SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 WITH HARMONIC CURVATURE

By
Jung-Hwan Kwon*

§ 0. Introduction.

A Riemannian curvature tensor is said to be harmonic if the Ricci tensor $R_{j i}$ satisfies the Codazzi equation, namely, in local coordinates, $R_{j i k}=R_{j k i}$, where $R_{j i k}$ denotes the covariant derivative of the Ricci tensor $R_{j i}$. Recently Riemannian manifolds with harmonic curvature are studied by A. Derdziński [1], H. Nakagawa and U-H. Ki [4], [5], [6], E. Ômachi [9], M. Umehara [6], [10] and others.

The purpose of the present paper is to study submanifolds with harmonic curvature admitting almost contact metric structure in a Euclidean space and to prove the following :

Theorem. Let M be a $(2 n+1)$-dimensional complete simply connected semiinvariant submanifold in a $(2 n+4)$-dimensional Euclidean space. If M has harmonic curvature and of constant mean curvature and if the distinguished normal is parallel in the normal bundle, then M is isometric to one of the following spaces;

$$
E^{2 n+1}, S^{2 n+1} \quad \text { or } \quad S^{2 n-r+1} \times E^{r}, \quad(r \leqq 2 n-1) .
$$

The author wishes to express his hearty thanks to the referee whose kind suggestion was very much helpful to the improvement of the paper.

§ 1. Preliminaries.

Let \bar{M} be a $(2 n+4)$-dimensional almost Hermitian manifold covered by a system of coordinate neighborhoods $\left\{U: X^{\Lambda}\right\}$. Manifolds, submanifolds, geometric objects and mappings discussed in this paper are assumed to be differentiable and of class C^{∞}. Denote by $G_{C B}$ components of the Hermitian metric tensor, and by $F_{B}{ }^{A}$ those of the almost complex structure F of \bar{M}. Then we have

$$
\begin{align*}
& F_{C}^{B} F_{B}^{A}=-\delta_{C}^{A}, \tag{1.1}\\
& F_{C}{ }^{E} F_{B}{ }^{D} G_{E D}=G_{C B}, \tag{1.2}
\end{align*}
$$

Received February 19, 1987. Revised July 6, 1987.

* This research was partially supported by KOSEF.
$\delta_{C}{ }^{A}$ being the Kronecker delta. We use throughout this paper the systems of indices as follows:

$$
\begin{aligned}
& A, B, C, D, \cdots: 1,2, \cdots, 2 n+4 \\
& h, i, j, k, \cdots: 1,2, \cdots, 2 n+1
\end{aligned}
$$

The summation will be used with respect to those systems of indices.
Let M be a $(2 n+1)$-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\left\{V ; Y^{h}\right\}$ and immersed isometrically in \bar{M} by the immersion $i: M \rightarrow \bar{M}$. In the sequel we identify $i(M)$ with M itself and represent the immersion by

$$
\begin{equation*}
X^{A}=X^{A}\left(Y^{h}\right) \tag{1.3}
\end{equation*}
$$

We put

$$
\begin{equation*}
B_{i}{ }^{A}=\partial_{i} X^{A}, \quad \partial_{i}=\partial / \partial Y^{i} \tag{1.4}
\end{equation*}
$$

and denote by C^{A}, D^{A} and E^{A} three mutually orthogonal unit normals to M. Then denoting by $g_{j i}$ the fundamental metric tensor of M, we have

$$
\begin{equation*}
g_{j i}=B_{j}{ }^{C} B_{i}{ }^{B} G_{C B} \tag{1.5}
\end{equation*}
$$

since the immersion is isometric.
As to the transformations of $B_{i}{ }^{A}, C^{A}, D^{A}$ and E^{A} by $F_{B}{ }^{A}$ we have respectively equations of the form

$$
\begin{align*}
& F_{B}^{A} B_{i}^{B}=f_{i}{ }^{h} B_{h}{ }^{A}+u_{i} C^{A}+v_{i} D^{A}+w_{i} E^{A}, \tag{1.6}\\
& F_{B}^{A} C^{B}=-u^{h} B_{h}^{A}-\nu D^{A}+\mu E^{A}, \tag{1.7}\\
& F_{B}^{A} D^{B}=-v^{h} B_{h}{ }^{A}+\nu C^{A}-\lambda E^{A}, \tag{1.8}\\
& F_{B}^{A} E^{B}=-w^{h} B_{h}{ }^{A}-\mu C^{A}+\lambda D^{A}, \tag{1.9}
\end{align*}
$$

where $f_{i}{ }^{h}$ is a tensor field of type (1,1), $u_{i}, v_{i}, w_{i} 1$-forms and λ, μ, ν functions in M, u^{h}, v^{h} and w^{h} being vector fields associated with u_{i}, v_{i} and w_{i} respectively.

Applying the operator F to both sides of (1.6)-(1.9), using (1.1), we find

$$
\begin{gather*}
f_{i}^{t} f_{t}^{h}=-\delta_{i}{ }^{h}+u_{i} u^{h}+v_{i} v^{h}+w_{i} w^{h}, \tag{1.10}\\
u_{t} f_{i}^{t}=-\nu v_{i}+\mu w_{i}, \quad v_{t} f_{i}{ }^{t}=\nu u_{i}-\lambda w_{i}, \quad w_{t} f_{i}^{t}=-\mu u_{i}+\lambda v_{i}, \tag{1.11}\\
f_{t}^{h} u^{t}=\nu v^{h}-\mu w^{h}, \quad f_{t}{ }^{h} v^{t}=-\nu u^{h}+\lambda w^{h}, \quad f_{t}{ }^{h} w^{t}=\mu u^{h}-\lambda v^{h}, \tag{1.12}\\
u_{t} u^{t}=1-\mu^{2}-\nu^{2}, \quad v_{t} v^{t}=1-\nu^{2}-\lambda^{2}, \quad w_{t} w^{t}=1-\lambda^{2}-\mu^{2}, \tag{1.13}\\
u_{t} v^{t}=\lambda \mu, \quad u_{t} w^{t}=\lambda \nu, \quad v_{t} w^{t}=\mu \nu .
\end{gather*}
$$

Also, from (1.2), (1.5) and (1.6), we obtain

$$
\begin{equation*}
f_{j}{ }^{t} f_{i}{ }^{s} g_{t s}=g_{j i}-u_{j} u_{i}-v_{j} v_{i}-w_{j} w_{i} . \tag{1.14}
\end{equation*}
$$

Putting $f_{j i}=f_{j}{ }^{t} g_{t i}$, we see that $f_{j i}=-f_{i j}$. From (1.12), we can easily see that

$$
\begin{equation*}
f_{t}{ }^{h} p^{t}=0, \tag{1.15}
\end{equation*}
$$

where

$$
\begin{equation*}
p^{h}=\lambda u^{h}+\mu v^{h}+\nu w^{h} . \tag{1.16}
\end{equation*}
$$

Suppose that the set (f, g, P) of the tensor field of type (1,1), the Riemannian metric tensor $g_{j i}$ and the vector field P^{h} given by (1.16) defined an almost contact metric structure, that is, in addition to (1.15), the set (f, g, P) satisfies

$$
\begin{align*}
& f_{i}{ }^{t} f_{t}^{h}=-\delta_{i}{ }^{h}+P_{i} P^{h}, \tag{1.17}\\
& f_{j}{ }^{t} f_{i}^{s} g_{t s}=g_{j i}-P_{j} P_{i}, \tag{1.18}\\
& P_{t} P^{t}=1, \tag{1.19}
\end{align*}
$$

where $P_{i}=g_{i c} P^{t}$. Then we find from (1.13), (1.16) and (1.19)

$$
\begin{equation*}
\lambda^{2}+\mu^{2}+\nu^{2}=1 \tag{1.20}
\end{equation*}
$$

Conversely suppose that the functions λ, μ, ν satisfy (1.20). Then the set (f, g, P) defines an almost contact metric structure [11].

§2. Semi-invariant submanifolds of codimension 3.

Let \bar{M} be an almost Hermitian manifold with almost complex structure F. A submanifold M is called a $C R$ submanifold of \bar{M} if there exists a differentiable distribution D on M satisfying the following conditions:
(1) D is invariant, that is, $F D_{x}=D_{x}$ for each x in M,
(2) the complementary orthogonal distribution D^{\perp} on M is anti-invariant, that is, $F D_{x}^{\perp} \subset N_{x}$ for each x in M, where N_{x} denotes the normal space to M at x. In particular, M is said to be semi-invariant provided that $\operatorname{dim} D^{\perp}=1$. Then a unit normal vector field in $F D^{\perp}$ is called the distinguished normal to the semi-invariant submanifold. Putting $N^{A}=\lambda C^{A}+\mu D^{A}+\nu E^{A}$, we can see that

$$
\begin{align*}
& F_{B}^{A} B_{i}^{B}=f_{i}{ }^{h} B_{h}{ }^{A}+P_{i} N^{A} \\
& F_{B}^{A} N^{B}=-P^{h} B_{h}^{A} \tag{2.1}
\end{align*}
$$

and that N^{A} is an intrinsically defined unit normal to M and $\lambda^{2}+\mu^{2}+\nu^{2}=1$ [11]. Moreover the set (f, g, P) admits an almost contact metric structure.

Now suppose that the condition $\lambda^{2}+\mu^{2}+\nu^{2}=1$ is satisfied and take $N^{A}=$ $\lambda C^{A}+\mu D^{A}+\nu E^{A}$ as C^{A}. Then we have $\lambda=1, \mu=0, \nu=0$ and consequently $u^{h}=P^{h}$, $v_{i}=0, w_{i}=0$ because of (1.13) and (1.16). Thus (1.6)-(1.9) reduce respectively to

$$
\begin{equation*}
F_{B}{ }^{4} B_{i}{ }^{B}=f_{i}{ }^{h} B_{h}{ }^{A}+P_{i} C^{A}, \tag{2.3}
\end{equation*}
$$

$$
\begin{align*}
& F_{B}^{A} C^{B}=-P^{h} B_{h}^{A}, \tag{2.4}\\
& F_{B}^{A} D^{B}=-E^{A}, \tag{2.5}\\
& F_{B}^{A} E^{B}=D^{A} . \tag{2.6}
\end{align*}
$$

Now denoting by ∇_{j} the operator of van der Waerden-Bortolotti covariant differentiation with respect to $g_{j i}$, we have equations of Gauss for M of \bar{M}

$$
\begin{equation*}
\nabla_{j} B_{i}{ }^{A}=h_{j i} C^{A}+k_{j i} D^{A}+l_{j i} E^{A}, \tag{2.7}
\end{equation*}
$$

where $h_{j i}, k_{j i}, l_{j i}$ are the second fundamental tensors with respect to normals C^{A}, D^{A}, E^{A} respectively. The mean curvature vector H^{A} is given by

$$
\begin{equation*}
H^{A}=\frac{1}{2 n+1}\left(h C^{A}+k D^{A}+l E^{A}\right), \tag{2.8}
\end{equation*}
$$

where we have put

$$
h=g^{j i} h_{j i}, \quad k=g^{j i} k_{j i}, \quad l=g^{j i} l_{j i},
$$

$g^{j i}$ being contravariant components of the metric tensor.
The equations of Weingarten are given by

$$
\begin{align*}
& \nabla_{j} C^{A}=-h_{j}{ }^{h} B_{h}{ }^{A}+l_{j} D^{A}+m_{j} E^{A}, \tag{2.9}\\
& \nabla_{j} D^{A}=-k_{j}{ }^{h} B_{h}{ }^{A}-l_{j} C^{A}+n_{j} E^{A}, \tag{2.10}\\
& \nabla_{j} E^{A}=-l_{j}{ }^{h} B_{h}{ }^{A}-m_{j} C^{A}-n_{j} D^{A}, \tag{2.11}
\end{align*}
$$

where $h_{j}{ }^{h}=h_{j t} g^{t h}, k_{j}{ }^{h}=k_{j t} g^{t h}, l_{j}{ }^{h}=l_{j t} g^{t h}, l_{j}, m_{j}$ and n_{j} being the third funda mental tensors.

We now assume that \bar{M} is Kaehlerian and differentiate (2.3) covariantly along M and make use of (2.4)-(2.6), we can find

$$
\begin{align*}
& \nabla_{j} f_{i}^{h}=-h_{j i} P^{h}+h_{j}{ }^{h} P_{i}, \quad \nabla_{j} P_{i}=-h_{j t} f_{i}^{t}, \tag{2.12}\\
& k_{j i}=-l_{j t} f_{i}^{t}-m_{j} P_{i}, \quad l_{j i}=k_{j t} f_{i}^{t}+l_{j} P_{i} . \tag{2.13}
\end{align*}
$$

From (2.13), we have

$$
\begin{equation*}
k_{j t} P^{t}=-m_{j}, \quad l_{j t} P^{t}=l_{j}, \quad k=-m_{t} P^{t}, \quad l=l_{t} P^{t} . \tag{2.14}
\end{equation*}
$$

From (2.12)-(2.14), using (1.17)-(1.19) and (2.12)-(2.14), it follows that

$$
\begin{equation*}
l_{t} f_{i}^{t}=k P_{i}+m_{i}, \tag{2.15}
\end{equation*}
$$

$$
\begin{equation*}
k l+m_{t} l^{t}=0, \tag{2.16}
\end{equation*}
$$

$$
\begin{align*}
& k_{j t} l_{i}^{t}+k_{i t} l_{j}^{t}=-\left(l_{i} m_{j}+m_{i} l_{j}\right), \tag{2.17}\\
& l_{j t} l_{i}^{t}-k_{j t} k_{i}^{t}=l_{j} l_{i}-m_{j} m_{i} . \tag{2.18}
\end{align*}
$$

§3. Semi-invariant submanifolds of codimension 3 with harmonic curvature of $E^{2 n+4}$.

Let M be a $(2 n+1)$-dimensional semi-invariant submanifold of codimension 3 of an even-dimensional Euclidean space $E^{2 n+4}$. Then equations of Gauss are given by

$$
\begin{equation*}
R_{k j i}{ }^{h}=h_{k}{ }^{h} h_{j i}-h_{j}{ }^{h} h_{k i}+k_{k}{ }^{h} k_{j i}-k_{j}{ }^{h} k_{k i}+l_{k}{ }^{h} l_{j i}-l_{j}{ }^{h} l_{k i}, \tag{3.1}
\end{equation*}
$$

where $R_{k j i}{ }^{h}$ is the Riemannian curvature tensor of M, those of Codazzi by

$$
\begin{align*}
& \nabla_{k} h_{j i}-\nabla_{j} h_{k i}-l_{k} k_{j i}+l_{j} k_{k i}-m_{k} l_{j i}+m_{j} l_{k i}=0, \tag{3.2}\\
& \nabla_{k} k_{j i}-\nabla_{j} k_{k i}+l_{k} h_{j i}-l_{j} h_{k i}-n_{k} l_{j i}+n_{j} l_{k i}=0, \tag{3.3}\\
& \nabla_{k} l_{j i}-\nabla_{j} l_{k i}+m_{k} h_{j i}-m_{j} h_{k i}+n_{k} k_{j i}+n_{j} k_{k i}=0, \tag{3.4}
\end{align*}
$$

and those of Ricci by

$$
\begin{align*}
& \nabla_{k} l_{j}-\nabla_{j} l_{k}+h_{k}{ }^{t} k_{j t}-h_{j}{ }^{t} k_{k t}+m_{k} n_{j}-m_{j} n_{k}=0, \tag{3.5}\\
& \nabla_{k} m_{j}-\nabla_{j} m_{k}+h_{k}{ }^{t} l_{j t}-h_{j}{ }^{t} l_{k t}+n_{k} l_{j}-n_{j} l_{k}=0, \tag{3.6}\\
& \nabla_{k} n_{j}-\nabla_{j} n_{k}+k_{k}{ }^{t} l_{j t}-k_{j}{ }^{t} l_{k t}+l_{k} m_{j}-l_{j} m_{k}=0 . \tag{3.7}
\end{align*}
$$

Now, we denote the normal components of $\nabla_{j} C$ by $\nabla \frac{1}{j} C$. The normal vector field C is said to be parallel in the normal bundle if $\nabla_{j}^{\perp} C=0$, that is, l_{j} and m_{j} vanish identically.

Throughout this paper we assume that the normal vector field C is parallel in the normal bundle and we denote

$$
\begin{align*}
& \dot{\nabla}_{k} h_{j i}=\nabla_{k} h_{j i}, \\
& \dot{\nabla}_{k} k_{j i}=\nabla_{k} k_{j i}-n_{k} l_{j i}, \tag{3.8}\\
& \dot{\nabla}_{k} l_{j i}=\nabla_{k} l_{j i}+n_{k} k_{j i} .
\end{align*}
$$

Then we have

$$
\begin{equation*}
\dot{\nabla}_{k} h_{j i}^{x}=\dot{\nabla}_{j} h_{k i}{ }^{x} \tag{3.9}
\end{equation*}
$$

where $h_{j i}{ }^{1}=h_{j i}, h_{j i}{ }^{2}=k_{j i}$ and $h_{j i}{ }^{3}=l_{j i}$.
Differentiating (2.17) and (2.18) covariantly and using $l_{j}=0, m_{j}=0$, (3.8) and (3.9), we have

$$
\begin{equation*}
k_{j t}\left(\nabla_{k} l_{i}^{t}\right)+l_{j t}\left(\nabla_{k} k_{i t}\right)=0, \quad k_{j t}\left(\dot{\nabla}_{k} l_{i}^{t}\right)+l_{j t}\left(\dot{\nabla}_{k} k_{i}^{t}\right)=0 \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{j t}\left(\nabla_{i} k_{k}^{t}\right)=l_{j t}\left(\nabla_{i} l_{k t}\right), \quad k_{j t}\left(\dot{\nabla}_{i} k_{k}^{t}\right)=l_{j t}\left(\dot{\nabla}_{i} l_{k}^{t}\right) \tag{3.11}
\end{equation*}
$$

respectively.
In the sequel we assume that the submanifold M with harmonic curvature
has constant mean curvature, that is,

$$
\begin{equation*}
\nabla_{k} R_{j i}-\nabla_{j} R_{k i}=0, \tag{3.12}
\end{equation*}
$$

and $\|H\|^{2}:=C_{A B} H^{A} H^{B}$ is constant which together with $k=0$ and $l=0$ implies

$$
\begin{equation*}
\nabla_{k} h=0 . \tag{3.13}
\end{equation*}
$$

From Gauss and Codazzi equations and the definition of harmonic curvature it follows that

$$
\left(\nabla_{k} h_{i t}\right) h_{j}^{t}-\left(\nabla_{j} h_{i t}\right) h_{k}^{t}+2\left\{\left(\dot{\nabla}_{k} k_{i t}\right) k_{j}{ }^{t}-\left(\dot{\nabla}_{j} k_{i t}\right) k_{k}{ }^{t}\right\}=0,
$$

that is,

$$
\begin{equation*}
\sum_{x=1}^{3}\left(\dot{\nabla}_{k} h_{j t^{x}}\right) h_{i}^{t x}=\sum_{x=1}^{3}\left(\dot{\nabla}_{k} h_{i t}{ }^{x}\right) h_{j}^{t x}, \tag{3.14}
\end{equation*}
$$

because of (3.9) and (3.11). By the Ricci equations (3.5) and (3.6), and $\nabla \frac{1}{j} C=0$, we have

$$
\begin{equation*}
h_{j t} h_{i}{ }^{t x}=h_{i t} h_{j}{ }^{t x}, \tag{3.15}
\end{equation*}
$$

where $x=1,2,3$. Differentiating (3.15) covariantly and using (3.8), we find

$$
\begin{equation*}
\left(\dot{\nabla}_{k} h_{i t}\right) h_{j}{ }^{t x}+\left(\dot{\nabla}_{k} h_{j t}{ }^{x}\right) h_{i}{ }^{t}=\left(\dot{\nabla}_{k} h_{j t}\right) h_{i}{ }^{t x}+\left(\dot{\nabla}_{k} h_{i t}{ }^{x}\right) h_{j}{ }^{t} . \tag{3.16}
\end{equation*}
$$

Transvecting (3.16) with $h_{s}{ }^{j x}$, we have

$$
\begin{align*}
& \sum_{x}\left\{\left(\dot{\nabla}_{k} h_{i t}\right) h_{s}{ }^{t x} h_{j}{ }^{s x}-\left(\dot{\nabla}_{k} h_{s t}\right) h_{i}{ }^{t x} h_{j}{ }^{s x}\right\} \tag{3.17}\\
= & \sum_{x}\left\{\left(\dot{\nabla}_{k} h_{i t}{ }^{x}\right) h_{s}{ }^{t} h_{j}{ }^{s x}-\left(\dot{\nabla}_{k} h_{s t}{ }^{x}\right) h_{i}{ }^{t} h_{j}{ }^{s x}\right\} .
\end{align*}
$$

By the properties (3.14) and (3.15), we have

$$
\sum_{x}\left(\dot{\nabla}_{k} h_{s t} x\right) h_{i}{ }^{t} h_{j}{ }^{s x}=\sum_{x}\left(\dot{\nabla}_{k} h_{j s}{ }^{x}\right) h_{t}{ }^{s} h_{i}{ }^{t x} .
$$

Transvecting (3.17) with $\nabla_{k} h_{i j}$ and using this equation, we have

$$
\begin{equation*}
\sum_{x}\left(\dot{\nabla}_{k} h_{i j}\right)\left(\dot{\nabla}^{k} h_{t i}\right) h_{s}^{t x} h^{j s x}=\sum_{x}\left(\dot{\nabla}_{k} h_{i j}\right)\left(\nabla^{k} h_{s t}\right) h^{i t x} h^{j s x} . \tag{3.18}
\end{equation*}
$$

On the other hand, for fixed indices k and $x\left(\dot{\nabla}_{k} h_{i t}\right) h_{j}{ }^{t x}-\left(\dot{\nabla}_{k} h_{j t}\right) h_{i}{ }^{t x}$ can be regarded as a square matrix of order $2 n+1$. By (3.18) the norm of this matrix with respect to the usual inner product vanishes identically, which implies

$$
\begin{equation*}
\left(\dot{\nabla}_{k} h_{j t}\right) h_{i}{ }^{t x}=\left(\dot{\nabla}_{k} h_{i t}\right) h_{j}{ }^{t x} . \tag{3.19}
\end{equation*}
$$

The equations (3.16) and (3.19) show

$$
\begin{equation*}
\left(\dot{\nabla}_{k} h_{j t}{ }^{x}\right) h_{i}{ }^{t}=\left(\dot{\nabla}_{k} h_{i t}{ }^{x}\right) h_{j}{ }^{t} \tag{3.20}
\end{equation*}
$$

for any indices x, i, j and k.
Differentiating the first equation of (2.13) and using $m_{j}=0$, (2.12), (2.17), (3.8), (3.14) and (3.19), we have

$$
\begin{equation*}
h_{j t} k_{i}{ }^{t}=0, \quad h_{j t} l_{i}{ }^{t}=0 . \tag{3.21}
\end{equation*}
$$

From (2.18), (3.14) and (3.19), we find

$$
\begin{equation*}
\left(\dot{\nabla}_{k} k_{j t}\right) k_{i}{ }^{t}=\left(\dot{\nabla}_{k} k_{i t}\right) k_{j}{ }^{t} . \tag{3.22}
\end{equation*}
$$

Differentiating (3.22) covariantly and taking the skew-symmetric part and using (3.7), (3.8), (3.10) and the Ricci identity, we obtain

$$
\begin{aligned}
& \left(R_{l k j s} k_{t}{ }^{s}+R_{l k t s} k_{j}{ }^{s}\right) k_{i}{ }^{t}-\left(R_{l k i s} k_{t}{ }^{s}+R_{l k t s} k_{i}{ }^{s}\right) k_{j}{ }^{t} \\
& =4 k_{k s} l_{l}^{s} k_{j t} l_{i}{ }^{t}+2\left\{\left(\dot{\nabla}_{t} k_{k j}\right)\left(\bar{\nabla}^{t} k_{l i}\right)-\left(\bar{\nabla}_{t} k_{k i}\right)\left(\nabla^{t} k_{l j}\right)\right\}
\end{aligned}
$$

from which, transvecting this with $g^{k i}$ and using (2.17), (2.18), (3.1) and $k_{3}=0$,

$$
\begin{equation*}
\left(\dot{\nabla}_{s} k_{j t}\right)\left(\dot{\nabla}^{s} k_{i}{ }^{t}\right)=4\left(k_{j i}\right)^{4}+k_{2}\left(k_{j i}\right)^{2}, \tag{3.23}
\end{equation*}
$$

where $k_{2}=k_{s t} k^{s t}, k_{3}=k_{s r} k_{t}{ }^{r} k^{t s},\left(k_{j i}\right)^{2}=k_{j t} k_{i}{ }^{t}$ and $\left(k_{j i}\right)^{4}=k_{j}{ }^{t} k_{t}{ }^{s} k_{s}{ }^{r} k_{i r}$.
From (3.22), using (3.9), we find

$$
\begin{equation*}
k_{j}{ }^{t}\left(\dot{\nabla}_{k} k_{i t}\right)=k_{k}{ }^{t}\left(\dot{\nabla}_{t} k_{j i}\right) . \tag{3.24}
\end{equation*}
$$

Transvecting (3.24) with $\left(k_{j i}\right)^{2}$, using $k_{3}=0$, we have

$$
\left(k_{j i}\right)^{3}\left(\nabla_{k} k^{j i}\right)=0 .
$$

If we put $k_{4}=\left(k_{j i}\right)^{3} k^{j i}$, then $\nabla_{k} k_{4}=4\left(k_{j i}\right)^{3}\left(\nabla_{k} k^{j i}\right)$. Hence we have

$$
\begin{equation*}
\nabla_{k} k_{4}=0, \tag{3.25}
\end{equation*}
$$

that is, k_{4} is a constant.
Next, from the equation (3.19), we have

$$
\left(\nabla_{k} h_{j t}\right) h_{i}{ }^{t}=\left(\nabla_{k} h_{i t}\right) h_{j}{ }^{t},
$$

from which,

$$
\nabla_{k}\left(h_{j i}\right)^{2}-\nabla_{j}\left(h_{k i}\right)^{2}=0,
$$

namely, $\left(h_{j i}\right)^{2}$ is of Codazzi type. Since the mean curvature is constant, we can easily see that

$$
\begin{equation*}
\nabla_{k} h_{j i}=0 \tag{3.26}
\end{equation*}
$$

(for detail, see [10]).
On the other hand, from (3.1), we have

$$
R_{j i}=h h_{j i}-\left(h_{j i}\right)^{2}-2\left(k_{j i}\right)^{2}
$$

from which,

$$
\left(R_{j i}\right)^{2}=h^{2}\left(h_{j i}\right)^{2}-2 h\left(h_{j i}\right)^{3}+\left(h_{j i}\right)^{4}+4\left(k_{j i}\right)^{4} .
$$

Hence we have

$$
\begin{equation*}
R_{2}=h^{2} h_{2}-2 h h_{3}+h_{4}+4 k_{4} \tag{3.27}
\end{equation*}
$$

is constant, because of (3.13), (3.25) and (3.26). And, using the Ricci identity and (3.26), we find

$$
\begin{equation*}
h\left(h_{j i}\right)^{2}-h_{2} h_{j i}=0 . \tag{3.28}
\end{equation*}
$$

Furthermore, From the Ricci identity, (3.1) and (3.3), we have

$$
\begin{equation*}
\Delta R_{j i}=h_{3} h_{j i}-h\left(h_{j i}\right)^{3} . \tag{3.29}
\end{equation*}
$$

§4. Proof of Theorem.

Let M be a semi-invariant submanifold with harmonic curvature of codimension 3 of an even-dimensional Euclidean space $E^{2 n+4}$ such that the distinguished normal C^{A} is parallel in the normal bundle. If the submanifold M has contant mean curvature, then we can consider two cases.

$$
\text { Case I: } \quad h=0
$$

From (3.28), we have

$$
\begin{equation*}
h_{j i}=0, \tag{4.1}
\end{equation*}
$$

from which, using (3.29)

$$
\begin{equation*}
\Delta R_{j i}=0 . \tag{4.2}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
\nabla_{k} R_{j i}=0, \tag{4.3}
\end{equation*}
$$

because of (3.27). Since $R_{j i}=-2\left(k_{j i}\right)^{2}$, using (2.17), (3.8) and (4.3), we have

$$
\begin{equation*}
k_{j t}\left(\dot{\nabla}_{k} k_{i}{ }^{t}\right)=0 . \tag{4.4}
\end{equation*}
$$

From (3.23) and (4.4), we find

$$
4\left(k_{j i}\right)^{6}+k_{2}\left(k_{j i}\right)^{4}=0,
$$

from which

$$
k_{j i}=0, \quad l_{j i}=0
$$

because of (2.18).

$$
\text { Case II: } \quad h \neq 0
$$

From (3.28), we have

$$
\begin{equation*}
\left(h_{j i}\right)^{2}=\lambda h_{j i}, \tag{4.5}
\end{equation*}
$$

where $\lambda=h_{2} / h$. Substituting (4.5) into (3.29), we have

$$
\begin{equation*}
\Delta R_{j i}=0 . \tag{4.6}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
\nabla_{k} R_{j i}=0, \tag{4.7}
\end{equation*}
$$

because of (3.27). Since $R_{j i}=h h_{j i}-\left(h_{j i}\right)^{2}-2\left(k_{j i}\right)^{2}$, using (2.17), (3.8), (3.13) and (4.7), we have

$$
\begin{equation*}
k_{j t}\left(\dot{\nabla}_{k} k_{i}{ }^{t}\right)=0 . \tag{4.8}
\end{equation*}
$$

From (3.23) and (4.8), we have

$$
4\left(k_{j i}\right)^{6}+k_{2}\left(k_{j i}\right)^{4}=0 .
$$

from which

$$
k_{j i}=0, \quad l_{j i}=0
$$

because of (2.18).
Thus we have
Lemma. Let M be a semi-invariant submanifold of codimension 3 in $E^{2 n+4}$. If M has harmonic curvature and of constant mean curvature and if the distinguished normal is parallel in the normal bundle, then

$$
\left(h_{j i}\right)^{2}=a h_{j i}, \quad k_{j i}=0, \quad l_{j i}=0,
$$

where a is constant.
Proof of Theorem.
Let N_{x}^{1} is the first normal space of M for each x in M and is the second fundamental form of M, that is, $N_{x}^{1}=\left\{\alpha(u, v) ; u, v \in N_{x}\right\}$, where $T_{x} E^{2 n+4}=$ $M_{x} \oplus N_{x}$ and $N_{x}=\left\{\xi ; \xi \in T_{x} E^{2 n+4}, \xi \perp M_{x}\right\}$. If $a=0, M$ is totally geodesic and consequently $M=E^{2 n+1}$. Next we consider the case of $a \neq 0$. In this case, the above lemma yields $\operatorname{dim} N_{x}^{1}=1$ for each x in M. Morenver the distribution $N^{1}=\cup_{x} N_{x}^{1} \subset N(M)$ is parallel. Accordingly, a theorem due to J. Erbacher [2], for the reduction of the codimension implies that there exists a $(2 n+2)$-dimensional totally geodesic submanifold $E^{2 n+2}$ in $E^{2 n+4}$ in which M is the hypersurface with parallel second fundamental form. Since M is complete and simply connected, by [8], we have results in Theorem.

Bibliography

[1] Derdziński, A., Compact Riemannian manifolds with harmonic curvature and nonparallel Ricci tensor, Global Differential Geometry and Global Analysis, Lecture notes in Math., Springer, 838 (1979), 126-128.
[2] Erbacher, J., Reduction of the codimension of an isometric immersion, J. Differential Geometry, 5 (1971), 333-340.
[3] Ki, U-H., Eum, S.S., Kim, U.K. and Kim, U.H., Submanifolds of codimension 3 of Kaehlerian manifold (I), J. Korean Math. Soc., 16-2 (1980), 137-153.
[4] Ki, U.H. and Nakagawa, H., Submanifolds with harmonic curvature, Tsukuba J. of Math. 10-2 (1986), 43-50.
[5] Ki, U-H. and Nakagawa, H., Totally real submanifolds with harmonic curvature, to
appear in Kyungpook Math. J.
[6] Ki, U-H., Nakagawa, H. and Umehara, M., On complete hypersurfaces with harmonic curvature, Tsukuba J. of Math., 11 (1987), 61-76.
[7] Ki, U-H. and Pak, J.S., Generic submanifolds of an even-dimensional Eurlidean space ${ }_{5}$: J. Diff. Geom., 16 (1981), 293-303.
[8] Nomizu, K. and Smyth, B., A formula of Simons' type and hypersurfaces with constant mean curvature, J. Differential Geometry, 3 (1969), 367-377.
[9] Ômachi, E., Hypersurfaces with harmonic curvature in a space of constant curvature, Kodai Math. J. 9 (1986), 170-174.
[10] Umehara, M., Hypersurfaces with harmonic curvature, Tsukuba J. of Math., 10 (1986), 79-88.
[11] Yano, K. and Ki, U-H., On ($f, g, u, v, w, \lambda, \mu, \nu$)-structure satisfying $\lambda^{2}+\mu^{2}+\nu^{2}=1$, Kōdai Math. Sem. Rep., 29 (1978), 285-307.

Univ. of Tsukuba

Ibaraki, 305
Japan
and
Taegu Univ.
Taegu, 705-033
Korea

