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SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3

WITH HARMONIC CURVATURE

By

Jung-Hwan Kwon*

§0. Introduction.

A Riemannian curvature tensor is said to be harmonic if the Ricci tensor

Rji satisfiesthe Codazzi equation, namely, in local coordinates, Rjik= Rjki, where

Rjik denotes the covariant derivative of the Ricci tensor Rjt. Recently Rieman-

nian manifolds with harmonic curvature are studied by A. Derdzinski [1], H.

Nakagawa and U-H. Ki [4], [5], [6], E. 6machi [9], M. Umehara [6], [10] and

others.

The purpose of the present paper is to study submanifolds with harmonic

curvature admitting almost contact metric structure in a Euclidean space and to

prove the following:

Theorem. Let M be a (2n + l)-dimensional complete simply connected semi-

invariant submanifold in a (2n+4)-dimensional Euclidean space. If M has harmonic

curvature and of constant mean curvature and if the distinguished normal is par-

allelin the normal bundle, then M is isometric to one of the following spaces;

E2n+1, S2n+1 or S2n~r+1xEr, (r£2n-l).

The author wishes to express his hearty thanks to the referee whose kind

suggestion was very much helpful to the improvement of the paper.

§1. Preliminaries.

Let M be a (2n+4)-dimensional almost Hermitian manifold covered by a

system of coordinate neighborhoods {U : XA). Manifolds, submanifolds, geometric

objectsand mappings discussed in this paper are assumed to be differentiableand

of class C°°.Denote by GCB components of the Hermitian metric tensor, and by

FBA those of the almost complex structure F of M. Then we have

(1.1) FCBFBA=~ dcA,

(1.2) FceFbdGed=Gcb,
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8CA being the Kronecker delta. We use throughout this paper the systems of

indices as follows:

A, B, C, D, ―:1, 2, ･･･, 2n+4;

h, i, j, k, ■■-:1, 2, ･･･, 2n + l.

The summation will be used with respect to those systems of indices.

Let M be a (2n+l)-dimensional Riemannian manifold covered by a system

of coordinate neighborhoods {V ;Yh} and immersed isometrically in M by the

immersion i: M-+M. In the sequel we identify i(M) with M itself and represent

the immersion by

(1.3) XA=XA(Yh).

We put

(1.4) BtA=diXA, d^d/dY1

and denote by CA, DA and EA three mutually orthogonal unit normals to M.

Then denoting by gjt the fundamental metric tensor of M, we have

(1.5) gj^BfBfGcB

since the immersion is isometric.

As to the transformations of BtA, CA, DA and EA by FBA we have respec-

tively equations of the form

(1.6)

(1.7)

(1.8)

(1.9)

FBABiB =fihBhA+uiCA+viDA+wiEA,

FBACB=-uhBhA-vDA+nEA,

FBADB=-vhBhA+vCA-lEA,

FBAEB=-whBhA-[iCA+WA,

where fth is a tensor fieldof type (1,1), ut, vif wt 1-forms and X, pi,v functions

in M, uh, vh and wh being vector fieldsassociated with uif vt and ivt respectively.

Applying the operator F to both sides of (1.6)-(1.9),using (1.1), we find

(1.10)

(1.11)

(1.12)

(1.13)

fitfth=-dih+uiuh+vivh + wiwh,

Utfit=―VVi-{-UWi, Vtfit = VUi ― }.Wi, Wtfit = ― UUi + Xvi

fthu t=vvh―uwh, fthvt=―vuh+Xwh, fthwt = uuh―lvh,

utvt=Xfi, utwt=Xv, vtwt=piv.

Also, from (1.2),(1.5)and (1.6),we obtain

(1.14) fjtfisgts=gji-ujui-vjvi-wjwi
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Putting fn-f/gti, we see that fa――fa- From (1.12), we can easily see that

(1.15)

where

(1.16)

/t*/>'=0

ph=Auh+uvh+vwh.

Suppose that the set(/, g, P) of the tensor fieldof type (1,1),the Riemannian

metric tensor gjt and the vector field Ph given by (1.16) defined an almost con-

tact metric structure, that is, in addition to (1.15), the set (/, g, P) satisfies

(1.17) /f*/t≫= -≪i*+PiP＼

(1.18) f/Ugts^gji-PjPi,

(1.19) PtPl = l,

where Pi=gttPt. Then we find from (1.13),(1.16) and (1.19)

(1.20) X2+{i2+v2=l.

Conversely suppose that the functions X, pt,v satisfy (1.20). Then the set

(/, g, P) defines an almost contact metric structure [11].

§2. Semi-invariant submanifolds of codimension 3.

Let M be an almost Hermitian manifold with almost complex structure F.

A submanifold M is called a CR submanif old of M if there exists a differentiate

distribution D on M satisfying the following conditions:

(1) D is invariant, that is, FDX―DX for each x in M,

(2) the complementary orthogonal distribution DL on M is anti-invariant,

that is, FDXCZNX for each x in M, where Nx denotes the normal space to M

at x. In particular, M is said to be semi-invariant provided that dim DL ―l.

Then a unit normal vector fieldin FDL is called the distinguishednormal to the

semi-invariant submanifold. Putting NA=XCA+[iDA-＼-vEA, we can see that

FBABiB=fihBhA+PiNA
(2.1)

FBANB=-PhBhA

and that NA is an intrinsicallydefined unit normal to Mand k2jrfi2+v2=l [11].

Moreover the set (/, g, P) admits an almost contact metric structure.

Now suppose that the condition ^2+ju2+v2=l is satisfied and take NA―

XCAjr[iDA+vEA as CA. Then we have X―l, fi=0, v=0 and consequently uh = Ph,

Vi=0, Wi=Q because of (1.13) and (1.16). Thus (1.6)-(1.9)reduce respectively to

(2.3) F^Bf^fSB^+P^,
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(2.4) FBACB=-PhBhA,

(2.5) FBADB=-EA,

(2.6) FBAEB=DA.

Now denoting by Vj-the operator of van der Waerden-Bortolotti covariant

differentiationwith respect to gjit we have equations of Gauss for M of M

(2.7) VjBiA=hjiCA+kjiDA+ljiEA,

where hjt,kjiflit are the second fundamental tensors with respect to normals

CA, DA, EA respectively. The mean curvature vector HA is given by

(2.8)

where we have put

HA=
1

2n + l
(hCA+kDA+lEA)

h=gjihji, k=gjikji} l^g'Hjt,

gji being contravariant components of the metric tensor.

The equations of Weingarten are given by

(2.9) lJCA=-hjhBhA+ljDA+mJEA,

(2.10) lJDA=-kjhBhA-ljCA-^nJEAt

(2.11) ljEA=-ljhBhA-mjCA-njDA,

where hjh=hjtgth, kjh=kjtgth, ljh=ljtgth, h, mj and n, being the third funda

mental tensors.

We now assume that M is Kaehlerian and differentiate(2.3) covariantly along

M and make use of (2.4)-(2.6),we can find

(2.12) Vjfih=-hjtP* + hfPi, !jPi = -hjtfit,

(2.13) kjt^-ljtU-mjPi, h^kjttf+ljPi.

From (2.13), we have

(2.14) kjtPt= -mj, ijtP^lj, k = -mtPl, l=ltPl.

From (2.12M2.14), using (1.17)-(1.19)and (2.12)-(2.14),it follows that

(2.15)

(2.16)

(2.17)

(2.18)

itfi^kPt+mt,

kl+mtlt=O,

kjtlit+ kitl}t=―(limjJrmil])

ljtht―kjtkit―ljli―rnjmi.
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§3. Semi-invariant submanifolds of codimension 3 with harmonic

curvature of E2n+i.

Let M be a (2n + l)-dimensional semi-invariant submanifold of codimension 3

of an even-dimensional Euclidean space E2n+i. Then equations of Gauss are

given by

(3.1) RkjS^hShji-hfhti+kSkjt-kfkH+lSlji-lflti,

where Rkjih is the Riemannian curvature tensor of M, those of Codazzi by

(3.2) Vkhji―Vjhki―lkkJi+lJkki―mklji+mjlki=Q,

(3.3) ^kkji―ljkki+lkhji―ljhki―nklji+njlki―Q,

(3.4) Vklji―ljlki+mkhji―mjhki+rikkji + njkki^,

and those of Ricci by

(3.5) lklj-^jlk + hktkjt-hjtkkt+mknj―mjnk=Qi,

(3.6) ikmj-ljmt+hSlji-hfht+nklj-nih^,

(3.7) VAnj-Vjn* + fc*'/Jt-fe//*t+/*mj-/jm*=O.

Now, we denote the normal components of ijC by 1)C. The normal vector

field C is said to be parallelin the normal bundle if V£C=0, that is, lj and rtij

vanish identically.

Throughout this paper we assume that the normal vector field C is parallel

in the normal bundle and we denote

(3.8) Vkkji^kkji-ntljt,

^klji=^kln+nkkji.

Then we have

(3.9) tkhjt*=<?<hkt*,

where hJi1= hji, hji―kji and hji―lji.

Differentiating(2.17) and (2.18) covariantly and using /,=(), m;―0, (3.8)and

(3.9), we have

(3.10)

and

(3.11)

respectively.

knWkltWnWkkit^O, kjttfM+Utfkki^O

killiku^ljlliht), kjtfik^l^ih')

In the sequel we assume that the submanifold M with harmonic curvature
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has constant mean curvature, that is,

(3.12) VkRn-VjRki=O,

and ＼＼H＼＼2:=CABHAHBis constant which together with k=0 and 1=0 implies

(3.13) lkh=0.

From Gauss and Codazzi equations and the definitionof harmonic curvature i

follows that

Wkhit)hjt-(Vjhit)hkt+2{(lkkit)kjt-(ljku)kkt}=0)

that is,

(3.14) 2 ($khjt*)hitx= S tfkhuW,
x=i s=i

because of (3.9) and (3.11). By the Ricci equations (3.5) and (3.6), and V}C=0.

we have

(3.15) hjthitx=huh/x,

where x = l, 2, 3. Differentiating(3.15) covariantly and using (3.8), we find

(3.16) tfkhu)hjtxMVkhjtx)hit=(lkhjt)hitx+tfkhitx)h/.

Transvecting (3.16) with hsjx, we have

(3.17) HAtfkhit)h,t*hJ**-tfkhtt)hitxhJ*3!}

=Tlx{(lkhux)hsthr-^khstx)hithr}.

By the properties (3.14) and (3.15), we have

Transvecting (3.17) with lkhij and using this equation, we have

(3.18) l]^khi]){lkhH)hBtxhisx=i:Alkhi}){lkhst)hitxh^.

On the other hand, for fixed indices k and x C^khit)hjtx~(^khjt)hitxcan be

regarded as a square matrix of order 2n + l. By (3.18) the norm of this matrix

with respect to the usual inner product vanishes identically, which implies

(3.19) tikhriht^tfuhuW.

The equations (3.16) and (3.19) show

(3.20) tfkhjSW^luhu'W

for any indices x, i, j and k.

Differentiating the firstequation of (2.13) and using rrij―0,(2.12), (2.17),

(3.8),(3.14) and (3.19), we have
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From (2.18),(3.14) and (3.19),we find

(3.22) (SkkjtW^lkkuWf.

Differentiating(3.22) covariantly and taking the skew-symmetric part and

using (3.7),(3.8),(3.10) and the Ricci identity, we obtain

{RikjnkS+RikukfW-tRuukt'+RnuWkf

=Akksllskjtlit+2{{ltkk])(ltkli)-{ltkki)&klJ)}

from which, transvecting this with gki and using (2.17),(2.18),(3.1) and k3=0,

(3.23) {isk^&k^^Aik^y+Uk^f,

where k2=kstkst, ks―ksrktrkts, (kjiy=kjtkit and (kjiy=kjtktsksrkir.

From (3.22),using (3.9), we find

(3.24) kj'tf^u^kStftkji).

Transvecting (3.24) with (kji)2,using &3=0, we have

(^i)'(V***)=0.

If we put k^kjiYk*, then Vfe£4=4(^)3(V*&ji). Hence we have

(3.25) 7^4=0,

that is, ki is a constant.

Next, from the equation (3.19),we have

from which,

V*(^i)2-V//i*i)8=0,

namely, (hji)2is of Codazzi type. Since the mean curvature is constant, we can

easily see that

(3.26) VkhJt=0

(for detail,see [10]).

On the other hand, from (3.1), we have

i?,i=M,-i-(M2-2(M2

from which,

(Rjd^hKhjiy^Khjif+ihjiy+Aikjiy.

Hence we have

(3.27) R2=h2h2-2hh,+hi+Aki
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is constant, because of (3.13),(3.25) and (3.26). And, using the Ricci identity

and (3.26),we find

(3.28) Khjif-hthj^O.

Furthermore, From the Ricci identity,(3.1) and (3.3), we have

(3.29) ARH=hshH-h(hHY.

§4. Proof of Theorem.

Let M be a semi-invariant submanifold with harmonic curvature of codimen

sion 3 of an even-dimensional Euclidean space E2n+i such that the distinguishei

normal CA is parallelin the normal bundle. If the submanifold M has contan

mean curvature, then we can consider two cases.

Case I: A=0

From (3.28), we have

(4.1) /^=0,

from which, using (3.29)

(4.2) ARJt=0.

Hence we have

(4.3) 74/?Ji=0,

because of (3.27). Since Rji=~2(kji)2, using (2.17),(3.8) and (4.3), we have

(4.4) £,£(V,^)=0.

From (3.23) and (4.4), we find

%kJt)'+UkJty=Q,

from which

kJt=0, lJt=0

because of (2.18).

Case II: h*0

From (3.28), we have

(4.5) (hJt)*=XhJt,

where X―h2/h. Substituting (4.5) into (3.29), we have

(4.6) ARji=0.

Hence we have

(4.7) 7t/?≪=0,
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because of (3.27). Since Rli-hhji-{hjif―2{kJif, using (2.17),(3.8),(3.13) and

(4.7), we have

(4.8) *j*tf**i')=0.

From (3.23) and (4.8), we have

4(M6+£2(M4=0.

from which

ku=0, lJt=0

because of (2.18).

Thus we have

Lemma. Let M be a semi-invariant submanifold of codimension 3 in E2n+4.

If M has harmonic curvature and of constant mean curvature and if the distinguished

normal is parallelin the normal bundle, then

(hjif―ahji, kji=O, lji=O,

tnhoro n ?°crnn<:tnnt

Proof of Theorem.

Let Nx is the firstnormal space of M for each x in M and is the second

fundamental form of M, that is, Nx = {a(u, v); u,v^Nx), where T xE2n+i=

MXRNX and Nx={% ;%<=TxE2n+i, £±MX＼. If a=0, Mis totally geodesic and

consequently M=E2n+1. Next we consider the case of a^O. In this case, the

above lemma yields dim Nx=l for each x in M. Moreover the distribution

N1 = ＼JxNxdN(M) is parallel. Accordingly, a theorem due to J. Erbacher [2],

for the reduction of the codimension implies that there exists a (2n+2)-dimension-

al totally geodesic submanifold E2n+2 in E2n+i in which M is the hypersurface

with parallelsecond fundamental form. Since M is complete and simply connected,

by P81, we have results in Theorem.
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