod A,

l<i<n, where k＼_X~＼is the polynomial algebra in one variable, satisfying the

following two conditions:

(a) For each i, Fi=― 0 Qis where Qt is a &[X]-y4-bimodule which is

finitelygenerated and free as &[X]~mQdule.

(b) For any dimension d, all but a finite number of isomorphism classes

of indecomposable yl-modules of ^-dimension d are of the form Fi(M), for some

i and some indecomposable right &r^]-module M.

Finally, A is called n-parametric if the minimal number of such functors is

n. Every domestic algebra is tame in the sense of [19]. Equivalent definitions

for a domestic algebra can be found in [17]. We may now state our main

theorem:

Theorem. Let A be a finite-dimensional,basic and connected algebra over
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an algebraically closed field k. If A is simply connected, then the following con-

ditions are equivalent:

(i) T(A) is representation-infiniteand domestic.

(ii) T{A) is 2-parametric.

(iii) There exists a representation-infinitetiltedalgebra B of Euclidean type

Dn or Ep such that T(A)^T{B).

(iv) A is an iterated tiltedalgebra of Euclidean type Dn or Mr,.

The articleis organised as follows. After a preliminary section (1),we shall

study in section (2) branch enlargements of tame concealed algebras. In section

present the strategy of the proof and some reduction lemmas. Sections

and (6) consist of the proof of our main theorem, while section (7) is

devoted to some concluding remarks.

1. Preliminaries.

1.1. For a quiver Q, we shall denote by Qo its set of vertices and by Qi

its set of arrows. For a (locally)finite-dimensional^-algebra A (usually assumed

to be basic and connected), we shall denote by QA its ordinary quiver. For

i^iQjdo we denote by e* the corresponding primitive idempotent of A, and by

S(i) the corresponding simple
^4-module.

We shall denote by P(i) (respectively,

/(*))the projective cover (respectively,the injective envelope) of S(i). We recall

from [29] that i^(QA)o is calleda strong sink if there exists no chain of non-zero

non-isomorphisms between indecomposable modules of the form Mo―≫Mi―> >■

Mt―>I(i),where Mo is injective. We define dually a strong source. Following

[13], we shall equivalently consider a bound quiver algebra A as a
/^-category.

We recall that a ^-category A is called A-free whenever there exists no full

subcategory A'Z^kQ' of A where the underlying graph of Q' is Am (m>l). It

is called Schurian if, for any pair of objects x, y of A, d＼mkA{x, y)<l. A

bound quiver ^-category A2^kQ/I is called special biserial[38] if the number

of arrows with a prescribed source or target is at most two, and for any

a^Qi, there is at most one arrow $ and one arrow y such that a/3 and ya do

not belong to /. A special biserial ^-category A2ikQ/I is called gentle [4] if

it is triangular, / is generated by a set of paths of length two and for any

ae(?i, there is at most one arrow £and one arrow £such that a$ and C,a be-

long to /. Finally, we shall denote by r^ (or r, if there is no danger of con-

fusion) the Auslander-Reiten translation DTr in mod A, and by FA the Auslander-

Reiten quiver of A [9][36].
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1.2. Let A be a locally bounded ^-category (in the sense of [13]). Then A

is called domestic if every finitefullsubcategory of A is domestic (compare [17]).

It is locally support-finite[16] if, for each object x of A, the full subcategory

of A formed by all objects of the support Supp M, where M ranges through all

indecomposable finite-dimensional A-modules such that M(x)=/=0, is finite.

Let G be a torsion-free residually finite group acting freely on the objects

of A, F: A-+A/G be the Galois covering [21] which assigns to each object x

of A its G-orbit G-x, and F x: mod A-nnod {A/G) the associated push-down

functor [13]. We shall need the following results:

Proposition 1. // A/G is domestic, then A is domestic.

Proof. Repeat the second part of the proof of [16], Proposition (2).

Proposition 2. // ,4 is locallysupport-finite,then the pushdown functor F x

induces a bisection between the G-orbits of isomorphism classes of indecomposable

A-modules and the isomorphism classes of A/G-modules. In particular, A is

domestic if and only if A/G is domestic.

Proof. Apply [16], Theorem and Lemma (3).

1.3. For the basic definitions and results of tilting theory, we refer the

reader to [25][36]. Two finite-dimensionalalgebras A and B are called tilting-

cotiltingequivalent if there exists a sequence of algebras A=A0) Au ･･･,Am+i

=B and a sequence of modules TfA.(0<f<m) such that Ai+l=EndT*At and T1

is either a tilting or a cotilting module. It was shown by Tachikawa and

Wakamatsu that, if A and B are tilting-cotiltingequivalent, then their trivial

extensions T(A) and T(B) are stably equivalent [41]. An algebra A is called

iterated tiltedof type A [1] if it is tilting-cotiltingequivalent to the path alge-

bra of a quiver with underlying graph A, and moreover each Ti is a tilting

module such that, for any indecomposable ^U-module M, we have either

Hom^(T＼ Af)=0 or Exti^T*, M)=0. If m<＼, we say that A is a tiltedalge-

bra [25]. It was shown by Happel, that, if A is a Dynkin or an Euclidean dia-

gram, then A is iterated tiltedof type A if and only if A is tilting-cotilting

equivalent to the path algebra of a quiver with underlying graph A [24], More-

over, an iterated tilted algebra of Euclidean type is simply connected if and

only if it is of type Dn or Ep [6]. Iterated tilted algebras of type Am were

completely classifiedin [41.
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1.4. Let A be a finite-dimensional algebra. Its repetitive algebra A is the

self-injective, locally finite-dimensional algebra [29]:

in which matrices have finitelymany non-zero entries,Am=A, Qm―A{DA)A for

all mGZ, all the remaining entries are zero, and multiplicationis induced from

the bimodule structure of DA and the zero maps DA(g)DA-^0. The identity
A

maps Am―>Am+1, Qm->Qm+i induce an automorphism v of A (called the Naka-

yama automorphism) and thus A is a Galois covering of T(A) with the infinite

cyclic group generated by v. It is shown in [41][44] (see also [23]) that if TA

is a tiltingmodule and B=EndTA then A and B are stably equivalent. Also,

it is shown in [37] that, if A is locally support-finite,then A is triangular.

Moreover, if TA is a tilting module and
^B^EndT^,

then A is locally support-

finiteif and only if B is locally support-finite.

1.5. The one-point extension (respectively, coextension) of an algebra A

by an yl-module M will be denoted by A[_M~＼(respectively, ＼_M~＼A).In order

to handle modules over one-point extensions, we shall use vector-space category

methods, for which we refer to [33] [35] [36]. Let A be a triangular algebra,

and i be a sink in QA. The reflection S＼A of A at / is the quotient of the

one-point extension A＼_I(i)~＼by the two-sided ideal generated by et [29]. Dually,

starting with a source /, we define the reflection SjA. Clearly, the repetitive

algebras of A and S^A are isomorphic. Also, it is shown in [42] that A and

S^A are tilting-cotilting equivalent. Moreover, by [41], T{A)2^T(SiA). The

quiver of StA is denoted by g^Qa and is called a v-reflection of QA. The sink

i of QA is replaced in a＼QA by a source denoted by i'. A v-reflection sequence

of sinks i1} ･･■,it is a sequence of vertices of QA such that /, is a sink of

<_x--<^ for l<s<t.

1.6. We shall need the following well-known lemma:

Lemma. Let e be an idempotent in A, then T(eAe)1~,eT(A)e.
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2. Branch enlargements.

2.1. We firstrecall from [7] the notion of branch enlargements. An ex-

tension branch if in a vertex a, called its root,is a finiteconnected full bound

subquiver of the following infinite tree, consisting of two types of arrows: the

a-arrows and the /3-arrows, and bound by all possible relations of the forms

aB=0, Ba=0:

A coextension branch K in a is defined dually (reversing all arrows in the

figure). The number of vertices in a branch K is called its length and is de-

noted by ＼K＼. We shall agree to consider the empty quiver as a branch of

length zero.

Let A=kQ/I be a bound quiver algebra, and (Q'f /') be a full bound sub-

quiver of (Q, I) with a source a. Then A is said to be obtained from kQ'/F by

rooting an extension branch {Q", I") in a provided that (Q", I") is a full bound

subquiver of (Q, I) such that:

(1) Q'*r＼Q%={a), Q'oUQ'l=Qo.

(2) / is generated by /',I" and all paths jSf where /5eQ'/ has target a,

and JEiQi has source a.

Thus, each extension arrow y can actually be considered as an a-arrow.

For an extension branch K, the full connected subquiver of K consisting of all

x in K such that there is a non-zero path from x to the root of K is called

the main line of K. Thus all arrows on the main line are a-arrows. We de-

fine dually the rooting of coextension branches and main lines on coextension

branches (on which all arrows are also ^-arrows).

2.2. Let C be a tame concealed algebra [36][26] with a tubular family

(ST.OjePjC*),and let Eu ･･･,Et be pairwise non-isomorphic simple regular C-

modules. For each l<i<t, we let Kt be an extension branch in aiy and K＼ be

a coextension branch in a'itwhere either Kt or K[ may be empty. We shall
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define inductively the branch enlargement A of C by the extension branches Ki

and the coextension branches K[. The algebra C[_E1} K{＼is obtained from the

one-point extension C＼_E{＼with extension vertex ax by rooting the branch Kx

in au and, for Kj<t, C[_Ei} iG]{=1 is obtained from the one point extension

{C[_Ei, Ki~]iZi)tEj2with extension vertex a} by rooting the branch Kj in a,.

Then B=C＼_Ei, Ki]l=i is called the branch extension of C at the modules Et by

the extension branches Kt (l<i<t). We now let E't be the unique indecom-

posable 5-module whose restrictionto C is Et and whose restriction to Ki is

the unique indecomposable module with support the main line in Ki. Then

＼_E[,K[~＼Bis obtained from the one-point coextension ＼_E[~＼Bwith coextension

vertex a[ by rooting K[ in a[, and, for ＼<j<t, iU＼_E'i,K'i]B is obtained from

[Ej] (jz＼＼JLi,K'i~＼B)with coextension vertex a) by rooting K) in a). Then

A―iLi＼_E'i,K'{]B is the required branch enlargement of C.

Let rx denote the rank of the tube 2^ (X^P^k)). The tubular type nA―

(n^)^ePlCs) of A is defined by:

nx=rx+ S (l^l + l^l).

We write, instead of (n;)^ep1(*),the finitesequence consisting of at least two

nx, keeping those which are larger than 1, and arranged in non-decreasing

order. We say that nA is domestic, and that A is a domestic branch enlarge-

ment of C if nA is equal to: {p, q), p<q, (2, 2, r), 2<r, (2, 3, 3), (2, 3, 4) or

(2, 3, 5). It is shown in [7] that an algebra ^4 is a domestic branch enlarge-

ment of a tame concealed algebra if and only if .A is a representation-infinite

iterated tiltedalgebra of Euclidean type A. Moreover, in this case nA equals

the tubular type of a hereditary algebra of type A. As a direct consequence,

we obtain:

Lemma. A domestic branch enlargement of a tame concealed algebra is 1

parametric (thus domestic).

Remark. The converse of this statement is not true. For instance, let A

be given by the quiver:

aB a3

_2_0 I*
a.

bound by ^a^fi^a*, rj8i=O,r/32^0.

a% aK a6

Here, nA―(2, 3, 6), that is, is not do

mestic. However, A is a one-point extension (with extension vertex c) of a
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tiltedalgebra of Euclidean type E8 by a simple injective module, and hence is

1-parametric.

2.3. A truncated branch in a (branch in the sense of [36]) is a finite con-

nected full bound subquiver, containing a, of the following infinite tree bound

by all possible relations of the form afi=0:

a

If Ku ■■■,Kt are truncated branches, then the branch extension B = C{_Ei} Ki]^

is a tubular extension in the sense of [36]. It was shown by Ringel that, if A

is a domestic truncated branch extension of a tame concealed algebra, then A

is a tiltedalgebra of Euclidean type having a complete slicein its preinjective

component, and conversely, every representation-infinitetiltedalgebra of Eucli-

dean type is either a domestic truncated branch coextension or a domestic

truncated branch extension of a tame concealed algebra [36] (4.9).

Lemma. Let A be a truncated branch extension of a tame concealed algebra

C. Then nA is domestic if and only if A is a domestic algebra.

PROOF. The necessity follows from (2.2). In order to prove the sufficiency,

assume that nA is not domestic, and let B be given by a full bound subquiver

of A containing C, maximal for the property that ns is domestic. Then A also

contains as full bound subquiver the bound quiver of a one-point extension or

coextension B' of B. We shall show that B' is not domestic.

We claim that B' may be assumed to be a one-point extension of B. Indeed,

if this is not the case, let a be the root of the branch K of B' containing the

coextension vertex, and d denote the maximal distance from a to a vertex in

K. If K contains a source i such that the distance from a to i equals d, then

we replace B by the algebra B* given by the fullbound subquiver with vertex

set given by all the vertices of B' except i. Clearly, B* contains C and is

maximal for the property that its tubular type is domestic. Moreover, B' is a

one-point extension of B* with extension vertex i. If K contains no such source,

let j be an arbitrary vertex (thus, a sink) whose distance to a equals d. Since
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if is a truncated branch, j is not the terminal point of a zero-relationin K.

We replace B by the algebra Z?**given by the full bound subquiver with vertex

set given by all the vertices of B' except /. Again, 5** contains C and is

maximal with the property that its tubular type is domestic, and B' is a one-

point coextension of £** with coextension vertex j. Applying the APR-tilting

module at j, we obtain an algebra B" which is a one-point extension of B**

and a truncated branch extension of C. Moreover, by [28], B" is a domestic

algebra if and only if B' is. This proves our claim.

Let thus B' ―B[_M'＼ with extension vertex i. Then B is a tiltedalgebra

of Euclidean type having a complete sliceS in its preinjective component. Let

TB be the slice module of S, and H=End TB. We want to show that the full

subcategory HJ of the vector space category HomB(M, mod B) formed by all

objects of the form Homs(M, X), where XB is an indecomposable preinjective

which is a proper predecessor of S, is not domestic. Let NH=ExtB(T, M).

Since MB is a regular B-module [36], NH is an indecomposable regular H-

module. Let cv denote the full subcategory of the vector space category

YlomH(N, mod H) formed by all objects of the form Hom^JV, Y), where YH is

indecomposable preinjective. If follows directlyfrom the Brenner-Butler theorem

[25] that cv^cu. Let RH denote the simple regular socle of N, and <W be the

full subcategory of the vector space category HomH(R, mod H) formed by all

objects of the form HomH(i?, Y), where YH is indecomposable preinjective,

Observe that W is a full subcategory of <V. The one-point extension //[i?] is

a tubular extension of H of the same tubular type as B'. By [35], (3.5),W is

non-domestic. Hence V is non-domestic and the proof is complete.

2.4. In order to prove the next lemma, we shall need some notation. Let

B be a branch enlargement of a tame concealed algebra, and L be a branch

with root b. Let S(L) be the set of all vertices x of L such that the walk wx

in L from b to x is bound by a zero-relation. Thus, S{L)―0 if and only if

L is a truncated branch. Suppose S(L)^0 and let xeS(L). We shall denote

by d(x) the distance from b to the midpoint of the firstzero-relation on wx and

by d(L) the minimum min{d{x) | xeS(L)}. Thus d(L)>＼. Also, let N(L) be

the full bound subquiver of L with vertex set (ieS(L) | d(x)= d(L)}. Let

cu ■■■,cs denote the midpoints of the firstzero-relations on the walks wx, for

x<=N(L)0. Each ct determines a connected component N(ct) of N(L). Moreover,

the distance from b to each ct is exactly d(L). For each l<i<s, let yt denote

the arrow connecting d to N(d). If c* is the source (respectively, the target)

of 7i, we let n{Ci) denote the length of the maximal path starting (respectively,
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ending) in ct, and ending (respectively,starting)in N{ct). Then let n{L) denote

the maximum max{n(c,:)I l<i<s＼. Since S(L)i=0, n{L)>＼.

Lemma. Let A be a branch enlargement of a tame concealed algebra C, and

K be a branch in a. Then there exists a branch enlargement A' of C, obtained

by replacing K by a truncated branch K' in a, such that ＼K'＼=-＼K＼and T(A')

-T(A).

Proof. If K is a truncated branch, there is nothing to show. Thus we

can assume that S(K)^0. With the above notations, S(K) represents the set

of "bad" vertices, d(K) gives a measure of the distance from a to the closer

subset N(K) of "bad" vertices, and n(K) measures how large N(K) is. We

shall eliminate inductively the "bad" vertices both by reducing the number oi

those which lie in N(K) and by sending them away from a. More precisely

we shall construct a sequence of algebras 04^ i and branches (/Qi&i such that

Ai+1 exists if S(Ki)i^0, and is obtained from At by replacing Kt by a new

branch Ki+1 such that:

(i) ＼Kt+l＼= ＼Kt＼.

(ii) Ai+i is obtained from At by a sequence of reflections(1.5).

(iii) If S{Ki+1)^0, then either d(Ki+1)=d(Ki) and then n(Kt+l)<n(Kt), or

else d(Ki+1)>d(Kt).

Clearly, we reach in this way an algebra At and a branch Kt such that

S(Kt)=0. But then At=A', Kt=K'. Moreover, by (ii),T(A')2^T(Ao).

Let A0=A, K0=K. Inductively, suppose that S(/Q^0 and decompose

N(Ki) in disjoint connected components N(cj), l<j<St, as above. We know

that n(Ki)>l. Let xt, l<l<mi} be the set of all vertices lying in N(Kt) (thus,

in some N{c})) such that the distance from xt to the corresponding c＼is exactly

n{Kt). In particular, each xt is either a source or a sink. We let Ai+1―

Ssx＼■■･S^.Ai (where s£is + if xt is a sink, and ― if it is a source). The

branch Kt is replaced by a new branch Ki+i having the same length, which

clearly satisfies(iii). This completes the proof of the lemma.

2.5. Lemma. Let A be a branch enlargement of a tame concealed algebra

C such that each coextension branch is truncated. Then there exists a branch ex-

tension B of C such that nA=ns and T(A)2^T(B).

Proof. As in (2.2), we denote respectively the extension and coextension

branches of A at the simple regular modules Eif l<i<t, by Kt and K't and

their roots by at and aL For each /, we shall find a v-reflectionsequence (2.5)
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of sinks xii, 1), ■･･, x{i, s4) in K't such that B―SJo.sp ･･･S£a.i)S£c2,≫2)■･･Siu.uA

is a branch extension of C at the modules Et by extension branches i£" such

that ＼K/l＼= ＼Ki＼+ ＼K'i＼,l<i<.t. This implies the statement.

For each / such that K'^0, let St denote the set of vertices on the main

line of K'i, and st denote its cardinality. For each xeS*, let lx denote the

length of the path from a[ to x. Now, let xii, 1) denote the unique sink in Sit

and, for each l<r<st, let x{i, r) be the unique vertex x such that lx―Si―r.

Thus x(i, Si)―a'i. Clearly, x{i, 1), ･･･, xii, Si) is a v-reflection sequence of sinks.

Moreover, the branch K＼ is replaced in S%a,^A by a branch having at least

one vertex less, while the corresponding extension branch Kt is replaced by a

branch having at least one vertex more. This indeed follows from the fact

that the restrictions to C of the extension module defining Kt and the coexten-

sion module defining K't are equal. An obvious induction completes the proof.

2.6. Proposition. Let A be a branch enlargement of a tame concealed

algebra C. Then there exists a truncated branch extension B of C such that nA

=n* and T(A)2lT(B).

Proof. By (2.4), there exists a branch enlargement A' of C such that each

coextension branch is truncated, nA-=nA, and T(A')2^T(A). Next, by (2.5),

there exists a branch extension A" of C such that nA≫=nA> and T{A")7^T(Ar).

A further aoolication of (2.4) to A" vields the result.

2.7. Corollary. Let A be a representation-infiniteiterated tilted algebra

of Euclidean type A. Then there exists a representation-infinitetiltedalgebra B

of tvte A such that T(A)2iT(B).

2.8. COROLLARY. Let A be a branch enlargement of a tame concealed alge-

hvn C Tf T( A＼i<idnwi.astinthan n. is H.nm.aatir.

Proof. By (2.6),we may assume that A is a truncated branch extension.

We thf^.-nanniv (?.3V

Remark. The converse of this corollaryis also true, and will follow from

3. Reduction to the representation-infinite case.

In this section, we shall prove a series of preliminary results, from which

we shall deduce the implication (iv)=Kiii) of our main theorem. Also, we shall
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show that in the proof of the implication (i)=Xiv), it may be assumed that the

algebra A is representation-infinite. This will allow us to use the characteri-

sation of representation-infiniteiterated tilted algebras of Euclidean type as

domestic branch enlargements of a tame concealed algebra (2.2).

3.1. Lemma.

i be a sink in QA

Let A be a representation-finitesimply connected algebra, and

Then A'=StA is Schurian and simply connected.

Proof. Since A is representation-finite,I(i)A is multiplicity-free(that is,

for each a^{QA)a, dim* WomA{P{a), /(z))<l). This implies that A＼_I(f)1is

Schurian and therefore that A' is Schurian. Consequently, all relations in the

bound quivers of A and A' are zero-relations and commutativity relations.

Let w be a closed walk in A'=SXA. We claim that w is contractible.

Clearly, we may assume that the walk w is reduced, that is, it contains no

pairs of the form aa'1 or a~la for a^.(QA＼. It w does not pass through i',

it is a walk in B=A/(ei} which is representation-finite and simply connected

(because it is a full convex subcategory of the representation-finitesimply con-

nected category A [14]) and therefore, w is contractible. If, on the other hand,

w passes through i' and is given by two parallelpaths from i' to / (say) which

are linearly dependent in A'(i',/), there is nothing to show. We may thus

assume that w passes through i' but is not of this form. We claim that w is

homotopic in A' to another walk w' which does not pass through i'. Since by

the previous reasoning w' is contractible, we are done. Let thus a'.i'-^a,

jS:z'―& be arrows through
i' on the walk w. Since w is reduced, a=£jS.

Observe that S(a)A and S(b)A belong to the top of I(i)A) therefore of I(i)/S(i).

However, since Aop is representation-finiteand simply connected, it satisfiesthe

(S)-condition [10] and therefore I(i)/S(i)is separated. Since a and b are con-

nected by a subwalk of w lying entirelyin B, they belong to the same inde-

composable summand of I(i)/S(i). Since I(i)A is multiplicity-free,there exists

Mi V1
in Qa a sequence of vertices and paths of the form a = an ―≫a, <･―-g2

M2

v2 vm
<-_,....<.^h,a2m=b such that the compositions au1 and /3ym are non-zero (in

AU(i)J) and, for each 0<t<m, S(a2[) belongs to the top of I{i). But this im-

plies that there exists an arrow at+i'.i'-*a2t such that a^―a, am = ^ and, for

each 0<t<m, there exists a commutativity relation (in A[_I(i)'],but then in A')

between atut and at+ivt. Consequently, for each l<t<m, VtUj1 is homotopic to

ajlicttin A'. By symmetry, we can assume that w = wip~1aw2. But then w is

homotopic to w<vmu~z}･･･VoU~2~1vlu~ilw2which liesentirely in B. This shows our
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claim and hence the lemma.
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Remarks. 1. Actually, it is possible to show that A' even satisfiesthe

(S)-condition (see [2]).

2. In general, A' is not Ji-free,even if A is. Indeed, let A be given by

the quiver:

3

5

4

bound by aB=j8 and aBs=0. Then A'=S＼A is given by the quiver:

V

5

&

r

2

bound by a^=yd and aft=r}d.

3.2. Lemma. Let A be an algebra, and i a sinkin QA such that I(i)Asatisfies

the following condition:

(*) For every indecomposable A-module Mcfrl{i) such that WornA{I{i),M)=£0,

we have HomA(M, /(/))―0.

Then every indecomposable A＼I($)＼-modulewhich is not isomorphic to P{i') is

an A-module or a StA-module.

Proof. Recall that mod A＼_I(i)~]is equivalent to the category of triples

(V, M, <p),where V is a finite-dimensional^-vector space, M a finitelygenerated

^4-module, and <p＼F-≫HomA(/(z), M) is a ^-linear map, with the obvious mor-

phisms. Let thus M={Vk, MA, <p)be an arbitrary indecomposable
^4[/(f)]-module.

Here the map <p can be assumed to be injective. Suppose <p^0. It follows

from our assumption that we can decompose M as M2^I(i)m@N, where

HomA(A^, I(i))=0. Suppose now m>0. Then we can write M2x/(z')0M'. Con-

sider the mapping ^=HomA(/(0,[l 0])^: Vk^HomA(I(i),I(j)RM')-*HomA(I(i),I(i)).

We claim that <p^=0. Indeed, if c^=0, the commutative diagram:
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I

Honu((/(i),[J])

Hom^Jtf). /(i))

tive diagram:

I'
Hom^Ki), [10])

Honu(/(0, 7(i)eAf') HomAKi), Hi))

r1 -n

v, we have <p(u)

Consider the commuta-

UomAICi), /(f))cHonu(/(i), M>)

Id 0]

implies that M has a direct summand of the form (0, I(i),0) which contradicts

either the indecomposability of M or the assumption that (p^O.

Let thus v^V be such that <p(v)=tO.Hence <p(y)= EHom^f), M)2X

Homx(/(z'),/(f))cHomA(/(0, M'), with tek*. Letting u=X

and we can write V=ku@U. Thus <p―

r1 n

Id /] .
kuZ^k * k^YlomMi), /(*))･

Clearly, the map [1 /], [1 0] define an epimorphism M-^P{i')―{k, I(i),1). By

the indecomposability of M, M2^P(i'). Therefore, if M2^P(i'), then either <p―0

or m=0. In the former case, M is an A-module, and in the latter a Sj^4-module.

3.3. Proposition. Let A be a re presentation-finite simply connected algebra

such that, for every strong v-reflection sequence of sinks iu ･■･,it, Sft ･･■SfxA is

representation-finite. Then A is locally representation-finite.

Proof. Let B be the full subcategory of A with the objects of Ap, for all

p>0 (see (1.4)). First we shall show that, under the stated hypothesis, B is

locally representation-finite. This is done by constructing a component of FB

as in [2] (see also [29]). This is possible since by hypothesis and (3.1), all the

algebras Sft--- SfxA are representation-finite and simply connected, so we can

apply (3.2). We then obtain a bounded length length component C of FB.

Indeed, all indecomposables which are not projective-injectives are indecom-

posables over representation-finite simply connected algebras having the same

number of simples. It follows from a theorem of Auslander [8] that C~FB

and therefore B is locally representation-finite. This also implies that every

indecomposable non-projective-injective 5-module is a Stt ■･･SttA-module, for

some sequence iu ･■･,it. In particular, the support of any indecomposable B-

module has at most n+l vertices, where n is the cardinality of (Qa)o-

We now claim that the last statement holds in fact for any indecomposable

J^-module M. Let S―SuppM. There exists ieZ such that vpS is contained
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in B. Let N denote the image of M under the automorphism vv of mod A

Clearly, JV is an indecomposable 5-module having support equal to vpS. Since

vpS has at most n+1 vertices thisis also true for 5.

For each object x of A, we define inductively a family Cm(x), meiV, of

finitefullsubcategories of A as follows: C0(x) is the full subcategory of A

having x as a single object, and, for w>0 Cm+1(x) is the full subcategory of

A formed by all objects y such that A(y, z)^0 or A(z, y)^0 for some z^Cm{x).

Since A is connected, it is the union of the Cm{x). For each fixed object x,

there exists q^Z such that Cn+l{vqx) is contained in B. Then vq induces a

bijectionbetween the isomorphism classes of indecomposable ^4-modules M with

M(x)^0 and the isomorphism classes of indecomposable i?-modules TV with

N(vqx)^0. Indeed, v9(Supp M) has at most n+l vertices, hence it is contained

in Cn+1(vqx). Since B is locally representation-finite,so is A.

3.4. Corollary. Let A be a representation-finitesimply connected algebra

which is not an iterated tiltedalgebra of Dynkin type. Then there exists a strong

v-reflectionsequence of sinks iu ･･■,it such that S^ ･･･S^A is representation-

finite,but A'=Stt--- SfxA is representation-infinite.

Proof. We apply (3.3) and the fact that A is iterated tilted of Dynkin

type if and only if A is locally representation-finite[2].

3.5. Proposition. Let A be an iterated tilted algebra of Euclidean type

A. Then there exists a representation-infinitetilted algebra B of type A such

that T(A)2^T(B＼

Proof. If A is of type Am, it follows from the description in [4] that,

by applying a sequence of reflections to the sources and sinks of the unique

cycle, there exists a representation-infiniteiterated tiltedalgebra A' of the same

type such that T(A)2^T(Af). If A is of type Dn or Ep, it is simply connected

(1.3), and by (3.4), there exists a representation-infinitealgebra A' obtained

from A by a sequence of reflectionsthatis,iterated tiltedof the same type (by

(1.3))and such that T(A')^T(A) (by (1.5)). But then a direct application of

(2.7) yields the result.

This shows the implication (iv)=Hiii)of our main theorem.

4. Proof of the implication (iii)=}(ii):

We shall need the following two lemmas:
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4.1. Lemma. Let B be a domestic truncated branch extension of a tame

concealed algebra C. If i is a strong sink in B, then i belongs to C.

Proof. Let S denote a complete slicein the preinjective component of FB

containing I(i),TB the slice module of S and H=End TB. We claim that, if j

is a sink in a branch, then /(/) does not belong to S (and thus, in particular,

y=£i). Since / lies in a branch, P(j)B lies in the regular component of FB.

Thus, it is not a summand of T and, by the connecting lemma [25],

THExtB(T, P(j))2^EomB(T, /(/)). Since HomB(T, /(/))belongs to a tube in FH,

/(/) does not belong to S.

4.2. Lemma. Let B be a simply connected domestic truncated branch exten-

sion of a tame concealed algebra C. If i is a strong sinkin B such that B＼_I{i)~＼

is a finiteenlargement of B {in the sense of [35] (2.6)),then S+B is representa-

tion-finite.

Proof. Let B' denote the full subcategory of B consisting of all the ob-

jects of B except i. By definition of finite enlargement and (3.2), there are

only finitely many isomorphism classes of indecomposable St-S-moduIes which

are not 5-modules. Since the remaining indecomposable Sji?-modules are B'-

modules, it sufficesto shows that B' is representation-finite.

First, we prove that B' is Schurian, A-free and simply connected. Indeed,

by (4.1),i belongs to C hence the firsttwo assertions. If C is hereditary of

type Am or a non-Schurian tame concealed algebra, it is clear that B' is simply

connected, while if C is A-free and Schurian then, by [14][11], B' as a full

convex subcategory of B is simply connected. Therefore, if B' is representation-

infinite,then, by [11][12][26] it contains a tame concealed algebra C as a full

convex subcategory. Observe that C'^C, since C does not contain i. Now,

since B is a tiltedalgebra of Euclidean type, its homological quadratic form qB

has corank one. Since C (respectively, C) is tame concealed, the restriction

qc (respectively, qc>) of qB to it has a sincere radical vector x (respectively,x').

Since x and x' are clearly linearly independent in the Grothendieck group

K0(B), we obtain a contradiction and thus B' is representation-finite.

4.3. We now proceed to show the implication (iii)=)(ii)of our main theorem,

namely we assume that B is a representation-infinitetiltedalgebra of type A=

Dn or Ep, and we claim that its trivial extension T(B) is 2-parametric. We

may assume, up to duality, that B is a truncated branch extension of a tame

concealed algebra. Let ix be a strong sink in B. By (3.2), every indecomposable
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J3[/(/i)]-module which is not projective-injective belongs either to mod B or to

mod(SitB). Moreover, StxB is also a tilted algebra of type A (and thus is

simply connected (1.3)). Indeed, there exists a complete slice in the preinjective

component of FB having I{ii)B as a source. In particular, all indecomposable

modules of S besides I{ix) do not have S(/i) as a simple composition factor, thus

are also S^B-modules. We obtain a complete slice Sr of Fs+B by replacing the

5-module /(/x) by the S^B-module Tbuh^Kh), and every arrow of S of the

form a: KJ^X by the corresponding arrow a~1a: X-^Tshci^iKh)-

Assume that i3[/(/i)] is a finite enlargement of B, then, by (4.2), S^B is

representation-finite and all indecomposable injective S^fi-modules lie in the

(finite) set of successors of S'. Let f2 be a strong sink in S^B. Then S^S^B

is again a tilted algebra of type A and any indecomposable Z?[/(/i)][/(/2)]-module

which is not projective-injective belongs to mod B, m.od{S＼xB) or mod(S^S^S).

By (3.3), there exists a least index feiV such that we have a strong v-reflection

sequence of sinks iu ･･･, it such that Z?[/(/i)]･･･[/(z£)]is an infinite enlargement

of B. Then R=Stt-- S^B is a representation-infinite tilted algebra of type A

having a complete slice in its preprojective component and, by (2.3), a truncated

branch coextension of a tame concealed algebra C, say. Moreover, all inde-

composable injective i?-modules occur either in the regular or the preinjective

component of FR.

Suppose that some indecomposable injective i?-module lies in the regular

component of FR. We shall apply successive reflections in the following way.

We start by fixing an (arbitrary) ordering K[, ･■･,K's of the coextension branches

of R. For each branch K']t we let Sj denote the set of vertices on the main

line, and Sj denote its cardinality. For each x e 5^, we let lx denote the length

of the path from the root to x and, for each l<r<Sj, let x(j, r) denote the

unique vertex x such that lx = Sj―r (see the proof of (2.5)). Then x(j, 1), ･･･,

x(j, s/) is, for each /, a v-reflection sequence of sinks. Let it+i―x(l, 1) and

consider i?[/(/£+1)]. Let 17 denote the full subcategory of the vector space

category Homij(/(zj+1),mod R) consisting of the objects of the form HomR(I(it+i),X),

for XR indecomposable regular in the tube of FR containing I(it+i). It follows

from the structure of the tubes in FR that 1/.~add (kS) where S is a partially

nrriprprl≪pf nf t-hf*fnrm ･

p'> ･･･>2'>1'>O<1<2< ･･･<q< ■■■

(p>0). Thus the algebra i?[/(/£+i)]has a preprojective component which coin-

cides with that of R. The regular component of i?[/(z'i+i)]is obtained from

that of R by p+1 ray insertions in the tube of FR containing /(/£+1),and its
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preinjective component by a resulting infinite enlargement of that of R [20].

Observe that, since I(it+i)Rtmt+^i lies in the regular component, the preinjec-

tive i?[/(zc+1)]-modules are SHi£+1i?-modules. Repeating this procedure on all the

sinks of the form x(l, r), l<r<Si, we replace the truncated coextension branch

K[ by a corresponding extension branch Kx (2.5). Repeating this procedure on

all other coextension branches K'h we replace R by a branch extension R' by

branches Ku ■■■, Ks which are generally not truncated, but which satisfy the

following property: relations of the form a^=0 can only occur whenever a

belongs to the main line.

Our next objective is to replace R' by a truncated branch extension, by ap-

plying the method explained in (2.4). Observe that, by the above property, for

each branch Kh the vertices in N(Kj) (with the notations of (2.4)) can be ar-

ranged in a v-reflection sequence of sinks: indeed, if N(Kj) is decomposed in

its disjoint connected components N(c{), l<l<mj, then the arrow y{ connecting

c{ to N{c{) has always c{ as a source, thus we need only consider the set of all

maximal paths starting in c{ and ending inside N{c{). Observe also that, for

each x in N(Ki), I(x) lies in the tube corresponding to the extension branch:

indeed, let R" be a truncated branch extension of C, which is maximal for

being a full bound subquiver of R', then, for each (/, /), S(c{)R≫belongs to a

tube in FR-, therefore the injective corresponding to the target of y{ (which has

S{c{) as a socle factor) lies in the same tube of FR-. We deduce that no inde-

composable preinjective i?'-module has S(x) as a simple composition factor.

We now apply a sequence of reflections as in (2.4). We have two possi-

bilities. If the walk connecting the sink i under consideration to the root of its

branch is bound by at least two zero-relations, the vector space category

Horrid'(/(/),modi?') is equivalent to the vector space category add(&S), where S

is a partially ordered set of the form

p'> ･･･>1'>O<1< ･･･ <q

(p>0 and <7>0). Then modR'[_I(i)2 is obtained from modi?' by a finite enlarge-

ment in the tube containing I(i) [34]. If this walk contains exactly one zero-

relation, HomR-(I(i), mod R') is equivalent to add(&S), where S is a partially

ordered set of the form:

p'> ■･■>1'>O<1< ･･･ <?< ･･･

(p>0). Then modi?'[/(/)] is obtained from modi?' by p+1 ray insertions in

the tubes and an infinite enlargement of the preinjective component [20]. In

both cases, the preinjective component of i?'[/(z)] is in fact that of S^R'.
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Applying the procedure in (2.4), we find a least s<=N such that E=Sis ･■■S^R'

is a tiltedalgebra having allits injectivesin the preinjective component. Thus,

E is a truncated branch extension of a tame concealed algebra, and we are in

a situation similar to that at the starting point (that is, for B).

As before, there exists a least index r such that we have a v-refiection

sequence of sinks iu ･■･,ir with B'=Str-- S^E a tiltedalgebra having all its

injectives in the preinjective component (that is, B' is obtained from E in ex-

actly the same way as E is obtained from B). Since B' is tilting-cotilting

equivalent to B, it is also of type A (1.3). We shall now show that we have

in fact described B. We use the notations of (1.4). First, we claim that B'

equals the image Bx of B=B0 under the action of v.

To prove our claim, we shall consider the tubes of rank 1 in the previous

construction, that is, the fullsubcategories given by the regular homogeneous

modules. The first such family of tubes MB occurs in FB. Since, clearly,

finiteenlargements do not create tubes, the next family occurs in FR. Since

the modules in these two families have distinct supports in B, the two families

are distinct. In passing from R to E, we did not affect the tubes of rank 1 in

FR neither did we create a new family, that is, the tubes of rank 1 in FR are

the same as those in FE (when both are embedded in FB). Applying the same

process, the next family of tubes of rank 1 MB> occurs in FB>. Note that MB

and JCB', considered as subcategories of mod B are isomorphic to their images

in modi?. Now the structures of mod B and mod T(B) are known [23][41][44].

In particular, mod T(B) contains two families of tubes of rank 1, each corre-

sponding to a v-orbitof families of tubes of rank 1 (separated by two trans-

jective components) in modi?. Hence v{Ms)=MB<. We next observe that in

every reflectionstep in passing from B to B', we have only used vertices which

lie in Bo (=B): indeed, since Bt is a truncated branch extension of a tame con-

cealed algebra, all indecomposable injective i^-modules lie in its preinjective

component and since MB>―MBl, it follows that no vertex of Bx was used in

passing from B to B'. Furthermore, since B and B' are both tilted of type A,

and since the description of mod B [23] implies that, for any vertex * of Bo,

the preinjective component of B' does not contain the injective module with

socle S(i), all the vertices of Bo were used in reflection steps. Thus, B' coin-

cides with B1=v(B0).

Let now, for p<q in Z, Bp,q denote the full subcategory of B consisting

of the objects of Br, p<r<q. We claim that any indecomposable £?p,g-module

is actually a 5r,r+i-module for some p<r<q―l. Indeed, observe that Bp,q+1is

obtained from BPlQ by a sequence of one-point extensions by modules whose
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restrictions to Bp,q are either 0 or an indecomposable injective 59-module. From

the previous considerations,it follows that any J3p,Q+1-indecompQsable module is

either a jBPl9-module or a j3g,g+1-module. Dually, any indecomposable -BP-i,g-

module is either a £p_i,p-module or a Bp,q-module. This shows our claim. Con-

sequently, any indecomposable S-module is actually a £r,r+1-module, for some

reZ. Since, for each reZ, Br,r+i=vT(B0,1) it follows that Br,r+y is 3-parametric

(thus B is locally support-finiteand domestic). Therefore, by (1.2), T{B) is 2-

parametric and the proof is complete.

5. Preparatory lemmas.

5.1. Lemma. Let B=C[M^ be a one-point extension of an algebra C, and

let Xu i>l, be an infinitefamily of C-modules such thatEnd X{2^k for alli, with

pairwise differentdimension-vectors and such that dim* Homc(M, Xi)―2 for each

i

Then B is not domestic.

Proof. We construct, for each i, a family of indecomposable 5-moduies

by setting Yt(X)=(k, Xit
Hi)
tfefc*). Then dim TO) = (1, dim X*) and, by

hypothesis, dim Yi(X)^ dim Y3{p) for i^j and X, pt^k*. Suppose that B is do-

mestic, and let Ft: mod &[X]->mod.B, 1</<m, be a finitefamily of parametrising

functors. If dim Fi{k＼_Xy{X-X))={di,xi), then dimFiik^Xl/iX-XD^imdumx,)

for each m>l. Assume that infinitely many indecomposable jB-modules have

(1, x) as a dimension-vector. Since B is domestic, allbut finitelymany of these

modules are of the form Ft(M) where M is an indecomposable &[X]-module

and actually, by the previous formula, a simple &[X]-module. This implies

that there are only finitelymany dimension-vectors of the form (1, x) such that

infinitely many non-isomorphic indecomposable B-modules have this dimension-

vector. Hence there exists i such that all Yi(X), X<^k*, are not in the image

of one of the Fh a contradiction.

5.2. Lemma, Let B be an algebra whose bound quiver consistsof a full

subcategory C which is hereditary of type Am and objects of a walk w connecting

two different objectsof C, and assume that B is bound only by zero-relations.

Then T(B) is not domestic.

Proof. The quiver of B has the form:
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c, Cr+l
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where ct are the vertices of C, and the walk w is equal to Ci― ax ― ･･･― at ―cT.

If if is a path, then, since C is a full subcategory of the zero-relations algebra

B, w must be bound by zero-relations. In particular, if>l. Taking a suitable

full subcategory of B, we can assume that the walks w, c1―c2― ■･■
~~cr,

d ―Cg― ■■■―cT have radical square zero. Let a denote the arrow joining C＼

and c2.

Suppose that T(B) is domestic, and let Fr. £[X]-*mod T(B), ＼<l<n, be a

finite family of parametrising functors. We first observe that B is gentle. Indeed,

if one of the subcategories formed by the objects au cu c2> cs or at, cr, cT-u cr+i

is not gentle, then mod T(B) contains mod H, for H a wild hereditary algebra

which is a one-point extension or coextension of C, contrary to the assumption

that T(B) is domestic. Thus B is gentle. It is easily seen that this implies

that B, and consequently T(B), are special biserial. The full subcategory D of

B formed by the objects au ･･･, at, cu ･･･, cr is a gentle cycle. Let m denote

the absolute value of the difference between the numbers of clockwise and

counterclockwise oriented zero-relations in D. By [37], Lemma (2), T(B) con-

a

tains a free closed walk v:cx c2― ･■･― di ―cx containing a and passing

through each object of D once if m is even and twice if m is odd. Let u be

a

the (free) closed walk around C in B: u: cx c2― ･･･ ―cr+i―cr― ■■■―cs, and

consider the (non-periodic) closed walks in T(B) defined by vu}, j>＼. By [18]..

each of them defines a functor Gji mod/fe[Z, X~l~]―^modT(B) such that:

(i) For each j, Gj=- c Q't where Q) is a k＼X, X~l~＼-T{B) bimodule,

finitely generated and free as a left k[_X, X'^-module. Moreover, for anj

l<i<t, Q'j(ai)=k[_X,X-ll if m is even, and Qfj(at)=klX, X'1]2 if m h

odd.

(ii) For any fixed /, the T(5)-modules XJ{X) = Gj{klX, X^ViX-X)), Z^k*

are indecomposable non-isomorphic, and have the same dimension-vector.

(iii) dimZyU)^dimZj(/i) for /=£/ and X, /iG^.

As in (5.1), it follows from the hypothesis that T(B) is domestic that there

are only finitely many dimension-vectors having 1 or 2 at the vertices au-~, a

such that infinitely many non-isomorphic indecomposable T(Z3)-modules have this



52 I. Assem, J. Nehring and A. Skowronski

dimension-vector. Hence there exists an index j such that all Xj(X), Ae&*, are

not in the image of one of the functors Fi, a contradiction.

5.3. Lemma. Let B―C＼_M~＼be a one-point extension of a tame concealed

algebra C such that T(B) is domestic. Then M is a regular C-module.

Proof. If Mc has a preprojectivedirectsummand, then,asin [35], Lemma

(3), p. 211, B is not tame and thus T(B) is not domestic. Suppose M has a

preinjectivedirectsummand N, and let a be the extension vertex definingB=

C[M~＼.Let B'=Sa(B)=[M^C, then JB'op=Cop[Z)M] and DM has the prepro-

jectivedirectsummand DN. Hence T{B)^T{B')rXT{B'0V)0V is not domestic.

5.4. Lemma. Let B=C＼_M~＼be a domestic one-pointextensionof a tame

concealedalgebra C of type Dn or Ep. Then Mc is a simple regular non-homo-

geneous C-module.

Proof. Let T be the slicemodule of a completeslicein Fc, and H=End T.

Then Homc(T, M) is a regular //-module,and is simple non-homogeneous if and

only if M is. The resultthen follows from (5.1)and [35] (3.5).

5.5. Lemma. Let B=C[M^＼ be a one-pointextension of a hereditary algebra

of type Am such that T(B) is domestic. Then M is either simple regular or

regular indecomposable of regular length two lying in a tube of rank at least

two.

Proof. Since T{B) is domestic, so is B and by [35] (3.5), M is regular of

regular length at most two with non-isomorphic regular composition factors.

Hence if M is indecomposable and not simple regular, it liesin a tube of rank

at least two. Suppose M^N&Nz where Nt and iV2 are simple regular. If JVi

and N2 are in different tubes then, by [35] (3.5), the vector space category

Homc(M, mod C) is of type (Apq, p, q) and by (5.1), B is non-domestic. If iVi

and N2 are in the same tube, then, since N{^NZ, this tube has rank at least

two. Then B satisfiesthe hypothesis of (5.2), and we obtain a contradiction.

5.6. Lemma. Let C be a tame concealed algebra of type Dn or Ep, Xc a

simple regular non-homogeneous module and B=C[X'] (respectively,B=[X~]C).

If i denotes the extension {respectively,coextension) vertex corresponding to X,

and A is obtained from B by identifying i to the vertex j in a quiver with under-

lying graph as follows:
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a

b

then A is not domestic
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Proof. By duality, we can assume that B=C[_X~＼. Let A' be given by

the full bound subquiver of A consisting of all vertices except a. Then A' is

a truncated branch extension of C. If nA< is not domestic, we are done by

(2.3). Assume thus that nA< is domestic. It follows from the hypothesis that

nA'^{p, q) (l<P<q) and therefore A' is tiltedof type Dn or Ep. By definition,

A is a one-point extension or coextension of A'. In the latter case, applying an

APR-tilting module corresponding to the sink a, we replace A by a new alge-

bra A* which is a one-point extension of A' and which is domestic if and only

if A is [28]. We may thus assume that A is a one-point extension of A', and

also that c is either a source or a sink in A'. Since rad P(a)=P(c), we have

A―A'＼_P{c)~＼.Let now S be a complete slicein the preinjective component oi

A'. We shall prove that the full subcategory HJ of the vector space category

EomAr (P(c), mod A') formed by all objects of the form UomA'(P(c), Z), where Z

is an indecomposable preinjective ^'-module which is a proper predecessor oi

S, is not domestic.

Let TA' be the slice module of S and H=End T. We claim that RH=

Exti'(T, P{c)) is a regular //-module of regular length at least two. Clearly,

it is regular, since P(c)A> is. We shall now apply the connecting lemma [25],

assuming that d^-c-+b: then rad P(c)=P{b)RP{d) and I(c)=S(c), and the con-

necting sequence for P(c) (which is not a summand of T) is:

0―>Hom(T, /(c))―>Ext1(7＼ P(b))RExt＼T, P{d))―>Ext＼T, P(c))=R-+0.

Since both middle terms are non-zeio, RH is not simple regular.

Repeating this reasoning for the opposite orientation of the subgraph

d―c―b, we prove our claim. It then follows, by (5.1) and [35] (3.5), that the

full subcategory ^V of the vector space category Hom#(/?, Y), where YH i<

indecomposable preinjective,is not domestic. However, as in (2.3), cyZ^I/ anc

rnnsennentiv A is nnf riomRsHr

5.7. Corollary. Let B be given by the quiver:
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bound by a^―X. jd (i£^*) and these are the only paths of length at least two.

Then B is not domestic.

Proof. The universal cover of B contains a full subcategory B' given by

the quiver:

b[

el

bx

Ci

b'l

bound by afi^l-yd. The full subcategory K of B' formed by the objects

d'u,bu cu du ･■･, d2t,b", c" is a one-point extension of the hereditary algebra

C, formed by allits objects except d'n,by a simple regular C-module. By (5.6),

B' is non-domestic and hence, by (1.2),B also is non-domestic.

5.8. Let now C be a hereditary algebra of type Am, of tubular type (p, q),

l<p<q. We shall denote by C an algebra of one of the following types:

(i) If p, q>2, and Mt denotes a simple regular C-module lying in a tube

of rank 1, we let C = C[M{] or [M^C.

(ii) If p=l, q>2 and Mlt M2 denote non-isomorphic simple regular C-

modules lying in tubes of rank 1, we let C ― C[_Ml"}＼_M{＼,{.M^C^Mz} or

(iii) If p―q―1 and M＼, M2, M3 denote pairwise non-isomorphic simple re-

gular C-modules lying in tubes of rank 1, we let C = C[M1'][M2~][Mii'],

[A/JCCMJCM,], [MJEM^CCMs] or {.M^M^IM^C.

Observe that C contains exactly three tubes of rank at least two. Further-

more, it is simply connected (and is actually a smallest simply connected algebra

containing C).

Lemma. Let B be an algebra of one of the following types: B ―C or B~

C＼_X~＼,where C is as defined above but with the restrictionthat it is obtained

from 0 using only extensions. In the firstcase, we let i be an extension vertex

of C inside C and, in the second, we assume that X is a simple regular module

non-isomorphic to Mu Mz or M3 and let i denote the corresponding extension
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vertex. Further, let A be obtained from B by identifying i to the vertex j in a

quiver with underlying graph:

i

a

b

Then A is not domestic.

Proof. By construction, the full subcategory A' of A consisting of all

vertices except a is a truncated branch extension of C of tubular type different

from (p, q), l<p<q. Thus either A' is not domestic or it is a tilted algebra

of type Dn or Ep. Continuing the proof as in (5.6), we prove the lemma.

5.9. Corollary. Let B be an algebra of one of the following types: B―C,

C[Jf] or [_X~]C. In the firstcase, we let i be an extension or coextension vertex

of C inside C. In the remaining cases, X is a simple regular module non-

tsomorphic to Mu M2, M3 and i is the corresponding extension or coextension

vertex. Further, let A be obtained from B by identifying i to the vertex j in a

quiver with underlying graph:

ypa

j d ^V

Then T(A) is not domestic.

Proof. It follows from the definitionof B that,by applying suitable reflec-

tions to A we obtain an algebra
^4*
such that the full subcategory A' of ^4*

consisting of all vertices except a is either a truncated branch extension (if i

is an extension vertex) or coextension (ifi is a coextension vertex) of C. Since

T(A*)2^T(A), we may replace A by A*. Passing, if necessary, to the opposite

algebra, we may assume that A is such that A' is a truncated branch extension

of C. We then apply (5.8).

5.10. Lemma. Let B be as defined in (5.6) or (5.9) and Y be an indecom-

posable C-rnodule such that the trivialextensionof B[Y~＼is domestic. Then Y is

not isomorphic to X, Mu M2 or M3.

PROOF. Suppose that Y is isomorphic to one of these modules. Since
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B＼Y~＼is domestic, so is B. As in (5.9), we may assume that B is a truncated

branch extension of C, thus is a tiltedalgebra of type Dn or Ep having a com-

plete slice S in its preinjective component. In order to obtain a contradiction,

it suffices to show that the fullsubcategory °Uof the vector space category

HomB(F, mod B) formed by all objects of the form HomB(F, Z), where ZB is an

indecomposable preinjective which is a proper predecessor of S, is not domestic.

Let TB be the slice module of S, and if=End TB. As in (5.6), it suffices to

prove that ExtB(T, Y) is an indecomposable regular //-module of regular length

two. Let i denote the extension vertex corresponding to Y inside B(＼). Then

YB―rad P(i)B and I(i)=S(i). Since P(i)B is regular, it is not a direct summand

of T and the corresponding connecting sequence is:

0 ―> HomB(T, 7(0) ―> ExtB(T, Y) ―> Ext£(T, P(i))―> 0

with indecomposable middle term. This completes the proof.

5.11. Lemma. Let C be as in (5.9), Xc be an indecomposable regular

module which is not isomorphic to Mu Mzor M3 and let B = C[_X~＼or [_X~＼C.

T{B) is domestic, then Xc is simple regular non-homogeneous.

c-

If

Proof. It is easy to see that Xc is not homogeneous: for,if it were, either

T(B) is wild or, since nB is not domestic, we obtain a contradiction by (2.8).

It now follows from the definitionof B that we may assume (applying, if

necessary, suitable reflections)that B=C[Z] and that moreover C is obtained

from C by successive extensions. Thus C is a tiltedalgebra of type Dn or Ep

having a complete slice S in its preinjective component. Let T be the slice

module of S and i/=EndT. Then X'=Ext1(T, X) is an indecomposable regular

if-module and the vector space category Homff(I', mod H) is a full subcategory

of HomcC^, mod C). Since B=C[X'] is domestic, then HomH(Z', mod//) is also

domestic. By (5.1) and [35] (3.5), this implies that X' is a simple regular non-

homogeneous //-module. Therefore X is a simple regular non-homogeneous C-

module.

6. Proof of the implication (i)=}(iv):

Let A be a simply connected algebra such that T(A) is representation-

infiniteand domestic. We claim that A is iterated tiltedof type Dn or Ev. If

A is representation-finite,then, by (3.4), there exists a representation-infinite

simply connected algebra A' obtained from A by a sequence of reflections,that

is, A1 is tilting-cotiltingequivalent to A and T{A')2^T(A). We may thus assume
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that A is representation-infinite.It will then suffice,by (2.2), to show that A

is a domestic branch enlargement of a tame concealed algebra C with tubular

type not of the form (p, q),l<p<q.

6.1. Lemma. A contains a full convex subcategory C which is a tame con-

cated alsebra.

Proof, a) Assume firstthat A is not Schurian, and let B be a non-Schurian

full convex subcategory of A having the least number of vertices. Thus B

contains a source x and a sink y such that dimfc^4(x,y)=m>2 and dimkA(t, z)

<1 for all pairs (t,z)i^(x, y) of objects of B. We claim that m―2. Indeed, if

m>3, SyB contains a wild hereditary fullsubcategory H consisting of m arrows

from y' to x, and then T(B)2^T(SyB) is wild, a contradiction to the fact that

T(A) is domestic. Let uu u2 ■･■un denote a maximal set of linearly independent

paths in A(x, y). It follows from the minimality of B that the starting arrows

of the ut have distincttargets.

We now claim that all the objects of B lie on one of the ut. Observe that,

if n>3, the ut have length at least two: for, if one of them is an arrow, it

does not belong to the subspace of A(x, y) generated by the remaining ones

and consequently dimkA(x, y)>3, a contradiction. Suppose now that w is an

additional path in B, say from a to b. If {a, b)={x, y), then w is of length at

least two and non-zero, since otherwise mod B contains a subcategory mod H,

where H is wild hereditary given by the quiver o< o *o. Thus, by defini-

tion of the Ui, w depends linearly on one of the paths ut. If (a, b)i^{x, y), we

claim that a and b lie on the same path ut and that w depends linearly (in

A{a, b)) on the subpath of ut from a to b. Indeed, suppose that a lies on ux

and b on u2, say. Let u[ (respectively, u'i) denote the subpath of ut (respec-

tively, Uz) from x to a (respectively, b to y). Since ux and u2 are linearly

independent and dimkB(x, b)<l, dimftfi(a,y)<l, both paths u[w and wu'i are

bound by zero-relations. Thus B contains a full subcategory satisfying the

conditions of (5.2), a contradiction to the fact that T(B) is domestic. Thus a

and b lie on the same path ut and, as above, we conclude from (5.2) that w

depends on the subpath of Ui from a to b. But then, in both cases, B contains

a full convex subcategory given by the quiver of (5.7), a contradiction. We

have thus shown that all objects of B lie on the paths m<. Hence, since T(A)

is tame, then n<4. We have three cases to consider:

(i) If n=4, since T{A) is tame, uu u2, u3 and u4 are of length exactly two.

Therefore x is the source of four arrows forming a hereditary convex full sub-
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category C of type D4.

(ii) If n=3, let lu l%,U denote respectively the lengths of uu u2> uz Since

B contains no wild hereditary full subcategory, l//i+ l//2+l//3>l. If equality

is strict,take C equal to B; if not, take C equal to the full subcategory of all

the objects except y.

(iii) If n―2, C~B is a full convex subcategory of A of type Am.

b) If A is Schurian and A-free then, since it is simply connected, its first

homology vanishes by [14][11]. But then, by [H][12][26], A contains a full

convex subcategory C which is a tame concealed algebra of type Dn or Ep.

c) If A is Schurian, but contains a full subcategory K2^kQ, where Q is

some quiver with underlying graph Am, we let C denote the convex hull of K.

Since K is full,and mod C does not contain a subcategory of the form mod H,

for H wild hereditary given by the quiver o< o > or its opposite, then A

either contains a full subcategory given by the bound quiver of (5.7), a con-

tradiction, or a full subcategory L of the form:

r

Here, F is a hereditary algebra of type Am, t>＼, the full subcategory of L

formed by F and ax (respectively, at) is a non-point coextension (respectively,

extension) of F by an indecomposable regular jP-module M (respectively, N)

of regular length at most two, and the full subcategory of L consisting of the

objects au ■･■,at has radical square zero. Observe that, if a^~at, then there

is no non-zero path from F to F through ax (because F is full). Since A is

triangular, M (respectively, N) is not an indecomposable homogeneous /""-module.

Moreover, if ax and at are connected to F by just one arrow, then L is only

bound by zero-relationsand, by (5.2), T(L) is not domestic, a contradiction.

Suppose that TV is of regular length two and at is connected to F by two

arrows. Since N does not have two isomorphic simple regular factors,it must

belong to a tube of rank at least two. Consider the following Galois covering

R-*L with infinite cyclic group:
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rc-u rco] rci]

where F[Q, feZ, denotes a copy of F. Observe that this induces a Galois

covering R-+L (with infinitecyclicgroup). Then R contains a full subcategory

D of the form:

r

where the full subcategory of D formed by F and a is isomorphic to /""[AT],

the full subcategory of D formed by a, b and c has radical square zero and

rad P(b)DqbP(a)D. We claim that rad P(b)D2^S(a). Indeed, if this is not the

case, then the largest .T-submodule X of P{b)D is non-zero, there is a non-zero

map from N to X, consequently X has an indecomposable direct summand which

is either preinjective or regular of regular length at least three. Let D' be the

full subcategory of D formed by F and b. It follows from (5.3) and (5.5) that

D', and thus L, are not domestic, and this contradicts the fact that T(A) is

domestic. Therefore, rad P(b)D2^S(a) and R contains a full subcategory E of

the form:

r

where the full subcategory of E formed by F and a is again isomorphic to

F＼_N~＼.Let H be the fullsubcategory of E formed by b and c, and F=FxH.

Clearly, E is a one-point extension of F by the F-module V=NRS{b) and [35]

the vector space category HomF(F, mod F) contains a fullsubcategory C/2^add (kS)

where S is the disjointunion of the two partiallyordered sets EomH(S(b), mod H):

and Homr(A/, mod F):

Consequently E, and so R, are wild. Since R is a Galois covering of the full
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subcategory L of A, we obtain a contradiction to the fact that T(A) is domestic.

We obtain similarly a contradiction if we assume that M is of regular

length two and at is connected to F by two arrows. Therefore C is here-

ditary of type Am and the proof is complete.

6.2. Lemma. With the notations of (5.8),if A contains a hereditary algebra

C of type Am, as a full convex subcategory, then it contains an algebra of the

form C.

Proof, (i)) We first claim that, for any presentation (Q, I) of A, any

arrow of C is involved in a minimal relationin the sense of [31]. Indeed, let

(Q, I) be a presentation of A having an arrow a which is not involved in a

minimal relation. Let w=a[1 ･･･aX, £j=±l, l<j<m, denote a reduced closed

walk around the cycle C. There exists an index l</<m such that a=a}.

Since A is simply connected, there exists a sequence of closed walks

On the other hand, our assumption implies that each walk wt contains the term

a*/, a contradiction.

(ii) We shall now prove that, for any presentation (Q, I) of A, there is

(inside A) a one-point extension or coextension of C by a simple homogeneous

C-module. Let (Q, I) be a presentation of A such that this statement is not

true. Let B be the full subcategory of A consisting of C and all its neigh-

bours. It follows from (i) that, up to duality,B contains a one-point extension

of C by an indecomposable regular C-module of regular length two (lying in a

tube £Tof rank at least two) such that the extension vertex is connected to C

by two arrows. We claim that any vertex of B which is not in C and is con-

nected to C by two arrows is the extension vertex of a one-point extension of

C by an indecomposable regular C-module of regular length two lying in 2".

Since B contains neither one-point extensions nor one-point coextensions of

C by a simple homogeneous C-module, it admits a universal Galois covering (in

the sense of [31]) B-+B with the infinitecyclic group (induced by the cycle

C). Now suppose that B contains a one-point coextension of C by an inde-

composable regular C-module of regular length two (respectively, a one-point

extension of C by an indecomposable regular C-module of regular length two

lying in the tube of rank at least two distinctfrom 2"),such that the coexten-

sion (respectively, extension) vertex is connected to C by at least two arrows.

Then R contains a full subcategory D of one of the forms:
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bound in each case by a/3=0, and all possible commutativity relations. It fol-

lows from (5.6) that R is not domestic, and consequently, by (1.2),that B is not

domestic, a contradiction.

Therefore it follows from (i) that C is of the form:

and that B contains a full subcategory B' of the form:

c

c

bound by all possible relationsof the form ap=0, and all possible commutativity

relations. Let us denote by C the fullsubcategory of B formed by all sources

of B' and all sources of C. Thus C is a radical square zero hereditary algebra

of type Am. Observe that B does not contain a one-point extension or coex-

tension of C by a simple homogeneous C'-module (for, if this were the case,

then B would contain a one-point extension of C by the direct sum of all non-
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isomorphic simple injective C-modules, a contradiction to (5.3)). As above, we

can show that A does not contain a one-point extension of C by an indecom-

posable regular C'-module of regular length two whose extension vertex is con-

nected to C by two arrows. Thus, any neighbour of Br in A is connected tc

B' by one arrow.

Let now w be a reduced closed walk around C. There exists a sequence

of closed walks tt/=u>0~Wi~ ･･･~Wt={x}. However, each closed walk Wi con-

tains all terms of some closed walk w't around a cycle in B'. This contradicts

the simple connectedness of A2^kQ/I. Consequently, for each presentation (Q, I)

of A, A contains a one-point extension or coextension of C by a simple homo-

geneous C-module.

(iii) Let (p, q) denote the tubular type of C. If p>2, q>2, the existence

of C follows directlyfrom (ii). Assume p―l, q>2 and let (Q, I) be an arbitrary

presentation of A. It follows from (ii) that (Q, I) contains (up to duality) a

full bound subauiver of the form:

a ≫

where fa―hf$i ･･･j3qe/, A<E.k*. Replacing the representative of a by a'―

a―X-^i---^q, we obtain a new presentation (Q, F) of A such that ja'^F.

Applying (ii)to (Q, I'), we deduce that there exists an arrow 8: c->a with

da'-X'-dfr- pq^I', A'e£*, or an arrow sih^d with a's-A'-fr - &ee/',

X"(Ek*. Consequently A contains an algebra C of the form (5.8)(ii). Similarly,

if p―q―＼y then A contains an algebra C of the form (5.8)(iii). This completes

the proof.

6.3. Lemma. Any one-point extension or coextension of C which is a full

subcategory of C is by a simple regular C-module.

Proof. If C is not hereditary of type Am, thisfollows from (5.4) while if

it is, this follows from (6.2) and (5.11).

6.4. Lemma. Let B~C[M^＼ be a one-point extension of C by a simple re-

gular C-module M, with extension vertex a, and E=B[_X~] be a one-point exten-

sion of B, with extension vertex b. Suppose further thatE is a full subcategory

of A, and let N be an indecomposable direct summand of X containing S(a) in

its top. Then either N2^P(a)B or N^S(a)n.
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Proof. Suppose that N is neither isomorphic to S(a), nor to P{a), and let

R (respectively, Y) be the largest C-submodule of N (respectively, X). Since

NcfeS{a), R is non-zero and is obviously a direct summand of Y. Since NcfeP(a),

McfeR but there exists a non-zero map from M to R and consequently R is not

simple regular. Then the full subcategory of A with objects b and the objects

of C is a one-point extension of C by a module which is not simple regular, a

rnntraHirtinn ta (Pi3V

6.5. Lemma. Let D be a full subcategory of A of one of the following

types:

(i) D = C＼_X~＼if C is not hereditary of type Am, where X is a simple regular

C-module. Let i denote the corresponding extension vertex.

(ii) D=C if C is hereditary of type Am. Let i denote an extension or a

coexiension vertex of C inside C.

(iii) D=C＼_X~] if C is hereditary of type Am, where X is a simple regular

C-module not isomorphic to Mu M2 and M3. Let i denote the corresponding exten-

sion vertex.

Further/ let B be obtained from D by identifying i to the vertex a^ in a

bound ouiver with underhins grabh:

fli a2

h

d

where the full subcategory formed by the objects at,b, c, d is free. Then B is

not a full subcatesorv of A.

Proof. Suppose A contains a full subcategory of the form B. We may

obviously assume that the walk a1―a2― ･■･―at―c has radical square zero. In

the case (ii),we can also assume thati is an extension vertex of C (by passing,

if necessary, to the opposite algebra). By (6.3), the largest C-submodule of

P{ax)B is simple regular. Thus, if a2-^a1, we can assume, by (6.4), that the

largest C-submoduie of rad P(a2) is zero. Hence B contains a full subcategory

B' of the same form as B but in which the radical square zero walk ax―a2―

･･･―c is not bound, has its firstedge oriented as follows: ax-^at, and moreover,

in the cases (ii) and (iii),if C contains coextension vertices of C, then these

are replaced by corresponding extension vertices of C. We then apply (5.6)

and (5.8) to deduce that B' (and hence &) are not domestic. This contradicts

the fact that T(A). and hence (by (1.2)) A, are domestic.
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6.6. Lemma. Let D he a full subcategory of A defined as in (6.5), and let

B he obtained from D by identifying i to the vertex c0in a bound quiver with

underlying graph:

o o

Co Ct

r

where F is a non-commutative cycle. Then B is not a full subcategory of A.

Proof. Assume that A contains such a full subcategory B. It follows

from (6.5) that the full subcategory of B formed by all objects outside C is

bound only by zero-relations. We can assume that the walks ca~d― ･･･―ct

and ct―d0― ･■■―ds―ct have radical square zero. By duality, we may also

assume in the case (ii)that c0 is an extension vertex of C. Also, by (6.4), we

may assume that the restrictionof P(ci) to C is zero.

Let now E denote the full subcategory of B consisting of Fand c0,･･･,ct-i.

Then the repetitive algebra B=kQh/lB of B has the following form:

rc-i]

t>Ct-i.-i

Di-n

rco]

I j *

IKt.O

oCt-i,o

D[0]

oCi-i,i

Dm

where D[i~＼(respectively, .T[z]) denotes the copy of D (respectively, F) indexed

by zeZ. The arrows of Q% are all arrows of Qt and QE. The ideal 1% is

generated by If>,h, all paths x^>co,i-*y, i^Z, of length two with one end-

point in D and the second in E, and the differences u―v, where u (respectively,

v) is a non-zero path in t) (respectively, E) from co,i+ito co,f. In particular,

t) (respectively, E) is a full subcategory of B formed by all objects of D[f＼

(respectively, E[_iJ),i<=Z. Let us consider the following Galois covering

A: r~>B=r/G with the infinitecyclic group G generated by the vertical shift:
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＼ i ＼ i
＼

S[-l] S[0] S[l]
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Let S be the full subcategory of A formed by the objectsof the column

5[0]. Then, clearly,A=S. On the otherhand, D containsa D4-frame F [5],

thatis. a bound Quiver of one of the following forms:

(Fl)

(F2)

(F3)

(F4)

(F5)

a J8 r
O K> 2 ≫O - N>

a^tf

aB=rB

≪i3r=Q

aj8=0, ay=O

£i7=o, £r=o

Therefore, S contains a full subcategory of the form:
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where at is identified to the vertex i of D. Then A=S contains a full sub-

category K of the form:

b

d

where the full subquiver consisting of allvertices outside of D is free. Further,

in the cases (ii) and (iii),we can assume that C is given by extensions of C

(see the proof of (6.5)). By (5.6) and (5.8), K, and hence A, are not domestic.

This, by (1.2), contradicts the fact that T(A) is domestic.

6.7. Lemma. Let a and b he two objectsof A outside C, each of them

connectedto C by an edge. Then any walk in A connectinga and b must inter-

sect C.

Proof. Suppose that there is a walk a=c0―cx― ･･･―c&―b in A which

does not intersect C. We shall deduce a contradiction to the fact that T(A) is

domestic. Observe that,if C is hereditary of type Am, then there exists such

a walk in A which does not intersect C. We shall thus, in this case, replace

C by C. We shall use the letter C* to denote C in all cases except if it is

hereditary of type Am in which case it denotes C.

Assume that there exists an index l<z<s and a non-zero path from d to

C* or from C* to d which does not pass through a or b. Let / be the least

such index, and denote by B the fullsubcategory of A consisting of the objects

of C* and c0,･･･,O- Observe that ci is connected (in B) to C* by at least one

edge, and that any non-zero path between an object c% (＼<i<l) and an object

x of C* passes through c0 or ct. Let K be the full subcategory of B consist-

ing of the vertices c0>･■･,Ci. We shall define inductively a radical square zero

connected full subcategory L of K containing c0 and ct: we start with cmQ=c0,

and, for each i, let mt be the largest index mi-i<m,i<l such that there is a

non-zero path in K from cmj.j to cmv or from cmi to cm,i_1. We then let B'

be the full subcategory of A consisting of C* and L. We claim that B' is of

the form:
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ax

ao=c0=Cmo

67

Indeed, suppose firstthat L has only two objects a0 and at such that we have

a double arrow ao~z~tatin L. Since C is convex, modB' contains modi/, for

H wild hereditary given by the quiver o< o >o or its opposite. Next, con-

sider the case where L has more than two objects and assume there exists a

double arrow in L. Then B' contains a full subcategory of the form:

where a is either a0 or at. We then obtain a contradiction by (6.6). This

shows our claim. By duality, we may assume that a0 is an extension vertex

of C and, by (6.4), that there does not exist a non-zero path between C* and

ax or at-i. Let D be the full subcategory of B' formed by all objects of C*,

nn and n> Thpn R' has Hiftfnrm :

flo.-i

LL-n

≪ !

X[0] L[l]

flt-1.1flt-i.o

≪,o

flu

D[-l] D[Q] D[l]

where D[f] (respectively, L[i~＼)denotes the copy of D (respectively, L) indexed

by z'gZ. The arrows of Q& are all the arrows of Qt> and Qt. The ideal !%･

is generated by It,,It, all paths x->aOii->x', y->at<i->y' {i^Z) of length two

with one endpoint in D and the second in L, and the differences u―v, where

u (respectively, v) is a non-zero path in D (respectively, L) from ao,i+1to ao,i

or from at,i+i to at,i, i^Z, In particular, D (respectively, L) is a full sub-

category of B' formed by the objects of D[i~＼(respectively, L[iJ), i^Z. Let

us consider the following Galois covering F': A-^-B'―A/G with the infinite

cvclic crrouD G generated bv the vertical shift:
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* D[-l]
Dm

om

D[l]

SCO]

b

d

!

≪ Dl-12

eg ―

≪ Di-n

Let S be the full subcategory of A formed by allthe objects of the column

S[0]. Then, clearly, A=S. On the other hand, since D contains a D4-frame,

then S contains a full subcategory of the form:

where dt is identified to the vertex a0 of D. Then A―S contains a full^sub-

category K of the form:

where the full subquiver consistingof all the objects outside of D is free.

Furtheermore, if C is hereditaryof type Am> we can assume that C is given

by extensions of C. By (5.6) and (5.8),K and hence A, are not domestic.

This implies,by (1.2),that T(A) is not domestic,a contradiction.

Remark. The proofs of (6.6) and (6.7) use the same ideas as, respectively,

the proofs of (4.8) and (4.9) of [7]. For the convenience of the reader, they

are nevertheless written in detail.
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6.8. Lemma. A is an iterated tiltedalgebra of Euclidean type Dn or Ep.

Proof. It sufficesto show that A is a domestic branch enlargement of C

of tubular type nA^(p, q), l<p<g. If A is not a branch enlargement of C,

it follows from (6.6) and (6.7) that A contains a full subcategory consisting of

C connected by a walk to a D4-frame F. Then A contains a full subcategory

of the same form, but in which F is a free D4-frame. This contradicts (6.5),

and therefore A is a branch enlargement of C. In order to show that nA is

domestic, we observe that, by (2.6), there exists a truncated branch enlarge-

ment B of C such that nA―nB and T(A)2^T(B). The result then follows at

once from (2.3) since nA^(p. a) because of (6.2).

7. Remarks.

7.1. It follows directly from our theorem and [41] that a representation-

infinite domestic trivialextension of a simply connected algebra is stably equi-

valent to the trivial extension of a radical square zero hereditary algebra of

Euclidean type Dn or Ep. This generalises results of [40] and [3].

7.2. Iterated tiltedalgebras of type Am were described in [4], In parti-

cular, they are not simply connected. Moreover, it follows from their descrip-

tion that their trivialextensions are special biserialand, by [37][18], they are

2-parametric. On the other hand, if A is given by the quiver:

bound by afi=fiY=0, then T(A) is 2-parametric but A is not iterated tilted

(because mod A is not directed).

7.3. Domestic trivialextension algebras may arise from non-triangular al-

gebras. For instance, if k has characteristic two, the group algebra kA4 on

the alternating group At is isomorphic to the trivial extension of the algebra

given by the oriented cycle:
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bound by a^ ―^J―Ja=Q. Then kA4 is a 1-parametricalgebra. The second

author has obtained a complete classificationof the Nakayama algebras for

which the trivialextensionis representation-infiniteand domestic.
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