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SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3
WITH HARMONIC CURVATURE

By

Jung-Hwan Kwon*

§0. Introduction.

A Riemannian curvature tensor is said to be harmonic if the Ricci tensor
R;; satisfies the Codazzi equation, namely, in local coordinates, R;;,=R;:;, where
R ;i denotes the covariant derivative of the Ricci tensor R;;. Recently Rieman-
nian manifolds with harmonic curvature are studied by A. Derdzinski [1], H.
Nakagawa and U-H. Ki [4], [5], [6], E. Omachi [9], M. Umehara [6], [10] and
others.

The purpose of the present paper is to study submanifolds with harmonic
curvature admitting almost contact metric structure in a Euclidean space and to
prove the following :

THEOREM. Let M be a 2n-+1)-dimensional complete simply connected semi-
invariant submanifold in a (2n+4)-dimensional Euclidean space. If M has harmonic
curvature and of constant mean curvature and if the distinguished normal is par-
allel in the normal bundle, then M is isometric to one of the following spaces;

Enet Senl gy SZn—r+1><Er, (r<2n—1).

The author wishes to express his hearty thanks to the referee whose kind
suggestion was very much helpful to the improvement of the paper.

§1. Preliminaries.

Let M be a (2n+4)-dimensional almost Hermitian manifold covered by a
system of coordinate neighborhoods {U : X4}. Manifolds, submanifolds, geometric
objects and mappings discussed in this paper are assumed to be differentiable and
of class C*. Denote by G¢p components of the Hermitian metric tensor, and by
Fz# those of the almost complex structure F of M. Then we have

(1.1) FoBFgt=—0c",
1.2) FeBFPGpp=Gop,
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dc* being the Kronecker delta. We use throughout this paper the systems of
indices as follows:

A, B,C,D,--:1,2,-,2n4+4;

h,i, 7, k,---:1,2,,2n4+1.

The summation will be used with respect to those systems of indices.

Let M be a (2n-+1)-dimensional Riemannian manifold covered by a system
of coordinate neighborhoods {V ;Y?*} and immersed isometrically in M by the
immersion : : M—>M. In the sequel we identify (M) with M itself and represent
the immersion by

(1.3) XA=X4Y").
We put
(1.4) BlAzalXA, alza/aY‘

and denote by C4, D4 and E4 three mutually orthogonal unit normals to M.
Then denoting by g;; the fundamental metric tensor of M, we have

(1.5) gjiszCBiBGCB

since the immersion is isometric.
As to the transformations of B;4, C4, D* and E4 by Fz* we have respec-
tively equations of the form

(1.6) FytBP=f"ByA4u;CA4v, DA+ w,E4,
(1.7) FytCB=—u"B,A—yDA+ pEA,

(1.8) Fy*DP=—y"ByA+yCA—QE4,

(1.9) FytEP=—w"B,4—pC44-1D4,

where f;* is a tensor field of type (1,1), u;, v;, w; 1-forms and 2, g, v functions
in M, u*, v* and w* being vector fields associated with u;, v; and w; respectively.
Applying the operator F to both sides of (1.6)-(1.9), using (1.1), we find

(1.10) fitfit=—0"tuut+vo"+ww",

(1.11) u,fitz—pvi+,uwi, vtfitzuui—lwi, wtfi‘:—pui-i—lvi,
(1.12) filrut=wr—pw, frr=—yut4iwt, frut=put—2iv*,
(1.13) wut=1—p?—1?, vt=1—"—2, ww'=1-2—p,

wt=2Ag, ww'=2v, vw=py.
Also, from (1.2), (1.5) and (1.6), we obtain

(1.14) [ f81s=gp—uui— 00— W;w;.
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Putting f;;=f,;'g.:;, we see that f;;=—f,;;. From (1.12), we can easily see that

(1.15) fe*pt=0,
where
(1.16) pr=Aut+pvttvwt.

Suppose that the set (f, g, P) of the tensor field of type (1,1), the Riemannian
metric tensor g;; and the vector field P* given by (1.16) defined an almost con-
tact metric structure, that is, in addition to (1.15), the set (f, g, P) satisfies

(1.17) fitfth:_aih+PiP’L:
(1.18) fj‘fisgzszgji—PjPi,
(1.19) P,Pi=1,

where P;=g;P'. Then we find from (1.13), (1.16) and (1.19)
(1.20) 24 pryi=1.

Conversely suppose that the functions 4, g, v satisfy (1.20). Then the set
(f, g, P) defines an almost contact metric structure [11].

§2. Semi-invariant submanifolds of codimension 3.

Let M be an almost Hermitian manifold with almost complex structure F.
A submanifold M is called a CR submanifold of M if there exists a differentiable
distribution D on M satisfying the following conditions :

(1) D is invariant, that is, FD,=D, for each x in M,

(2) the complementary orthogonal distribution D* on M is anti-invariant,
that is, FDiCN, for each x in M, where N, denotes the normal space to M
at x. In particular, M is said to be semi-invariant provided that dim D*=1.
Then a unit normal vector field in FD*' is called the distinguished normal to the

semi-invariant submanifold. Putting N4=2C4+pD*+vE“, we can see that
FBABiB:fihBhA+PiNA

2.1
FgANE=—PtB,4

and that N4 is an intrinsically defined unit normal to M and 2*+ p*+y?=1 [11].
Moreover the set (f, g, P) admits an almost contact metric structure.

Now suppose that the condition A*+g®41*=1 is satisfied and take N*4=
ACA+pD4+vE4 as C4. Then we have i=1, p=0, v=0 and consequently u*=P",
v;=0, w;=0 because of (1.13) and (1.16). Thus (1.6)-(1.9) reduce respectively to

(2.3) FgABB=f"B,*+P,C4,
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(2.4) FsACB=—P"B,4,
(2.5) Fg*DB=—FE4,
(2.6) FgAEB=D4,

Now denoting by V; the operator of van der Waerden-Bortolotti covariant
differentiation with respect to g;, we have equations of Gauss for M of M

(2.7) VjBiA:hjicA'{'kﬁDA—*—ljiEA,

where hj;, ki, [;; are the second fundamental tensors with respect to normals
C4, D4, E4 respectively. The mean curvature vector H* is given by

1
A— _ A A A
(2.8) H4= o l(hC +kDA4-IEY),

where we have put
h=g"h;, k=g"k;, 1=g";,

g% being contravariant components of the metric tensor.
The equations of Weingarten are given by

2.9) V,CA=—h;*ByA+1,DA4+mEA,
(2.10) V,DA=—k *ByA—1,CA4n,E4,
(2.11) V,EA=—1;ByA—m;C4—n,DA,

where hjhzhjtgth, kjh:kjtgth, ljh—_—'ljtg“l, lj, m; al’ld n; being the third funda

mental tensors.
We now assume that M is Kaehlerian and differentiate (2.3) covariantly along

M and make use of (2.4)-(2.6), we can find

(2.12) V,fi*=—huP*+htP;,  VPi=—hufd,

(2.13) kj=—lufit=m;Py,  l=kfi+1Ps.

From (2.13), we have

(2.14) kyPt=—m;, [ P'=l;, k=—m/P', [=[P".

From (2.12)-(2.14), using (1.17)-(1.19) and (2.12)-(2.14), it follows that

(2.15) Lifif=kP;+m;,
(2.16) kl+m,l*=0,
(2.17) k;,lﬁ—l—k“ljt:—(Zimj—i—milj),

(2.18) Zﬁli‘—kﬂkit:l,-li—mjmi.
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§3. Semi-invariant submanifolds of codimension 3 with harmonic

curvature of E®"*,

Let M be a (2n+1)-dimensional semi-invariant submanifold of codimension 3
of an even-dimensional Euclidean space E®***!, Then equations of Gauss are
given by
(3.1) Rys =l g h P hoet kb kRt LMyl s,

where R;;" is the Riemannian curvature tensor of M, those of Codazzi by

(3.2) Viehsi—Vihei—lpk itk yi—mylyt+myly =0,
(3.3) Vikji—Vkwitlahsi—lihgi—nul4n =0,
3.4 Velji—Vilpitmehji—mhpitnpki+nzke=0,
and those of Ricci by

(3.5) Veol;—Vilp+hitlj—hitky+men;—mm,=0,
3.6) Vem;—me+htlp—h it +nel;—n5,=0,
(3.7 Ven;—Vnetkytly—k A lem—imy=0.

Now, we denote the normal components of V,C by V;C. The normal vector
field C is said to be parallel in the normal bundle if V$C=0, that is, [; and m;

vanish identically.
Throughout this paper we assume that the normal vector field C is parallel

in the normal bundle and we denote
vkhji:vkh;’iy
(3.8) Veki=Veki—n,l,
ﬁklﬂ=vklﬂ+nkkﬂ.
Then we have
(3.9) vkhﬁx:v]‘hkﬁ,
where hjilzhji, hjizzkji and hjiszlji_
Differentiating (2.17) and (2.18) covariantly and using /;=0, m;=0, (3.8) and
(3.9), we have

(3.10) BVl )+ L(Vebi)=0, k(M) +1;(Vek,H)=0
and

(3.11) ku(Vik o) =1;(Vuln),  ku(Viki)=1;(Vl%)
respectively.

In the sequel we assume that the submanifold M with harmonic curvature
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has constant mean curvature, that is,

(3.12) VeR;i—V;R,.=0,

and ||H|?:=C.sHAH? is constant which together with £=0 and /=0 implies
(3.13) V.h=0.

From Gauss and Codazzi equations and the definition of harmonic curvature it
follows that
(Vehedht—Thi)hst +2{(Te ki)l — (ViR i)k} =0,
that is,
(3.14) 3 Wahhits= 3 Tehu?h,=,
because of (3.9) and (3.11). By the Ricci equations (3.5) and (3.6), and V;C=0,
we have
(3.15) hjhit*=hih ",
where x=1, 2, 3. Differentiating (3.15) covariantly and using (3.8), we find
(3.16) (Tehidh o+ (Vehy it =T h)hit 4+ (TSt
Transvecting (3.16) with i/%, we have
3.17) S A(Vehidhs *h = —(Thha)hi'*h %)
= AT hu®h P2 —=(Thy )Rt h 7}
By the properties (3.14) and (3.15), we have
DTt h o= (Vi hjs®h bt
Transvecting (3.17) with V,h;; and using this equation, we have
(3.18) D e(Vahe )V R )RR T =3 (T hig)(TE R )R RIS,

On the other hand, for fixed indices % and x (th“)hj”—(ﬁkhﬂ)hi“” can be
regarded as a square matrix of order 2n-+1. By (3.18) the norm of this matrix
with respect to the usual inner product vanishes identically, which implies

(3.19) (vkhjt)hitxz(vkhit)hjtx'
The equations (3.16) and (3.19) show
(3.20) (vkhjzz)hit:(ﬁkhitr)hjt

for any indices x, ¢, 7 and k.
Differentiating the first equation of (2.13) and using m;=0, (2.12), (2.17),
(3.8), (38.14) and (3.19), we have
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(3.21) hj k=0, hjl#=0.
From (2.18), (3.14) and (3.19), we find
(3.22) (Vb =(Vpki)k .
Differentiating (3.22) covariantly and taking the skew-symmetric part and
using (3.7), (3.8), (3.10) and the Ricci identity, we obtain
(Ripjsk+Ripisk e —(Ripisk i +Ripisk ikt
=4k ool ksl H2{(V ik YV k)= (Vok ) (Vo1 )}
from which, transvecting this with g** and using (2.17), (2.18), (3.1) and £,=0,
(3.23) (Vok s )Vl it)=ACk j0) + Eo(k j0)?
where ky=Fkk*, ky=ko k, k", (ku)=Fk;k; and (k;)'=k; 'k kk,,.
From (3.22), using (3.9), we find
(3.24) ki (Vek )=k (Ul ).
Transvecting (3.24) with (k;;)? using k;=0, we have
(R;)"(Vk7)=0.
If we put k,=(k;)*k%, then V,k,=4(k,;)*(V,k’). Hence we have
(3.25) Vik=0,

that is, k, is a constant.
Next, from the equation (3.19), we have

(thjt)hit::(vk hu)h;‘t ’
from which,
vk(hji)z'—vj(hki)z:o »

namely, (hj;)* is of Codazzi type. Since the mean curvature is constant, we can
easily see that

(for detail, see [10]).
On the other hand, from (3.1), we have

Rji:hhji_(hji)z'—‘?(kji)z
from which,
(R =h*hu)=2h(h;)° +(h) 440k )0
Hence we have

(3.27) Re=h*h,—2hhs+h,+4k,
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is constant, because of (3.13), (3.25) and (3.26). And, using the Ricci identity
and (3.26), we find
(3.28) h(h)—heh;=0.
Furthermore, From the Ricci identity, (3.1) and (3.3), we have

(3-29) ARji:hghji—h(h.ji)s,

§4. Proof of Theorem.

Let M be a semi-invariant submanifold with harmonic curvature of codimen-
sion 3 of an even-dimensional Euclidean space E?"** such that the distinguished
normal C# is parallel in the normal bundle. If the submanifold M has contant
mean curvature, then we can consider two cases.

Case I: h=0
From (3.28), we have
4.1 h;;=0,
from which, using (3.29)
4.2) AR ;;=0.

Hence we have
4.3) V.R,;=0,
because of (3.27). Since R;;=-—2(k;), using (2.17), (3.8) and (4.3), we have
4.4) (Ve it)=0.
From (3.23) and (4.4), we find
4(k ji)°+ ok 0)' =0,

from which

k;;=0, 1;;=0
because of (2.18).

Case II: h=0
From (3.28), we have
(4~5) (hji)ZZZhjiy

where A=h,/h. Substituting (4.5) into (3.29), we have
(4.6) ARﬁ:O.
Hence we have

(4-7> kajiZO,
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because of (3.27). Since Ru=hh;;—(h;;)*—2(k;:)?, using (2.17), (3.8), (3.13) and
(4.7), we have

(4.8) k(VekiH)=0.
From (3.23) and (4.8), we have

4(k ji)°+ kol k1) =0.
from which
k;;=0, ;=0
because of (2.18).
Thus we have

LEMMA. Let M be a semi-invariant submanifold of codimension 3 in FE2"+,
If M has harmonic curvature and of constant mean curvature and if the distinguished
normal 1s parallel in the normal bundle, then

(hp)=ah;i, k;=0, =0,
where a is constant.

PROOF OF THEOREM.

Let N} is the first normal space of M for each x in M and is the second
fundamental form of M, that is, Ni={a(u, v); u, veEN,}, where T E*"+=
M.DN, and N,={§;6=T E*™**, £1 M,}. If a=0, M is totally geodesic and
consequently M=FE®*+', Next we consider the case of a=0. In this case, the
above lemma yields dim Ni=1 for each x in M. Moreover the distribution
N'=\U,NLCN(M) is parallel. Accordingly, a theorem due to J. Erbacher [2],
for the reduction of the codimension implies that there exists a (2n+2)-dimension-
al totally geodesic submanifeld E?"*2 in E*"+* in which M is the hypersurface
with parallel second fundamental form. Since M is complete and simply connected,
by [8], we have results in Theorem.
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