SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 WITH HARMONIC CURVATURE

By

Jung-Hwan Kwon*

§0. Introduction.

A Riemannian curvature tensor is said to be *harmonic* if the Ricci tensor R_{ji} satisfies the Codazzi equation, namely, in local coordinates, $R_{jik} = R_{jki}$, where R_{jik} denotes the covariant derivative of the Ricci tensor R_{ji} . Recently Riemannian manifolds with harmonic curvature are studied by A. Derdziński [1], H. Nakagawa and U-H. Ki [4], [5], [6], E. Ômachi [9], M. Umehara [6], [10] and others.

The purpose of the present paper is to study submanifolds with harmonic curvature admitting almost contact metric structure in a Euclidean space and to prove the following:

THEOREM. Let M be a (2n+1)-dimensional complete simply connected semiinvariant submanifold in a (2n+4)-dimensional Euclidean space. If M has harmonic curvature and of constant mean curvature and if the distinguished normal is parallel in the normal bundle, then M is isometric to one of the following spaces;

 E^{2n+1} , S^{2n+1} or $S^{2n-r+1} \times E^r$, $(r \leq 2n-1)$.

The author wishes to express his hearty thanks to the referee whose kind suggestion was very much helpful to the improvement of the paper.

§1. Preliminaries.

Let \overline{M} be a (2n+4)-dimensional almost Hermitian manifold covered by a system of coordinate neighborhoods $\{U: X^A\}$. Manifolds, submanifolds, geometric objects and mappings discussed in this paper are assumed to be differentiable and of class C^{∞} . Denote by G_{CB} components of the Hermitian metric tensor, and by F_B^A those of the almost complex structure F of \overline{M} . Then we have

(1.1)
$$F_C{}^B F_B{}^A = -\delta_C{}^A,$$

$$F_{C}{}^{E}F_{B}{}^{D}G_{ED} = G_{CB},$$

Received February 19, 1987. Revised July 6, 1987.

* This research was partially supported by KOSEF.

Jung-Hwan KWON

 δ_{C}^{A} being the Kronecker delta. We use throughout this paper the systems of indices as follows:

A, B, C, D,
$$\dots$$
: 1, 2, \dots , 2n+4;
h, i, j, k, \dots : 1, 2, \dots , 2n+1.

The summation will be used with respect to those systems of indices.

Let M be a (2n+1)-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\{V; Y^n\}$ and immersed isometrically in \overline{M} by the immersion $i: M \to \overline{M}$. In the sequel we identify i(M) with M itself and represent the immersion by

We put

$$(1.4) B_i{}^A = \partial_i X^A, \quad \partial_i = \partial/\partial Y^i$$

and denote by C^A , D^A and E^A three mutually orthogonal unit normals to M. Then denoting by g_{ji} the fundamental metric tensor of M, we have

since the immersion is isometric.

As to the transformations of $B_i{}^A$, C^A , D^A and E^A by $F_B{}^A$ we have respectively equations of the form

(1.6)
$$F_{B}{}^{A}B_{i}{}^{B} = f_{i}{}^{h}B_{h}{}^{A} + u_{i}C^{A} + v_{i}D^{A} + w_{i}E^{A},$$

(1.7)
$$F_{B}{}^{A}C^{B} = -u^{h}B_{h}{}^{A} - \nu D^{A} + \mu E^{A},$$

(1.8)
$$F_B{}^A D^B = -v^h B_h{}^A + \nu C^A - \lambda E^A,$$

(1.9)
$$F_B{}^A E^B = -w^h B_h{}^A - \mu C^A + \lambda D^A$$

where f_i^h is a tensor field of type (1,1), u_i , v_i , w_i 1-forms and λ , μ , ν functions in M, u^h , v^h and w^h being vector fields associated with u_i , v_i and w_i respectively.

Applying the operator F to both sides of (1.6)-(1.9), using (1.1), we find

(1.10)
$$f_i{}^t f_i{}^h = -\delta_i{}^h + u_i u^h + v_i v^h + w_i w^h$$

(1.11)
$$u_t f_i^t = -\nu v_i + \mu w_i, \quad v_t f_i^t = \nu u_i - \lambda w_i, \quad w_t f_i^t = -\mu u_i + \lambda v_i,$$

(1.12)
$$f_t^h u^t = \nu v^h - \mu w^h$$
, $f_t^h v^t = -\nu u^h + \lambda w^h$, $f_t^h w^t = \mu u^h - \lambda v^h$,

(1.13)
$$u_t u^t = 1 - \mu^2 - \nu^2, \quad v_t v^t = 1 - \nu^2 - \lambda^2, \quad w_t w^t = 1 - \lambda^2 - \mu^2,$$

 $u_t v^t = \lambda \mu, \quad u_t w^t = \lambda \nu, \quad v_t w^t = \mu \nu.$

Also, from (1.2), (1.5) and (1.6), we obtain

(1.14)
$$f_j^t f_i^s g_{ts} = g_{ji} - u_j u_i - v_j v_i - w_j w_i.$$

Putting $f_{ji}=f_j{}^tg_{ti}$, we see that $f_{ji}=-f_{ij}$. From (1.12), we can easily see that

(1.15) $f_t^h p^t = 0$,

where

Suppose that the set (f, g, P) of the tensor field of type (1,1), the Riemannian metric tensor g_{ji} and the vector field P^h given by (1.16) defined an almost contact metric structure, that is, in addition to (1.15), the set (f, g, P) satisfies

$$(1.17) f_i{}^t f_i{}^h = -\delta_i{}^h + P_i P^h$$

(1.18) $f_{j}^{t}f_{i}^{s}g_{ts} = g_{ji} - P_{j}P_{i},$

(1.19)
$$P_t P^t = 1$$
,

where $P_i = g_{it}P^t$. Then we find from (1.13), (1.16) and (1.19)

(1.20)
$$\lambda^2 + \mu^2 + \nu^2 = 1.$$

Conversely suppose that the functions λ , μ , ν satisfy (1.20). Then the set (f, g, P) defines an almost contact metric structure [11].

§2. Semi-invariant submanifolds of codimension 3.

Let \overline{M} be an almost Hermitian manifold with almost complex structure F. A submanifold M is called a CR submanifold of \overline{M} if there exists a differentiable distribution D on M satisfying the following conditions:

(1) D is invariant, that is, $FD_x=D_x$ for each x in M,

(2) the complementary orthogonal distribution D^{\perp} on M is anti-invariant, that is, $FD_x^{\perp} \subset N_x$ for each x in M, where N_x denotes the normal space to Mat x. In particular, M is said to be *semi-invariant* provided that dim $D^{\perp}=1$. Then a unit normal vector field in FD^{\perp} is called the *distinguished normal* to the semi-invariant submanifold. Putting $N^A = \lambda C^A + \mu D^A + \nu E^A$, we can see that

(2.1)
$$F_{B}{}^{A}B_{i}{}^{B}=f_{i}{}^{h}B_{h}{}^{A}+P_{i}N^{A}$$
$$F_{B}{}^{A}N^{B}=-P^{h}B_{h}{}^{A}$$

and that N^4 is an intrinsically defined unit normal to M and $\lambda^2 + \mu^2 + \nu^2 = 1$ [11]. Moreover the set (f, g, P) admits an almost contact metric structure.

Now suppose that the condition $\lambda^2 + \mu^2 + \nu^2 = 1$ is satisfied and take $N^4 = \lambda C^4 + \mu D^4 + \nu E^4$ as C^4 . Then we have $\lambda = 1$, $\mu = 0$, $\nu = 0$ and consequently $u^h = P^h$, $v_i = 0$, $w_i = 0$ because of (1.13) and (1.16). Thus (1.6)-(1.9) reduce respectively to

(2.3)
$$F_{B}{}^{A}B_{i}{}^{B} = f_{i}{}^{h}B_{h}{}^{A} + P_{i}C^{A},$$

Jung-Hwan KWON

$$F_B{}^A C^B = -P^h B_h{}^A,$$

$$F_B{}^A D^B = -E^A,$$

$$F_B{}^A E^B = D^A.$$

Now denoting by ∇_j the operator of van der Waerden-Bortolotti covariant differentiation with respect to g_{ji} , we have equations of Gauss for M of \overline{M}

(2.7)
$$\nabla_j B_i{}^A = h_{ji} C^A + k_{ji} D^A + l_{ji} E^A,$$

where h_{ji} , k_{ji} , l_{ji} are the second fundamental tensors with respect to normals C^{A} , D^{A} , E^{A} respectively. The mean curvature vector H^{A} is given by

(2.8)
$$H^{A} = \frac{1}{2n+1} (hC^{A} + kD^{A} + lE^{A}),$$

where we have put

$$h = g^{ji} h_{ji}, \quad k = g^{ji} k_{ji}, \quad l = g^{ji} l_{ji}$$

 g^{ji} being contravariant components of the metric tensor.

The equations of Weingarten are given by

(2.9)
$$\nabla_j C^A = -h_j{}^h B_h{}^A + l_j D^A + m_j E^A,$$

(2.10)
$$\nabla_{j}D^{A} = -k_{j}{}^{h}B_{h}{}^{A} - l_{j}C^{A} + n_{j}E^{A},$$

(2.11) $\nabla_j E^A = -l_j{}^h B_h{}^A - m_j C^A - n_j D^A,$

where $h_j{}^{\hbar} = h_{ji}g^{i\hbar}$, $k_j{}^{\hbar} = k_{ji}g^{i\hbar}$, $l_j{}^{\hbar} = l_{ji}g^{i\hbar}$, l_j , m_j and n_j being the third funda mental tensors.

We now assume that \overline{M} is Kaehlerian and differentiate (2.3) covariantly along M and make use of (2.4)-(2.6), we can find

(2.12)
$$\nabla_j f_i{}^h = -h_{ji} P^h + h_j{}^h P_i, \qquad \nabla_j P_i = -h_{ji} f_i{}^t,$$

(2.13)
$$k_{ji} = -l_{jt} f_i^{t} - m_j P_i, \qquad l_{ji} = k_{jt} f_i^{t} + l_j P_i.$$

From (2.13), we have

(2.14)
$$k_{jt}P^{t} = -m_{j}, \quad l_{jt}P^{t} = l_{j}, \quad k = -m_{t}P^{t}, \quad l = l_{t}P^{t}$$

From (2.12)-(2.14), using (1.17)-(1.19) and (2.12)-(2.14), it follows that

(2.15) $l_t f_i^t = k P_i + m_i$,

(2.16)
$$kl+m_tl^t=0$$
,

(2.17)
$$k_{jt}l_{i}^{t} + k_{it}l_{j}^{t} = -(l_{i}m_{j} + m_{i}l_{j}),$$

(2.18) $l_{jt}l_{i}^{t} - k_{jt}k_{i}^{t} = l_{j}l_{i} - m_{j}m_{i}.$

§3. Semi-invariant submanifolds of codimension 3 with harmonic curvature of E^{2n+4} .

Let M be a (2n+1)-dimensional semi-invariant submanifold of codimension 3 of an even-dimensional Euclidean space E^{2n+4} . Then equations of Gauss are given by

(3.1)
$$R_{kji}{}^{h} = h_{k}{}^{h}h_{ji} - h_{j}{}^{h}h_{ki} + k_{k}{}^{h}k_{ji} - k_{j}{}^{h}k_{ki} + l_{k}{}^{h}l_{ji} - l_{j}{}^{h}l_{ki},$$

where R_{kji}^{h} is the Riemannian curvature tensor of M, those of Codazzi by

$$(3.2) \qquad \nabla_k h_{ji} - \nabla_j h_{ki} - l_k k_{ji} + l_j k_{ki} - m_k l_{ji} + m_j l_{ki} = 0,$$

(3.3)
$$\nabla_k k_{ji} - \nabla_j k_{ki} + l_k h_{ji} - l_j h_{ki} - n_k l_{ji} + n_j l_{ki} = 0,$$

(3.4)
$$\nabla_{k}l_{ji} - \nabla_{j}l_{ki} + m_{k}h_{ji} - m_{j}h_{ki} + n_{k}k_{ji} + n_{j}k_{ki} = 0,$$

and those of Ricci by

(3.5)
$$\nabla_{k}l_{j} - \nabla_{j}l_{k} + h_{k}{}^{t}k_{jt} - h_{j}{}^{t}k_{kt} + m_{k}n_{j} - m_{j}n_{k} = 0,$$

(3.6)
$$\nabla_k m_j - \nabla_j m_k + h_k{}^t l_{jt} - h_j{}^t l_{kt} + n_k l_j - n_j l_k = 0,$$

(3.7)
$$\nabla_k n_j - \nabla_j n_k + k_k{}^t l_{jt} - k_j{}^t l_{kt} + l_k m_j - l_j m_k = 0.$$

Now, we denote the normal components of $\nabla_j C$ by $\nabla_j^{\perp} C$. The normal vector field C is said to be *parallel* in the normal bundle if $\nabla_j^{\perp} C = 0$, that is, l_j and m_j vanish identically.

Throughout this paper we assume that the normal vector field C is parallel in the normal bundle and we denote

(3.8)
$$\begin{aligned} \dot{\nabla}_k h_{ji} = \nabla_k h_{ji}, \\ \dot{\nabla}_k k_{ji} = \nabla_k k_{ji} - n_k l_{ji}, \\ \dot{\nabla}_k l_{ji} = \nabla_k l_{ji} + n_k k_{ji}. \end{aligned}$$

Then we have

$$(3.9) \qquad \qquad \dot{\nabla}_k h_{ji}{}^k = \dot{\nabla}_j h_{ki}{}^x,$$

where $h_{ji}^{1} = h_{ji}$, $h_{ji}^{2} = k_{ji}$ and $h_{ji}^{3} = l_{ji}$.

Differentiating (2.17) and (2.18) covariantly and using $l_j=0$, $m_j=0$, (3.8) and (3.9), we have

(3.10)
$$k_{jt}(\nabla_{k}l_{i}^{t}) + l_{jt}(\nabla_{k}k_{it}) = 0, \qquad k_{jt}(\dot{\nabla}_{k}l_{i}^{t}) + l_{jt}(\dot{\nabla}_{k}k_{i}^{t}) = 0$$

and

(3.11)
$$k_{jl}(\nabla_i k_k^{t}) = l_{jl}(\nabla_i l_{kl}), \qquad k_{jl}(\dot{\nabla}_i k_k^{t}) = l_{jl}(\dot{\nabla}_i l_k^{t})$$

respectively.

In the sequel we assume that the submanifold M with harmonic curvature

Jung-Hwan Kwon

has constant mean curvature, that is,

$$(3.12) \qquad \qquad \nabla_k R_{ji} - \nabla_j R_{ki} = 0,$$

and $||H||^2 := C_{AB}H^AH^B$ is constant which together with k=0 and l=0 implies

$$(3.13) \qquad \nabla_k h = 0$$

From Gauss and Codazzi equations and the definition of harmonic curvature it follows that

$$(\nabla_k h_{it}) h_j^t - (\nabla_j h_{it}) h_k^t + 2\{(\dot{\nabla}_k k_{it}) k_j^t - (\dot{\nabla}_j k_{it}) k_k^t\} = 0,$$

that is,

(3.14)
$$\sum_{x=1}^{3} (\dot{\nabla}_{k} h_{jt}{}^{x}) h_{i}{}^{tx} = \sum_{x=1}^{3} (\dot{\nabla}_{k} h_{it}{}^{x}) h_{j}{}^{tx},$$

because of (3.9) and (3.11). By the Ricci equations (3.5) and (3.6), and $\nabla_j^+ C = 0$, we have

$$(3.15) h_{jt}h_i^{tx} = h_{it}h_j^{tx},$$

where x=1, 2, 3. Differentiating (3.15) covariantly and using (3.8), we find

(3.16)
$$(\dot{\nabla}_{k}h_{it})h_{j}{}^{tx} + (\dot{\nabla}_{k}h_{jt}{}^{x})h_{i}{}^{t} = (\dot{\nabla}_{k}h_{jt})h_{i}{}^{tx} + (\dot{\nabla}_{k}h_{it}{}^{x})h_{j}{}^{t}$$

Transvecting (3.16) with h_s^{jx} , we have

(3.17)
$$\sum_{x} \{ (\dot{\nabla}_{k}h_{it})h_{s}^{tx}h_{j}^{sx} - (\dot{\nabla}_{k}h_{st})h_{i}^{tx}h_{j}^{sx} \}$$
$$= \sum_{x} \{ (\dot{\nabla}_{k}h_{it}^{x})h_{s}^{t}h_{j}^{sx} - (\dot{\nabla}_{k}h_{st}^{x})h_{i}^{t}h_{j}^{sx} \}.$$

By the properties (3.14) and (3.15), we have

$$\sum_{x} (\dot{\nabla}_{k} h_{st}^{x}) h_{i}^{t} h_{j}^{sx} = \sum_{x} (\dot{\nabla}_{k} h_{js}^{x}) h_{i}^{s} h_{i}^{tx}.$$

Transvecting (3.17) with $\nabla_k h_{ij}$ and using this equation, we have

(3.18)
$$\sum_{x} (\dot{\nabla}_{k} h_{ij}) (\dot{\nabla}^{k} h_{ti}) h_{s}^{tx} h^{jsx} = \sum_{x} (\dot{\nabla}_{k} h_{ij}) (\dot{\nabla}^{k} h_{st}) h^{itx} h^{jsx}$$

On the other hand, for fixed indices k and $x (\dot{\nabla}_k h_{it}) h_j^{tx} - (\dot{\nabla}_k h_{jt}) h_i^{tx}$ can be regarded as a square matrix of order 2n+1. By (3.18) the norm of this matrix with respect to the usual inner product vanishes identically, which implies

$$(3.19) \qquad \qquad (\dot{\nabla}_k h_{jt}) h_i^{tx} = (\dot{\nabla}_k h_{it}) h_j^{tx}.$$

The equations (3.16) and (3.19) show

$$(3.20) \qquad \qquad (\dot{\nabla}_k h_{jt}{}^x) h_i{}^t = (\dot{\nabla}_k h_{it}{}^x) h_j{}^t$$

for any indices x, i, j and k.

Differentiating the first equation of (2.13) and using $m_j=0$, (2.12), (2.17), (3.8), (3.14) and (3.19), we have

Semi-invariant submanifolds of codimension 3

$$(3.21) h_{jt}k_i^t = 0, h_{jt}l_i^t = 0.$$

From (2.18), (3.14) and (3.19), we find

$$(3.22) \qquad \qquad (\dot{\nabla}_k k_{jt}) k_i^t = (\dot{\nabla}_k k_{it}) k_j^t.$$

Differentiating (3.22) covariantly and taking the skew-symmetric part and using (3.7), (3.8), (3.10) and the Ricci identity, we obtain

$$(R_{lkjs}k_{l}^{s} + R_{lkts}k_{j}^{s})k_{i}^{t} - (R_{lkis}k_{l}^{s} + R_{lkts}k_{i}^{s})k_{j}^{t}$$

=4k_{ks}l_{l}^{s}k_{jt}l_{i}^{t} + 2\{(\dot{\nabla}_{t}k_{kj})(\dot{\nabla}^{t}k_{li}) - (\dot{\nabla}_{t}k_{ki})(\dot{\nabla}^{t}k_{lj})\}

from which, transvecting this with g^{ki} and using (2.17), (2.18), (3.1) and $k_3=0$,

(3.23)
$$(\dot{\nabla}_{s}k_{jt})(\dot{\nabla}^{s}k_{i}^{t}) = 4(k_{ji})^{4} + k_{2}(k_{ji})^{2},$$

where $k_2 = k_{st}k^{st}$, $k_3 = k_{sr}k_t^r k^{ts}$, $(k_{ji})^2 = k_{jt}k_i^t$ and $(k_{ji})^4 = k_j^t k_t^s k_s^r k_{ir}$.

From (3.22), using (3.9), we find

$$(3.24) k_j^t(\dot{\nabla}_k k_{it}) = k_k^t(\dot{\nabla}_t k_{ji}).$$

Transvecting (3.24) with $(k_{ji})^2$, using $k_3=0$, we have

 $(k_{ji})^{3}(\nabla_{k}k^{ji})=0.$

If we put $k_4 = (k_{ji})^3 k^{ji}$, then $\nabla_k k_4 = 4(k_{ji})^3 (\nabla_k k^{ji})$. Hence we have

$$(3.25) \qquad \qquad \nabla_k k_4 = 0$$

that is, k_4 is a constant.

Next, from the equation (3.19), we have

$$(\nabla_k h_{jt}) h_i^t = (\nabla_k h_{it}) h_j^t$$
,

from which,

$$\nabla_k (h_{ji})^2 - \nabla_j (h_{ki})^2 = 0$$
,

namely, $(h_{ji})^2$ is of Codazzi type. Since the mean curvature is constant, we can easily see that

$$(3.26) \qquad \nabla_k h_{ji} = 0$$

(

(for detail, see [10]).

On the other hand, from (3.1), we have

$$R_{ji} = hh_{ji} - (h_{ji})^2 - 2(k_{ji})^2$$

from which,

$$(R_{ji})^2 = h^2 (h_{ji})^2 - 2h(h_{ji})^3 + (h_{ji})^4 + 4(k_{ji})^4$$

Hence we have

$$(3.27) R_2 = h^2 h_2 - 2h h_3 + h_4 + 4k_4$$

is constant, because of (3.13), (3.25) and (3.26). And, using the Ricci identity and (3.26), we find

(3.28)
$$h(h_{ji})^2 - h_2 h_{ji} = 0.$$

Furthermore, From the Ricci identity, (3.1) and (3.3), we have

(3.29)
$$\Delta R_{ji} = h_3 h_{ji} - h(h_{ji})^3.$$

§4. Proof of Theorem.

Let M be a semi-invariant submanifold with harmonic curvature of codimension 3 of an even-dimensional Euclidean space E^{2n+4} such that the distinguished normal C^4 is parallel in the normal bundle. If the submanifold M has contant mean curvature, then we can consider two cases.

Case I: $h=0$	
From (3.28) , we have	
(4.1)	$h_{ji} = 0$,
from which, using (3.29)	
(4.2)	$\Delta R_{ji} = 0$.
Hence we have	
(4.3)	$ abla_k R_{ji} = 0$,
because of (3.27). Since $R_{ji} = -2(k_{ji})^2$, using (2.17), (3.8) and (4.3), we have	
(4.4)	$k_{jt}(\dot{\nabla}_k k_i^t) = 0.$
From (3.23) and (4.4), we find	
	$4(k_{ji})^6 + k_2(k_{ji})^4 = 0,$
from which	
	$k_{ji}=0, l_{ji}=0$
because of (2.18).	
	Case II: $h \neq 0$
From (3.28), we have	
(4.5)	$(h_{ji})^2 = \lambda h_{ji}$,
where $\lambda = h_2/h$. Substituting (4.5) into (3.29), we have	
(4.6)	$\Delta R_{ji} = 0.$
Hence we have	
(4.7)	$ abla_k R_{ji} = 0$,

because of (3.27). Since $R_{ji} = h h_{ji} - (h_{ji})^2 - 2(k_{ji})^2$, using (2.17), (3.8), (3.13) and (4.7), we have

$$(4.8) k_{jt}(\dot{\nabla}_k k_i^t) = 0.$$

From (3.23) and (4.8), we have

$$4(k_{ji})^6 + k_2(k_{ji})^4 = 0$$
.

from which

$$k_{ji} = 0$$
, $l_{ji} = 0$

because of (2.18).

Thus we have

LEMMA. Let M be a semi-invariant submanifold of codimension 3 in E^{2n+4} . If M has harmonic curvature and of constant mean curvature and if the distinguished normal is parallel in the normal bundle, then

$$(h_{ji})^2 = a h_{ji}, \quad k_{ji} = 0, \quad l_{ji} = 0,$$

where a is constant.

PROOF OF THEOREM.

Let N_x^1 is the first normal space of M for each x in M and is the second fundamental form of M, that is, $N_x^1 = \{\alpha(u, v); u, v \in N_x\}$, where $T_x E^{2n+4} =$ $M_x \oplus N_x$ and $N_x = \{\xi; \xi \in T_x E^{2n+4}, \xi \perp M_x\}$. If a=0, M is totally geodesic and consequently $M=E^{2n+1}$. Next we consider the case of $a \neq 0$. In this case, the above lemma yields dim $N_x^1=1$ for each x in M. Moreover the distribution $N^1=\bigcup_x N_x^1 \subset N(M)$ is parallel. Accordingly, a theorem due to J. Erbacher [2], for the reduction of the codimension implies that there exists a (2n+2)-dimensional totally geodesic submanifold E^{2n+2} in E^{2n+4} in which M is the hypersurface with parallel second fundamental form. Since M is complete and simply connected, by [8], we have results in Theorem.

Bibliography

- Derdziński, A., Compact Riemannian manifolds with harmonic curvature and nonparallel Ricci tensor, Global Differential Geometry and Global Analysis, Lecture notes in Math., Springer, 838 (1979), 126-128.
- [2] Erbacher, J., Reduction of the codimension of an isometric immersion, J. Differential Geometry, 5 (1971), 333-340.
- [3] Ki, U-H., Eum, S.S., Kim, U.K. and Kim, U.H., Submanifolds of codimension 3 of Kaehlerian manifold (I), J. Korean Math. Soc., 16-2 (1980), 137-153.
- [4] Ki, U-H. and Nakagawa, H., Submanifolds with harmonic curvature, Tsukuba J. of Math. 10-2 (1986), 43-50.
- [5] Ki, U-H. and Nakagawa, H., Totally real submanifolds with harmonic curvature, to

Jung-Hwan KWON

appear in Kyungpook Math. J.

- [6] Ki, U-H., Nakagawa, H. and Umehara, M., On complete hypersurfaces with harmonic curvature, Tsukuba J. of Math., 11 (1987), 61-76.
- [7] Ki, U-H. and Pak, J.S., Generic submanifolds of an even-dimensional Euclidean space³ J. Diff. Geom., 16 (1981), 293-303.
- [8] Nomizu, K. and Smyth, B., A formula of Simons' type and hypersurfaces with constant mean curvature, J. Differential Geometry, 3 (1969), 367-377.
- [9] Ômachi, E., Hypersurfaces with harmonic curvature in a space of constant curvature, Kodai Math. J. 9 (1986), 170-174.
- [10] Umehara, M., Hypersurfaces with harmonic curvature, Tsukuba J. of Math., 10 (1986), 79-88.
- [11] Yano, K. and Ki, U-H., On $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure satisfying $\lambda^2 + \mu^2 + \nu^2 = 1$, Kōdai Math. Sem. Rep., **29** (1978), 285-307.

Univ. of Tsukuba Ibaraki, 305 Japan and Taegu Univ. Taegu, 705-033 Korea