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Abstract. This paper provides eigenfunction expansions associated

with the stationary problems for elastic wave propagation in stra-

tifiedmedia R3. The eigenfunction expansion is given in terms of

generalized eigenfunctions corresponding to incident, reflected, re-

fracted and Stoneley waves.
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§0. Introduction

This paper provides eigenfunction expansions associated with the stationary

problems for elasticwave propagation in stratifiedmedia Rs. The eigenfunc-

tion expansion is given in terms of a family of generalized eigenfunctions cor-

responding to incident, reflected, refracted and Stoneley waves.

The eigenfunction expansion theory for wave propagation problems has

been studied by several authors (for example, K. Mochizuki [8], J.R. Schulen-

berger and C. H. Wilcox [11], C. H. Wilcox [18]). S. Wakabayashi [16] provided
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eigenfunction expansions associated with the stationary problems in the half-

space R+ for symmetric hyperbolic systems with constant coefficients. Such

systems were firststudied in RI by M. Matsumura [7]. The eigenfunction

expansion is given in terms of a family of generalized or improper eigenfunc-

tions corresponding to incident, reflected and surface or boundary waves.

For elastic wave propagation, J.R. Schulenberger [9], [10] gave eigenfunc-

tion expansions in the half-space R＼ (n―2, 3), using the method developed by

S. Wakabayashi. He transformed the 2x2 second order system of linear ela-

sticityinto a 5x5 firstorder system. But the defect of this approach is to

introduce static solutions corresponding to a zero propagation speed which do

not appear in the elastic wave propagation. The treatment (for example the

definitiondomain) for the self-adjointoperator associated with non ellipticspatial

part is somewhat complicated (see [16, Section 7]). Moreover the relations

between the displacement vector solutions of the original system and solutions

of the transformed system are complicated.

Y. Dermenjian and J.C. Guillot[3] studied scattering theory for elasticwave

propagation starting with the basic elasticoperators (symmetric systems of sec-

ond order). J.C. Guillot [5] proved the existence and uniqueness of a Rayleigh

surface wave propagation along the free boundary of a transversely isotropic

elastic half space, by reducing the basic operator to a family of operators

which is easier to study. Concerning stratifiedmedia, there is an interesting

work by C. H. Wilcox [17] on eigenfunction expansions for the Pekeris dif-

ferential operator in terms of free wave eigenfunctions and guided wave eigen-

functions.

In this paper we shall derive eigenfunction expansions associated with the

stationary problems for elastic wave propagation in plane-stratified media R3

using the methods due to S. Wakabayashi [16], and also J.C. Guillot [5].

Schulenberger's works [9], [10] are useful references in our study.

We consider the plane stratifiedmedium R3={x = (xu x2, xs); xt<=R} with

the planar interface x3=0, which is defined by

f (*u fit,pi)> *3<0,
(X(x,),fi(xs),p(x3))=<

{ (^2,fi2,Pi), *3>0.

Here Xu X2,ptx>fi2are certain quantities called the Lame constants and pu p2>0

are the densities.

For simplicity,we shall denote the lower half-space Ri={x^R3; x3<0} by

medium I and the upper half-space Rl={x^Rs; xs>0} by medium II, as in

Figure 1.
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Pi

Figure 1. Stratified media I and II.

The equations describing the propagation of elastic waves in the stratified

medium are given by

(0.1)
?2Kt

=
' 1 da a

df s=i p(x3) dxj
(u), i=l, 2, 3

where u(x, t)=＼ui(x, t),u2(x, t),uz{x, t))is the displacement vector, and the atj

are the symmetric stress tensors defined by

1 "*l ^
aij(u)=X(x3)Cl-u)5ij+2fi(x3)eij(u), e^M)="2"(~a^L +

^L)

Here lM denotes the transpose of a matrix M.

The c{nj, c'k'ujii,j, k, 1=1, 2, 3) are the stress-strain tensors given by

(0.2)

with the properties

ckilj

ckilj

=Z1dkidij+fii(dkidij+dkjdii)

Ckilj= Ciklj=Ckijl = Cijki ,

,!! rll ,// rll
Lkilj― ^iklj ― tkijl― tijki ,

and 8ki is the Kronecker delta. We assume that the constants c{nh ciuj satisfy

the following stabilityconditions

(0.3)

^i + J≪i>0,

^2 + /i2>0,

which are equivalent to the conditions

(0.30

J≪2>0,

3 3
2 c{iijSijski^3d1 2 Is**|2, di>0,

K,i,l,j=l k,i = l

3

k,i,l, .7 = 1

3

ciiijSijSki^Bdz S
k,i=

＼ski＼＼ S2>0,
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for ailcomplex symmetric 3x3 matrices(ski),ski―sikGC (cf.[6]).

The wave equations(0.1)should be supplemented by interface conditions

at the interface x3=0 of the medium. We now impose on u the following

conditionsat the interface%3=0:

(0.4) uI＼x^o=uII＼Xi=o>

(0.5) <Ti8(M/)lx8=o= ffi8(M//)lx8=O,

where u ―u1 for xeJSi, and u = uIf for xeUj.

The equations(0.1)may be written in the following form:

(0.6)

(0.7)

Mu ― ― 7(7-u) V-Au
p

d2u ..
1F+MU=°

dxi

ix+/t)~fajr,

{A+fi) dXldxs

dxl

d2u

If

)

ix+fi)J^rt

{l+2[t)
a2

dx＼
+p

(

dx

iX+tt)~te&rt

{X+fi) dXldx3

" dxodx.

W+^lf +^(~a7f

d2

dxl

)

Ml

U2

+
*-)] "'

dxl /

+ Au=Q

(u, v)=＼
ou-vp(xs)dx

p

-_!
~ p

U+2^

where X=X(x3), ^―^(x3), p=zp(xs).

We interpret (0.1),(0.4), and (0.5) as an abstract wave equation

As we shall show later, A is a non-negative self-adjoint operator associated

with (0.1),(0.4) and (0.5) in the Hilbert space

JC = L＼R＼ C＼ p{xs)dx),

with inner product
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where u-v denotes the usual scalar product in C3: u-v=^]UiUiVi.

Let f]'= {rji,7]2)(=R2 be the dual variables of x'= (xu x2) and let Fx> denote

the partialFourier transformation with respect to x':

uij]', xs)―(FX'U)(r]/, xa)=

for u in AC. Let

1. i.m.-=―＼

＼x'ISfl

e-i(xlVl+x2V2)u(x^dx

D(A)=Fx>D(A)={u; ueeD(A)},

For every rj'^Q, let

D(z)

u

Au = Fx.AF^u

Vi ―f]i 0

o
o w

ii<=D(A).

＼2
) +4:(fi1-pi2yaia2b1b2

1

w＼

where U and C are unitary matrices and ＼rj'＼=(7]lJr7]i)1/2.Then we have

Au=Fv71＼JC(A1ty)RAt(7}'))(UQ-1Fx.u for us=D(A),

where A^y') and A2(rj')are non-negative self-adjointoperators (see Proposition

1.7).

We can get an explicitrepresentation of the Green function G＼(x3,y3) rj';Q

for the operator /^(t?')―£/(£<^J?)from the expression of the solution for the

following problem:

(0.8) (AW, D)-Qv{rj', *,)= /(?', xa),

(0.9) vty, xz)＼x.i=^=v{rj',xs)＼x.i=+0>

(0.10) BW)vty> Xs)＼X3=-o=B1(V')v(V',x3)U3=+0.

Here (0.9) and (0.10) are the interface conditions for A^rj'',D) corresponding

to (0.4) and (0.5). A^-q', D) (D=(l/i)(d/dx3)) is the differential operators cor-

responding to the self-adjoint operator Ax(r]'). Since the solution v of (0.8)

should satisfy the interface conditions (0.9) and (0.10), the denominator of v has

the Lopatinski determinant A(j/, Q as follows:

-(0(tl -n＼- ^Z >W

6≪1 6s2
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where

a a^Jl

The squares of propagation

given by
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z

bl=
Jl z

b2=

speeds of shear (S) and pressure (P) waves are

fti

pi

Xt+2/ti
(|-=1 2)

respectively. From the conditions (0.3), the minimum speed of {cSl,cPl,cH, cPz＼

is either cSl or cH.

We can see that D{z) has the only one real zero when D{z) has zeros.

Denote by c%t its real zero. Then the zero of A(j/, Q is clArj'V and is the

origin of the Stoneley wave propagating along the interface x3―Q in the elastic

space R3, and cSt is its speed.

By virtue of principle of the argument, the conditions for the existence of

zeros of the Lopatinski determinant A(o/, 0= |rj'＼eD(z)(the existence of the

Stoneley waves) are given as follows:

If cSl<cSz, then

( i ) Z)(c|1)>0=4The zero C=cItl?T of Aty, 0 in C exists in [0, cfJiyT)

with order 1. More precisely, we shall prove in the proof

of Theorem 6.5 that cS£^0.

(ii) D(czSl)=0=$ cSt=:cSland we shall consider this case under some res-

tricted conditions (cf. Lemma 6.4).

(iii) D(c2Sl)<0 =4 Aty, O has no zero.

If cH<cH, then we must replace D(c2Sl)by D(c2S2).

We also obtain an explicit representation of the Green function G2(xs, yz,

f]';0 for the operator A2(r]/)―C>I(C><£R)by the same method as Gx{x3, y3, rj';Q.

The Lopatinski determinant corresponding to the operator A2{rj')―£I(£<£R)has

no zero. By using the Green functions Gx{xs, y3, t]';Q and G2(x3, yz, rj';Q,

we define

4>fKx>,v; 0=

Fys [GxCxs, y*, yf; Q~]($)(Uv)-Op>Wp(x*)

£,― Cst V

C-Uv)

]£M

4>u(xz,y; 0, j^m

Here w―()?i, w2> f)=r(^/, <?).̂ (^)―c||w|2 are the eigenvalues of ^1(17'), Pj(r)) are
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mutually orthogonal projections for Ax{r]'), J.k(7])=cl＼r)|2are the eigenvalues of

A2(v'), M={Sl, pu s2, p,} and iV={sx, s2}. When C-i/^+zO, ^clSi＼ijf＼＼ and

£r^Xk(r))±iQ, the limits <pfj(xz,57),<pij{x3, rj), and <p2k(xs,rf)exist and these limit

functions are generalized eigenfunctions for A^y'), A^tj'), respectively.

Using these generalized eigenfunctions for A^tj'), A2(r}'), we define gene-

ralized eigenfunctions for A as follows:

e'^m+'^ucC^f/Jc,, rj)ROlxl), jz=M

e*<*i7i+*2?2>UC(0f/(*s, ^)cOixi), ;gM

e*um +*21?2)UC(O2x20^(X3) v)) &eiV,

where Onxn denotes the nXn zero matrix.

Now we define the Fourier transform of f <ElM with respect to these gene-

ralized eigenfunctions: f^ffj, ffj, fzk),

/^{^Uj^.^^f/x, f]Yf{x)p{xz)dx,

f?f(V)=l.ljn.^
^<R(

Pff(x, V)*f(x)p(x3)dx

f2k(rj)=lljTL.＼
R(pik(x,

y])*f(x)P(x3)dx,

/eM,

j'gM

k =N.

Our main results are the following three theorems. Theorem 0.1 corresponds

to the Parseval and Plancherel formulas.

Theorem 0.1. We assume that D(cl1)>0 if cH<cH and that D(c2H)>0 if

Cs2<cSl- Let f, g^M and 0<a<&<oo. Then we have

(/, g)=

The firsthalf of Theorem 0.2 expresses the Fourier inversion formula with

respect to generalized eigenfunctions. The latter half gives the canonical form

for A.

Theorem 0.2. We assume the same assumption as Theorem 0.1

(1) For f<=M,
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and
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= s i.i.m.f (<pux, 7j)}^-n)+<l)fKx, v)f?f(y))dy

+ 2 1.i.m.l (plk(x, f])fik{7])drj.

(2) For fs=D(A),

Af(x)= gj-}^] (UvWtix,v)fi%y)+ch＼v'＼a<fiKx, y)f＼Kv))dy

+ 2 1

kf=N
i. m. h(r))<!>tk(x,y})fik(7))dr},

/c-≫oqJ j-n!^ R

(Af)?fty=ch＼y'＼2fff(vl J^M>

Theorem 0.3 gives an explicit expression of the ranges R(0±)

Theorem 0.3. Assume the same assumption as Theorem 0.1. We define the

mapping by

0fj: JC=3f ―* fx%r])^L＼Rl, C3)(f>0) ge LW, C3)(e<0), /gM,

^t: M=sf―>M(i))c=L＼Rl C3)(£>0) e L2(/2i,C3)(|<0), ^eiV,

and Put for f^H

0*f=(v0tjf, S0f//, no&f)
VeJf j<=M ke.N /

Then we have

Ri.O±)=L＼Rl, C3WL＼R＼ Cz)RL＼Rl, C3).

This implies that @± are unitary operators in M, and that the systems of genera-

lized eigenfunctions {(pij,<pfj, <pik)jeM,k&N and {<pTj,<pfj, <p2k}jeM,keN are complete.

The remainder of this paper consists of seven sections. In Section 1, we

prove the selfadjointness of the operator A governing the wave propagation of

the elastic waves in plane-stratified media .R3. In Section 2, we give a con-

struction and an explicit representation of the Green function G＼(x3, y2) rj'; Q

for the operator A1(7}')―C,I(CI<£R). In Section 3, the number and nature of the

zeros of the Lopatinski determinant of A^r)') are studied by using Cagniard's
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method. In Section 4, we define a family of generalized eigenfunctions for

Ai(t]')by using the Green function Gi(x3, y3, -q';Q. In Section 5, we give an

explicit representation of the Green function G2(x3, ys, rj';Q for the operator

Ai{rj')―Z>I{C,^R)and a family of generalized eigenfunctions for A2{rj'). In

Section 6, we construct the spectral family of A by means of the generalized

eigenfunctions of A^t]') and A2{r]'). We also prove the Parseval formula

(Theorem 0.1). Finally in Section 7, we prove the eigenfunction expansion

theorems (Theorem 0.2 and 0.3).

§1. The Self-adjoint Operator A

In this section, we shall prove the self-adjointness of the operator A along

standard results in the theory of linear operators in Hilbert space.

Let us describe the operator A more carefully. We have

with

(1.1)

Mu=-

M18=-

M2S =

Mu

0

0

pt{x

0

0

0

0

0

0 0

3)
0 0

0

0

0 fi{xz)

M

M=＼

0

0

21=

s)

3 fjyl

3

2

, j =
MtJ

dXidxj

fi(x3)

0

0

0

0

Kx*) o

0

0

0

^(*s)+2ju(*s)

0

fi(x3) 0

0

0

ft(x2)

0

0

0

0

0

0

0

j≪(*s)

/I(x3)+2≪(x3)

Mij, xs<0,

MX, xs>0.

X3=°

1

s) i

X(Xi)+2u{x3) 0 0

fi(x3) 0

0 ≪(*,)

M22=-

M33=-

£M12, Mn=lM13, M^Mn

We representM and Mj^Kf, 7^3) as follows

The interface condition (0.5) can be written as follows

X3 = 0

3 dul*
= a mi}%-

j=＼ dXj

The Sobolev spaces on an open subset Q of R3 are definedby
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Hm{Q, C3)={i/eC3; Dau^L＼Q, Cz), for ＼a＼£m}.

Here m is a non-negative integer and the multi-index notation is used for

derivatives. Thus a=(au a2> as) where each ≪_,-is a non-negative integer, Da=

D^DpDt*, Dj=:{d/dxj){j=l, 2, 3) and |a|=a1+a2+≪2. /fm(i2,C3) is a Hilbert

space with inner product

(1.2) (m, v)m = f S Dau(x)-Dav(x)dx
jQ＼a＼s,m

Definition 1.1. u<=H＼Rs, C*)r＼{Mu^M) is said to satisfy the generalized

free interface condition on xa=0 if one has

(1.3)
f 3
＼ Mu-vp(xs)dx+ S

J≪3

du
dx =0

for allv<=H＼R＼ C3).

Let D(A) denote the setof functionsu^H＼R3, Cz)r＼{Mu^M] which satisfy

the generalized free interface condition(1.3). We then have the following

theorem:

Theorem 1.2. The following operator A with domain D{A):

Au―Mu, u<=D(A),

is a non-negative self-adjoint operator in the Hilbert space M = L＼R%, Cz, p(xs)dx).

And u belongs to D{A) if and only if u belongs to H＼Rl, C3)c//2^!, C3)

and satisfies the interface conditions (0.4) and (0.5) in the sense of trace on xs=0.

In order to prove Theorem 1.2, we prepare some Lemmas.

Lemma 1.3. The operatorA is symmetric; thatis,

(1.4) AcA*.

Proof. To prove (1.4),note that the set

3)0{R＼Cl)=3){Rz, Cz)r＼{u;u(x)=0 in a neighborhood of x3=0}

is a subset of D(A). And £>a{Rz,C3) is dense in M. Hence D(A) is dense in

M, so the adjoint operator A* is uniquely defined. If u and v are both in

D(A), then we have by usinginterfacecondition(1.3)

(1.5) {Au, v)=(Mu, v)

= 1 Mu-vp(x3)dx

=
f MIuI-vIp1dx + [ M^u^-v^pzdx

}r3 J≪i
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3s

JK3
W,

3 r

a2

dxtdxj

Mh

3

― s

i, 7 = 1

UMV>

du1

dxj

du11

dxj

u1

Propagation Problems

3 r Q*

dv11

^

R

y-MivlPldx+＼
R%

r
= ＼ u-Mvp{x%)dx

=(m, Av),

which is equivalent to (1.4). □

(1.6)

u

/

3;
-j: 'V (JA

OXj

"*-!),."≫

uII-MIIvIIp^dx

II

v^dx

293

Lemma 1.4. The symmetric operator A is non-negative; that is

A^O.

Proof. Putting u=v^D(A) in the firsthalf of the formula (1.5), we have

(Au, u)= L

i

MIuJ-uIp1dx +
[

MIIuII-uIIpidx

3 r

Furthermore, we have

and also

Mi,
duJ_

dxj

du1

dxj

k

k

3

^J Ckilj

3
s

. 1=1

3s

k, 1=1

3

― V*― Zj

dxj

ci"'"a^

*x

dxj

dui

dxj

eU

dxj

3

VI r1 <?I s1

MYj
du11 du11

du{

dui

1/
7

du{ du{
j

du{ du{＼

JV^'dxj dx^^^dxj dxk)

£h
+ CHjl

^^
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From the conditions (0.

3
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■iv ' 3

― V rlf eH el1

3) and Korn's inequality (cf. [6], [12]), we obtain

thus

*,f=lj

{Au, u)=

s＼sU＼2dx,
||VM7'||i,(≪3^ 2

f
AsiWdx

R± + k,i=ljR*.

3 r duU duudx- s M%%―^―

=
tp_i(＼RSciilJsiieiidx

+ ^RaciIilJsIlIjei{dx)

^＼
sdi

2 ＼eU＼*dx+
[

J2 S ＼b[＼＼Hx

dx

^cd＼＼!u＼＼h(m,

which implies(1.6). □

Lemma 1.5. The range of I+A is M:

(1.7) R(I+A)=JC.

Proof. If f^R(I+A), there existsan element u<=D(A) such that u+Au

= /. Then we have for any v^H＼R＼ Cz)

(1.8) (f.v)=(Au.v)+{u,v)

f 3

jfi3t, 1=1

du dv

5x,- Jdxj dXi
u-vp(xs)dx

Now we can define by using the right-hand side of (1.8) an inner product on

H＼R3, Cz)

{u<v]=-＼nu%M^-^dXAn>U-VP{x*)dx

for ＼fu,v^H＼R3, C3).

It follows from Korn's inequality as in the proof of Lemma 1.4 that

{u,u}^cd＼＼Vu＼＼hlRS>+ ＼＼u＼＼5cfor Vu<=H＼Rs, C*).

This implies that the norm {u, u}112is equivalent to the norm ＼＼u＼＼idefined by

(1.2), and that H＼R＼ C3) is also an Hilbert space (denoted by H＼R3, C3)) with

the inner product {u, v}.

For any f^M, we consider the linear form on H＼Ra, C3):

HHR＼ C3)3yi―>{f, d)eC.
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l(/, t')l^il/IUblU^II/IU^, vV>＼

thislinear form on H＼R3, Cz) is bounded. So by the Riesz representation

theorem, there exists a u<=ffHRs. C3) such that for all v&HHR*, C3)

(1.9)

Next, we shallshow u^D(A).

be written as follows:

(/, v)={u, v).

By taking v^3){R＼ C3), the equality (1.9) can

<|t>(*sX/-M), V}=( y M du dv W *
M

d*U ･>

where <･, ･> denotes the duality between 3)' and 3). This duality means

f-u=Mu = Au<=S

in the distributionsense. Furthermore from (1.9)

(Mu, V)+
( 1

V p(xs)
i-j=i OXj dXi /

=0 for ＼fv^H＼Rs, C3)

This means that u satisfies(1.3). Hence u<=D{A). O

Lemma 1.6. A function u belongs to D(A) if and only if it belongs to the

space H＼Rl, CS)RH＼R＼, C3) and satisfiesthe interface conditions(0.4) and (0.5)

in the sence of trace on x3=0.

Proof. The implication (£=)is trivial.

(=}) Since

H＼R3, CS)CH＼R1, Cs)(BH＼Rl C3),

everv u^D(A) has a uninue decomoosition

U = M 7 + w7/ u'eeH^RI, C2), u'^H^Rl, Cs)

where u1 and u11 satisfv d.3). We have the bilinear forms:

＼o1i1iiiJdxj'~dxi)~
(M'u1, v1)

-^f)=-(M""". ≫">

where v1&Hl(R'L, C3),vII^H1(R+, C3). Since we have by regularitytheorem

(see for example [1, Theorem 9.6]),if

-M^u^^LHRL C＼ oodx),
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then it follows that

u7 &H＼Rl, C3), u77 eH2(Rl Cs).

Note that for all w(EC^(dR＼ C"), there exist ueC^3, C3) such that v＼X3=Q-o).

From (1.3) with this i;gC"(B', C3), it follows that

Since m is arbitrary,

i,j=l OXj

du11 ＼

dxj I

― 2-1
■>≪3] -＼

x,=o i,j = i OXj x3=0

(1.1) is equivalent to (0.5), so this means that u1 and u11 satisfy (0.5). □

Proof of Theorem 1.2. The fact that A is self-adjointis a direct con-

sequence of Lemmas 1.3 and 1.5 and standard results in the theory of linear

operators in Hilbert space as follows:

Ac A*

R(I+A)=J{

A ; selfadjointin M

(see, for example, [13, Section 187, Theorem 2]). Lemma 1.4 shows that A is

non-negative. The latter claim is a direct consequence of Lemma 1.6. □

As shown in Section 0, we transform A into a self-adjointoperator A(i)')

depending on a parameter r]f and moreover we decompose A{r)') as a direct

sum of the simple self-adjointoperators A^rj') and A2(tj')which is much easier

to study (cf. [3] and [5]).

By a direct computation, we can easily prove the following proposition.

Proposition 1.7. We have

A=Aty) = UC(A1ty)RAt(v'))<UCrl for V'^Q,

and

(1.10) Au^F-,1UC(Al(yi/WA2(V/))(JJCrlF^u for u^D(A),

where A^rj') and Az{tj') are non-negative self-adjoint operators in L2 (12, C2,

p(x3)dx3) and L＼R, C, p(x3)dx3) defined respectively as follows:
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D(.41(i?'))={(

A<*--k, X" ;)

Ul)^H＼R_, C2)RH%R+> C2)

u11 x^=u'111 x,.o,B{ty)u'＼ x^0=BV(Vf)u111 ,3=0}

p

Bityi
u[

u{

)

*wO=

fil

*(C; AWMty, *,)=

" -i^^+")-jr,

-(X+2ft

i＼y'＼fti

i＼v'＼M*

)^
l+"l''l!

(u{)

C")

W＼*u

d

dxs

(1X3

d

i＼V'＼t2 tf*+2j≪0-^

D(A2(V'))= ＼u^H＼R_)RH＼R+) ;

u11 x^u111 Xi=0, BltyWl z^Bi'i^u11113=0}

2＼ ' dxs/ p(x3) dx＼ p(x3)

Since A2(y]')is an operator corresponding to the usual wave operator, from

now on, we shall mainly treat the operator A^in').

§2. The Green Function dC*,, y3, 3/; Q of A^ij^-QI

In this section, we give an explicit representation of the Green function

Gi(x3, y3> f]f;C) for the operator A^^―^Ii^R) by using a standard technique

(cf. [7], [9], [10], [16]) in order to define generalized eigenfunctions for the

operator Ax{ijf)in Section 4 below.

Denote by i?(C; T) the resolvent (T―Q~l of an operator T. The resolvent

of the selfadjoint operator A^y') has the kernel representation; that is, there

exists the Green function Gx{xz, yif y'; Q and for /(･, x3)GCo(i?＼{0}, C2) we

have

r
＼Gi(*s, y3> rj'; Qfty, y3)dy3
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From the self-adjointnessof A^tj'),it follows that the resolvent kernel has the

symmetry property

Gi(*s, y*,if; Q*=G1(ys, xa,i}'; Q.

In order to find the Green function, we consider the following problem:

{AW, Z))-CV(*3, -q'＼Q=f(7]', x,), *3<0,
(2.1)

(2.2)

(2.3)

yJ(A-3,)?'; OU3=o=y/7(^s, V; OU,=o,

BK^Of'C^s, V; OU3=o=5WW3, >?'; 01*3=0,

where D=(l/i)(d/dxs).

Let us seek solutions v](xs, v'; Q and t>7/(x3,yr: C) in the form

Let

v＼x,, vr; Q=EI(x5, n') Q-K＼xz, n'＼Q,

v!I(xh V'; O=EI1(xs, v>; Q-K'Hx,, v' ･ Q

*'(*.-*, v', 0= vs-F rttA'w, c-cr^"*1"5]

(2.4)

where £is the dual variable of x3 and Fj1 denotes the inverse or conjugate

Fourier transformation with respect to $:

(Fe1/)^, xs)=l.i.m.-7l=f e^fi&dt for f<=M.
' B-oo VZ7T JIflSfl

e1 and e11 are fundamental solutions of A[(j)')―^and v4{7(?/)―£,respectively,

that is, e1 and e11 are distribution solutions of the equations

0410/, D)-Qe＼xs-y,, rj',O=8(xs-y3)I, xs<0,

(Ai'ty, D^Q&^ixs-y,, v>, Q=8(xs-ya)I, x3>0.

Then we have in the sense of distributions

<?7(xs―3>s, f]'',Qfty, y*)dyz
R,

f e^ix.-y,,
rj')QfW, ya)dy3

JR

K＼x3, rj';O^//2(i2_, C2) and KJI(x3> rj';Q<eH＼R+, C2) are solutions of the

equations



(2.5)

and

(2.6)
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(A[(vf, D)-QK＼Xi, 57',0=0, x3<0,

x3>0

E＼xs, V'; C)lz3=o-£/7(x3, 7)'; OU=o
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(2.7) 0{(V)£'(*., v'-'Ol^-BiWE11^, vf; Olx,-o

=0{(7')/f'(x,, ?'; Ol^o-B^')^^-, 7';C)lx,-o.

First, we find an explicit representation of the fundamental solution S1.

The characteristic matrix A[{rj',£)of A[{r)',D) is a 2x2 Hermitian matrix with

characteristic polynomial

detow, ≪-:/)=(c- -a i^ 12)(c- ^^ i>?i2)

where v = ty, ^)=(^!, rjz,£) and ＼ijV= |?'|2+£2. CjUx/iOi)172and (U1 + 2//1)//Oi)1/2

are the propagation speeds of shear and pressure waves, usually called S wave

and P wave respectively by physicists and engineers. Thus, from now on, we

use the following notation

(2.8) r2

pi
f- fil

The distincteigenvalues of A{(w',£)are

(2.9)

X + 2u,

p

Xs.(y)=ci＼7}＼＼ Ap(y])=c2Pl＼7}＼2

Introducing the set of indices

(2.10) M^{su p,},

the resolution of the identity for A[{rjf,$) is given by

JeMi

Here the P^rj)(/eMj) are mutually orthogonal projectionsdefined by

Pj(v)=
1^(i?)-Cl=5

HQI-AKv))-^ /eMx

where the integration goes over a small circle in the complex plane enclosing

only the eigenvalue Xj{tj)(j'gMi) in the positive direction.

Since Pj(yj)(jeMO satisfy the following properties:

PJ=PJf 3JkPj=PjP>,

A{(V',$)Pj(V)=UV)Pj(-n),
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(2.11) (Aity, &-UY1

PSl(rj)and PPl{rj)have more explicit

are simple poles of (£/―̂ {(w))"1

= a l Pj(v)-

representations. In fact, the kj(ri)O'eM,)

(2.12) PSl(y)= lim (Z-X^yMI-Aity)-1

and similarly,

(2.13)

i / e

W Wl?'l

-£l*'l＼

p≫w=w

From (2.4) and (2.11), we have

(2.14) e＼x%-yz, V'; Q=-^-

+

(W＼2 $＼v

＼$＼y'＼ e

[
ei(x3-y3)S

)

W＼{cl-cl^ ＼

In !>r APA$)―L,

Now, we calculate the two integrals on the right-hand side

so, we change the real variable $ to the complex variable r

of (2.14).

-B+itc and

(2.15) rSl

To do

define

Then the determinant 6&t(A[{ij',r)―£/)is equal to:

deU/iiO/, T)-C/)=cS1c|1(T+r,1)(r-TIl)(T+TPl)(T-TPl).

Let us consider the firstterm in the right-hand side of (2.14). In the case

where x3―jy3>0, we may deform the path of integration into the r upper half

plane as indicated in Figure 2.

-R R

Figure 2. A path of integration



PpM, ^))f(v'> y,)dya

■p*W, -*pS)W, y≫)dy>]
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We obtain

T=IsA
X7v^~^―^

―(＼
r )cy

On the half-circleCt, r=Reid(0£d£7t), we have as i?->oo

[ y^-v^^lMilL.dT|<Const. f
x g-(x$-y3)RsinO

and so

R2
d6-+Q

xz-y3>0.

In the case where xz―ys<0, we may deform the path of integrationinto the

r lower half plane, and so we have in a similarway

x3―y3<0.

The second term in the right-hand side of (2.14)is also calculated similarly.

Summing up, we have

i-

__ I

^rs＼ XSl(Tj'',T)-C

gi(*3-2/3)TS

r2 r

g-i(x3-y3)ts

r2 T

So we have for %3<0

(2.16)£'(*, r,';Q

=M$::(£

PsXv', O+

V XPlty, t)-0

)- Res
(

CVxZPi

pW, r)-C

p*

e-Hxs-ya)

cPiTPi

As to the e11

i(X3-y3)?s

r2
Ts

C2SlTSl

, let

PsAf)', r,,)+

TP1

-PPl(y', -rPl), xa-yt<0

ei(x3-y3)zPl

CPITP1

JW, -*.,)+-^―T- "
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(2.17) cL Pi

P2

c2 =

M2-{s2, p2},
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^2+ 2^2

^,0?)=c2,l v＼2

PM=
|)?l2 Wl>?' ＼v'＼2 >

PptW=

Using these notationsand taking the same procedure as 6

(2.18)E^ixz, ≪';0

I

J^3

o

(-

―a- Ps2(V , TS2)+ ―-y~

-i(x3-y3)zs

r2 r

Vi2 W＼

1, we have

e-i(x3-ys)Tp

CP2ZP2

)

for %3>0

Pp,ty. *Pt))fty, y*)dy*

Pp,W> -*pt))w, y*)dy3]

From the equation(2.5),we may suppose that

K'ix,, t)';Q=C1e-itp1x3+ C2eiTPixs+C3e-iThxz+CieuhXs> x3<0,

where Cu ■■■,C4 are 2x1 matrices. Since x3<0 and (2.15),the hypothesis

that KI{x.i,rj';Q^H＼R^Cz) implies C2=C4=0. Moreover, since K1 is a

solutionof (2.5),K1 can be represented as follows:

(2.19) *"'(*, Vt;Q=a10v'

＼― T

1 Jg-V+a^1')?-"'!1',
x3<0

where au a^C. As for KII(x3, v';Q, we have the followingrepresentation:

(2.20) KZI(xs, ≪'; 0=

where fii,/32eC

Let us determine the constants au a2, ^ and /32so that K1 and K11 satisfy

(2.6) and (2.7). Note that

Then

≪2, fil

(
＼v

TP2

/ 2

V'

' 2

V'

rPl|i/l
), JW,Tfl)=^-(

＼ p (n' T ＼=~M
Jv'＼

r.,1^'1 ＼V'＼2

)r2 /p2 (

if we multiply the both sides of (2.7) by l/i, then the equations on ax

and /32 can be written in the matrix form as follows:
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PiclXrl

+

+

＼v

I v 2)

W＼

―2p1cZs1TSl＼r]'

where

W＼

2Plc2SlTPl＼rj'＼

-W＼ r,g

-2pscltTPl＼7)'＼ piC2,t(Tit-＼r)'＼2)

-p2cL(TL-＼rj'＼2) -2p2cl/tH＼r]'＼

2p1CZSlTSl＼7]'＼

gtty, 0

V I P2Cs2{tsz 7] )

V ＼) I £pzCHTH rj |

― 2p1C2SlTSl＼7]'＼

~/17] I ?s2

?/i r2 r ly>'l ^3^ ' ^^ ftr2 (r1 ― W 2)

-p2cUrl-＼r]'＼2) 2p2c2S2TsArj/＼

g's(y',Q=j

$

L

g'*(Vf, 0

e-iT*ivKW＼, tpMv'> y*)dy*>

e-h'ivK-Ttl, W＼)f{fj', y3)dys

e-uP2yK＼r}'＼.rPt)f(v'> y*)dy*>

e-"hyK~Ts2, W＼)fty, ys)dys

Jo

r.

Jo

Jo

rPl)/(jy', ys)dy3,

iT*iv*(T,v W＼)fty, y3)dy3,

up*vK＼y'＼, -Tpa)f(y', yz)dy*

＼°°

oeu'sv<T.v
W＼)fty, y3)dy,
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B,l

_L

1

?p2C

1

1

1

7SlC

1

1
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Put

(2.22) Aty, 0

W
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-2plcllrPl＼fj'＼ -iOid/r^-I^T)

Pic＼{x＼― |j/]2) ―2/Oid r,Jiy'

~"TP2
-2pzclzrPz＼f]'＼

-io.c.vrf.-i^r)

-W＼

P2cI%(t*h- ＼r)'＼z)

-2p2C2S2TS2＼Y]'＼

A<y, 0 is called the Lopatinski determinant. A1Pi(y}',Q, AlSl(r)',Q, AlP2(y]'',0,

and A＼2(r]',Q (1=1, 2, 3, 4) denote the determinants respectively obtained from

A(iq',0 by replacing the /th column by

Wl, rPl, 2p1cllrVl＼r]'＼, ^cf^-IVI2)),

£(-rSl, |V'|, -/OicI^-I^D, 2/o1c|1r.1|iy/|),

'(-1^1, rP2, 2^cs22rP2|)?'|, -/O2cS8(r!8-|i7'l8)),

and by

f(-rS2, -|jy'|, lOzcf^-liy'l2), 2^^137'I).

If A(rj',O^O, then (2.21) has a unique solutions (ab a2, fiu j82) which are

given in the following form:

a'=4|vcr^' o+^r*<*'. 0+≫!('''°

+

+

A3 (y.r r＼

^^,CH^W,C)

Uv 0

AW, 0

A(y',0

gtty, Q+gity, 0

g'tW, 0+

g*ty, Q+gt(v'. 0

J2

A3 /,/ r＼
^s2＼y , (9)

8W.Q+-?,
A(>/, 0

g*w, a+g*w, o

g'W, 0

glty, 0

W, 0 Aty, 0

Thus we have for x3<0
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23)

v'(xa v'; 0

(*s, V ; c)-ff'(*3, v'; 0

x cPi~Pi

ei(.x3-y3)rs

+ L (

C'T

P^

PSl(yf,T,S)fty, y≫)dy,

e-i(xs-ys)ts

<y, -rPl)+―-2-―

V My', 0
giW> Q+^ff§-g*w> v+sw, o

+ A(V',o 8s{v 'Q)+ A(V',o M ' UA -rPl r

and for %3>0

(2.24)

= EII(xitV';Q-K"(x,,v';Q

2VJ-V cf.r.,

"■ l ＼ -.2
J*^3 V CP2TP2

PptW. **,)+

gi(x3-y3)rs2

r2 r
/W, rS2))f(V', y,)dy3

g-i(z3-2/3>Ts2

CS2Ts2

p,tty> -*.,)) W. y*)dy)

-(^wir^'- 0+'wfig'^ 0+8>w- o

-(

+ M-Q+%fg'w-°xiy-'--'

*w, o

+

Ml', 0

4^^,0+^JW.n
A(≫', 0 A(>/, 0

0

x
i
;?>"""

In summary, the Green functions G[(x3, ys, rj';Q and G'xix^ y3> -q';Q for x3

<0 and x3>0 are given respectively in the following form:

(2.25)

G{(x3, y3, ri';Q
i

2

[-H(-M-W7tre~w'''''^c o W TP1)



)(＼v' *!>,)}
J_(＼V'＼

＼*P,)

TsAy'l)

4-VrP2*3g-"p2?/3

eirPSx*eirp zvs
~~TV?)

1 (
1 A(w', 0
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+
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-H(y3)le-uPix*eiTPiv*

uvxx*2

_2_

+

+

(

izs 2/3 £(

!O<

-
Q
-.

V'

Pi

9'I-*■*,)

)(-r.J?'l)}

4O"

x3e-irPlV3 ―(Tsl)(

Mv'>0 r.tCW

1 ^s.s x V '

My , 0

+
A(v', 0

+H(x.i-y3)leiTPi(x^^)

1

AUv

2

[

-w-y>{^$fc

>""""t~"'l"^i

i

(2.26)

+ e~iV^>~c(|^|)(rJ5/|)}]) x,<0

+H(y3-x3)＼e-uPilx*-
^-=-( ^'' )(|)y/|-rPl)

-j-g^s^s-ys) ^＼v'＼)}

TS
A＼V>＼){

w
v 'Pi '

^
I
K"'1'}

_j_

TSl
＼v'＼)＼>

Itf'IO

(f≪2l? )}

TP2)

r^iW"^

~J>2 '
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+ ^yVTP2XS0il*21">
_l_(＼v'＼

)(r.,l?'l)}

^-^{^^･"･･"'""'■"^-(l^)0''1^

idv?)'-"-"'1'}

-^i^fi1""'""""^

+

+//(x3-.y3){ei^2U:i"!/3)

ei*≫t*se**s2vs

JL

^2C

+H(ys-x3)＼e-iTp 2(*3-2/3>

^2

+ g-<r,2(*s-y8>

.

c

1

_1_

TsAv'l)

(
l,^)(l*'l-w

d;,*)^'!)}

(r;?)<-T"

T≪8C

v'＼)＼

(

|

^

|

)(*≪.l*'!>}]'
Xs>0-

Here H(y3) denotes the Heaviside function.

§3. Zeros of the Lopatinski Determinant of Ax{r)')

In this section, we investigate the number and nature of the zeros of the

Lopatinski determinant defined in Section 2 in order to obtain the speed of the

Stoneley wave. Our Lopatinski determinant seems to be equivalent to Cagniard's

one. But Cagniard expressed the solutions of the elastic equation in cylindrical

coordinates by using the Bessel transformation, and investigated the existence

of the Stoneley wave. So our parameters are different from Cagniard's one.

For the sake of completeness, we present the proof by a method due to L.

Cagniard [2, Section 4].

Put

(3.1)

then

z=

fl2~V
1 z &,=

<

/
1-

z

62=
J

I
z

r2
a,=

＼v'＼2
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TPl=i＼r}'＼au xv%-i＼ri'＼a^ rtl―i＼ii'＼bx,r,,=i|i/|&8.

With this notation, the Lopatinski determinant (2.22) is rewritten as follows:

Wv'>Q=＼v'＼'

1

―idi

2ifi1a1

jtti(≪+l)

= ＼y'＼eD(z),

ibx

1

-jKl(&! + D

2iu1b1

-1

―ia2

2ipt2bz

where

(3.2)

ib2
-1

Mbl+1)

2iuzbz

-aA(2(fi1-fi2)+^)2-a2bJ2(fi1-fii)-^f)2
x Cs2 ' ^ CSl /

By (2.8) and (2.17), the propagation speeds of shear and pressure waves

should satisfy

c≫l<CcPl, cS2<.Cp2,

so there are six cases

Cs1<Cp1^CS2<Cp2>

cSl<cS2^cPl^cP2,

ct^ctt<cPi^cPl,

Cs2= Cs1<^.Cp1= Cp2,

to consider. From now on, we have only to consider the standard case:

(3.3) cH<cVl<cH<cP2,

since the other cases can be treated similarly.

Now, we examine the zeros of D(z). For ax (resp. az, bu b2), we make a

branch cut on the real axis of the z-plane between the point c＼xand co (resp.

Cp2 and oo, Cst and co, d2 and oo) as in Figure 3. To determine the number

of roots of D(z)―0, we make the path y in the 2-plane as in Figure 4. We let

A=c$lt B = c2Pl,C = c2S2,D=clv and take four points A', B', C, D' on the path

r to be near A, B, C, D, respectively. Moreover we take a real number R to
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be large enough, and a point R' on the path r to be near R

Figure 3. Branch cut between branch points c%

and oo in the 2-plane

Figure 4. Path y in the z plane

309

We discussthe image of D(z)/z3when z goes on the path above. When

we change z to the complex conjugateof z, D(z) changes to its complex con-

jugate; that is D(z)=D(z). Therefore we can only consider the contour of

the upper half plane. D(A) denotes the image of A by D(z).

1. If z is on A'y we may consider that the sign of D(A') is the same as

that of D(A), so 6i=0, and au a2,b2<0, then we have
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so

Im
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D(A)=ReD(A)=(fil-2fl2 +
^fii)i-a2b2(ft1-2fii)2-albifilfti-21-=0

cs, / cs. <~.

2. If z goes from A' to B', we may examine that z goes from A to B,

&i is pure imaginary such that Im&i>0, and au a2>b2<0, then Re D(z) and

D(z) may take positiveand negative values or zero. In fact,we have

Re D(z) +

Im D(z)

― 02^2(2(^1-/^2)―

Csz '

r2 ' c＼xc＼t <

4(iu1-/i2)8aia2MB-aA(2(Ju1-iu2)+i＼-y―^-fl2^2) = 0

We shall show that there is no z^(c＼v e|,) such that

Re/?(*)=0 and Im£>(z)=0,

more precisely, we shall show that

ReD<≫=0 and lmD(z)=O=$z>c*t%+clt.

For this purpose we consider D(z)=D(a,, a2) as a function of ax and a2 by

regarding ax and a2 as parameters. As in Figure 5, the equation Im^a,, a2)

2(fil-pi2)+ftliz/c2H

4(£li― ≪2)2&2

(2(jtl-ftt)-ftlz/cll+fitg/c]t)t

(2({ii-ut)-iiiz/c*yh

Figure 5. Behavior of Re D(z) and Im D(z) for

variations of the parameters a, and a2
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=0 represents an equilateral hyperbola passing through the origin and with

asymptotes parallel to the axes, intersecting in the third quadrant. And the

equation Re D(au a2)=0 represents a tangent to one of the branches of the

hyperbola at the point (a,, a2) where

a

(3.4)

a2

2( 1 ≪)―(tfiz/cS )+(jU2*/cL)

2{ui ― u2)bi

2(n1 ― u2)―(n1z/czs

(3.5)

so

til-

)+(u2z/cl 2([11 ― Itz) + ({JL2Z/C2s2)

2(fi1―ft2)―(fi1z/c2s)

In fact, we have in the second of (3.4)

_ 2(ft1―pi2)―(fiiz/c2Sl)+(fi2z/c2s2) 2(pi1―[i2)+(fi2z/czsz)
1

2(fii―fi2)―(fiiz/cg

a2b2= -

1

' >1.

from thisinequality and z>0, we get

If we go back to the situation that au a2, bu and h2 are functions of z, there

is no solution z(c|1<z<c|1) which satisfies(3.4). Since Im D(au a2) is negative

in the lower region of the branch of the curve Im D(au a2)=0 which does not

pass the origin, and ReD(fli, a2) is negative in the upper region of the line

Re D(au G2)=0, Dia^z), a2(z))never goes into the third quadrant.

3. If z is on B', we may consider that the sign of D(B') is the same as

that of D(B), so friis pure imaginary such that Im &!>(), Qi=0, and a2, b2<0,

then we have

ReZ)(fi)=(2(^1-^)-^ + i^)2-GA(2(^-/,2)--^)2|.O

ImD(JB)=|(--^-a26141)>°-

4.

so au

have

If z goes from B' to C, we may examine that z goes from B to C,

bi are pure imaginary such thatImflj, Im^X) and a2,b2<0, then we

Im/)(z)=4-

2
+4(ui-u2)2alazb1b2

-a1ft1(2(Ai1-^)+i＼-Y-fl,ft.(2(Aii-/≪.)―^r-Y^O

(-Jr!r-(albt+atb1)z1)>0.
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5. If z is on C, we may consider that the sign of D(C') is the same as

that of D{C), so ai, by are pure imaginary such that Im au Imfri>0, bz=Q and

G2<0, then we have

Re D(C)=

Im£(C)=i(

6. If z goes from C to D', we may examine that z goes from C to D,

so au by, bz are pure imaginary such that Im au lmbu Imb2>0, and G2<0, then

we have

＼ CSl Cgz ' ＼ Cs2 '

lm D(z)=― U([ii-^yalaibA-a2bz(2{iil-ixi)--^A ―-4^r aAz2)>0.

7. If z is on D', we may considerthat the sign of D(D') is the same as

that of D(D), so au blfbz are pure imaginary such thatIm ax,Imb^ Im62>0,

and a2=0, then we have

― alb1(2((ti―pi)+
Cs2 > CS!CS2

aibsc*p>0.

8. If z goes from D' to R', we may examine that z goes from D to R,

so au a2,b1}and b% are allpure imaginary such thatImflb lma2, Im bu lmb2

>0, then we have

£(*)= (2(^-^2)-

alb1(%fi1-pt)+^)t-atbt(2(pl-pt)-£f)t
^ cs, / ＼ cs /

and so

D(z)
z3

^2 (aA+aA)z2>0.

#1#2

Cs1Cs2CVi

+ _e£L-)+o(A)

Cs,Cs

9. If z goes from R' to ―R', along the contour which the radius R is

very large, then we have

^ Cp.Cs Cso Cp.Cs^Cs CsCSiCp CgiCsnCpo

/ 1*1
i

Mi

＼CPlCSlCs2 Cp2Cs2CSl
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Ml

CPlCglCs2

&

4
CP2Cs2Cill

Pit** I P-^

2 3cHCszcPi Cs1Cs2CPi
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is real positive.

As mentioned above, there are two qualitatively different cases to be con-

sidered; in the first case D(A) is negative, and in the second case D(A) is

positive.

(3.6)

(3.7)

(3.8)

(3.9)

1KB)

Now, we have the followingasymptotic

n -

I] ^"-1

V 6P2

b*4-ir1

By the asymptotic expansions

(3.10) D(z)=z*＼(fl＼ f)2 Ml Ml
r2 r2

z

Or2LtV＼

Z

z

2r2

z

r2 r2

z2

z2

842

z2

8<

z2

8cS,

Since the quantity in brackets in (3.10) is equal to

D(B)

xW?)
I zs

Figure 6. Path of the image point in the D(z)/z3-plane

expansions for sufficientlysmall z:

+ 0(zs)

+0(z3),

+O(0S)

+0(z3).

(3.6M3.9), it follows that

(ftl+fit)2 . n, ,~＼ .
A

L-s.Ls~ J
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_1

r2 )+^(^!7+717X7!;-717)

+
.2

c＼.

)

r2 r2

J_

it is always negative and never zero. So the order of pole of D(z)/zs at zero

is one. Therefore, from principle of the argument:

JV-P = C(0),

it follows that if D(A) is negative, then the zeros of D(z) do not exist, and if

D{A) is positive, there exists only one real zero with order 1 of D(z) on [0, cfj.

Indeed, there is no ?gC such that

Re D(z)=0, Im D(z)=0

outside the interval [0, c|J. Here N, P denote, respectively, the number of

zeros and the number of poles of D(z)/z3 in the complex plane being countered

with their proper multiplicities,and C(0) the quotient by 2% of the variation

of the argument of D(z)/z3 when z described the closed path y.

Hereafter we denote the real zero of D(z) by c＼t.Then the zero of A(i/, Q

is clt＼f]'＼2and is tne origin of the Stoneley wave propagating along the interface

x3=0 in the elastic space R3, and cst is its speed.

In conclusion, the conditions for the existence of zeros of the Lopatinski

determinant A(t?',Q defined in (2.22) (the existence of the Stoneley waves) are

given as follows: Let D(z) be the polynomial of z defined by (3.2). Then

D(z)=A(r]', z＼r)'＼*)/＼r)'＼≪is independent of t/^Q. For

(3.11) D(Cll)=(fil-2ftt+-^-fi,)t+J-^-lJ-^-l(fi1-2ftt)*

4- -/―o1 1＼/―o1 ljMiJt£2―i3-,
V CP^ V CS2 C≫2

we obtain

( i ) D(cf,)>0 =4 The zero C=cltIV' 12 of A(V- 0 m C exists in [0, clx＼r)'＼2)

with order 1. More precisely, we shall prove in the

proof of Theorem 6.5 that cSt^O.

(ii) D(c2Sl)=0 =4 cSt ―cSl and we shall consider this case under some res-

tricted conditions (cf. Lemma 6.4).

(iii) D(c?1)<0=} A(j/, 0 nas no zero.

Remark. The minimum speed is either cH or cH, as is seen from the six

cases mentioned above. If cs <cs , then we must replace D{cl) by D(c2s).
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§4. Generalized Eigenf unctions of Ax(rj')

In this section, we give a family of generalized eigenfunctions for Ay{r]f)

by using the Green function G1(x3, y3, rj';Q given in Section 2.

We define (pij(xa,v ; Q (j^M=M1yjM2={su pu s2, Pi)) as follows:

(4.1)

where

0i/*3, v; 0=j

0i/*3, v ; 0, *3<0,

(p"(x3, ri; 0, x3>0,

(4.2)

#K*≫, V ; O=FvliG[t(xi, y,, V'; QMMM-QPMP*1. x*>°>

and

FvllGWxs, y3, V'l O^ =
^^＼eiy3iGr(xz,

y3, v'; O^3'3 (m=/, //).

Here Xj{rj)are the eigenvalues of ^1(57')given by (2.9) and (2.17),and P/17) are

the mutually orthogonal projections of A^rj') given by (2.12),(2.13) and (2.17).

The motivation for these particular definitions(4.1) and (4.2) is shown in

Section 6 (Lemma 6.1) below.

Lemma 4.1. Let £ be non-real. Then we have for j<=M

(4.3)

(4

(4

(4

GW)-W'/*3, v; 0=;/^=≪<X8W?)-C)JW.

4) (Ai'W-tDf&x,, v ; C)=^=^^W?)-O^(57),

5) 0W*s, V ; Olx3=o=0iK^3, 57; C)|x8=o,

6) BityWfa, 7]; 0*3=o = SW)^K*3, >?; 0 Ix3=o.

Proof. Let (p^C°Z{R_, C2) and <p^CZ(R, C2). Then

((^{(^O-C/^^EGKxb, ya, f]';C)](a ^(x,W≪>x,.{

=<F^[G{(x3, y3, V'; Q]R, (A{ty)-ZIWxtW&>Xt,e

=<G[(x3, y3, V'; 0, (A[{r]')-U)<j>(x3)F-^-]{yz)yXi,yz

= ≪G{(x3, y3, 7]';0, (A[ty)-VWxa≫Xa, F^[<pXyz)>ys

= ≪G4{(?')-C/)G{(*S, ys, V'l 0, &(xs)yX3>FjW](y3)>ys

= ≪d(x3-y3)I, <j>{x3y/Xz,FjW](yiy>v.
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=jfl <!>{x,)Fjll(p'](xz)p-ildx3

=＼

R

{^＼eix^{x,)^)di)dxz

where, for example,

f 3
if, 5r>^3==L f-gpidxs, f-g=Yifigi.

J/?_ 1=1

In view of (4.2), the last equality implies the formula (4.3).

The formula (4.4) can be proved in the same way. The interface conditions

(4.5) and (4.6) are obvious because G{(x3, ys, -q';Q and G{＼x3, y3, -q';Q satisfy

the interface conditions. □

Now we shall introduce the generalized or improper eigenfunctions <pij(x3,rj)

(j'gM) of Axirj'),making use of the expressions (2.23) and (2.24) of the Green

functions G{ and G{1.

From the elementary formulas:

Fj;c//(-,s),-".](≪=7iFJ0_.e'≪-'>≫^.=^F7(^

for reC, Imr^O, it follows that

(4.7) F-＼[_G[{xz, yz, rjf; £)]($)= ^7%=

r fA^',0 1 l_( ＼V'＼＼ ,

, 4W£0 ,-..,.. 1

A(V'> 0

+{･ i?p^x3

|-rSl rSlCV -rPl / x J

$>~PI 'Pi's v 'Pi 7

*w, o

+

Jo's V ~Pi '£+rP, ?vL

^iCslo*-*.,,*.-!

*W, 0 $+?,. rsZ

t &w, 0
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+

+

+

^0,-..,.. 11 (*V)(-r.,|,'|)}

A(Y, 0 £-T,. TtZ＼＼7)'＼/ ' J

-. 2 trSx'r3

1

^(w＼>->wl)£+T, T, C

+
*±M±Qe-≪.l*,-J: I:

+{

Mv', 0

g'≪*8

+ 0≪*S

_l

+ g*≪XB

+

+

1

1 1

1

rP2C

£+rS2 rS2C

1

TsZ

d>'
(Tv,K

d,*T )<-*･■"''>}

eirp2x*

O"-'-.>

1_ _J_

v'＼)

T(r'')(l'

― T

＼

pj

)

Pi tp

£+rS2 r,8C

eiTs2xs

rPl)

)(-rsJVI)

i*4

)w＼-*pJ

civ*"'"}

1 1 /―r≪,＼, ,

(,;?)(-*. i*'i>

)(-*.,!*'I)}

1 (~T'A

T.Z＼＼7>f＼'£+r,. tsZ
(*sa＼y

vf

')}

1
O^XS

£+rpl

eHwdSiK"'* *'<0

(4.8) F;J[G{'(x,, y9,ij'; QKt)=2VW

L t Mv',0

+ aWl^8z,_! i
A(V, 0

4- eizp2X3

1

S Tp2 tp-fa

t A(v',0 f+r

≪,(!lQ≪.,.,J 1
A(V', 0

+ e"s2*3

1

£-rS2 rS2C

+ 1
&W,Q t+TPl rrZ＼＼r,'＼)y]

+ :*.(2VCW,_l
A(>/, 0
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+ e≪*8

1

£―r,8 tS8C

+ eiSx*

and also for £<0

*＼)^hW＼)}

lXl ＼W＼-rPz)

)(r.,IVI)}"L x^>0.

w
-z v I
6P2

i

*

v

i

V

(r2 y, 2＼r2 y,' 2s)
{LPl 7] ^-tp2 7] )

(~2 y, 2<'r2 y,' I 2-＼

cU＼y'＼2+e) , , g ,
2

, ,.

Cs2

＼v I 2 _cU＼y

P2

+

lim <*.(UT+F)-C
p,T,,≪..e+V(c/cy-i'?'i!

lim
{cl

(^J7?!2<C12 ＼y'＼2).

(I)?T+f )-£)(£+V(C/c* )-1 ?T

lim cL($± -

1

£2 f/r /-2 ＼ ,/ 2

(c

A

cPi

VI2)

u Iv i2+?2)-o(i+v(c/cP1)- iv i2

F-((C/ci)-l?T)

1

Let us take the limits of the expressions (4.1) for £―>Aj(7})±iQ.First, we note

the following formulas as £―>AP(t?)±zQ:

lim tp = lim x -― ＼y'＼*= ± |£|

lim r, =£, (i/, ^Pl)=±

,!il?,,±<.r'≪=w*/'
w

lim t,s=£,8(j7', ^Pl)=-

Moreover, we have for £>0

PlO?)-C
=

C-Jp.(v)±io$ + TPXr)'y 0 £-*,,<≫>**>

= 2c^

hm . Pl '. , _.-= hm
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If £>0, then we have

f 0iPl(*s,v; 0 ―* <PiPl(x3,7}) as c ―≫･̂ Pl(^)+*o,

I
</>iPl(xs,rj; 0 ―> %rPl(^3,17) as C ―* ^Pl(^)-^0-

Here the limit functions <pfPl(x3,7]) are given respectively by the following:

( ^fpx(^3,y]), *3<0,

＼4>U[(xu
71), xs>0,

(4.9) ^(x,, rj)

__1 1_

"~V2tT |iy|8

(4.10) ##(*, rj)

__1 1_

~V2Jf |)9|2

1 r A^y', XPl)
iSx /

Pl L Ad?', ^Pl) V -t

A(v'> XPl)

)

e＼v'＼ 'J

(4.11) (pi^ixz, r])=(p^[(xz, >y)=O2x2,

where O2x2 denotes the 2x2 zero matrix.

Next, we note the following formulas as C-^Xj{ri)±iQ(j(={su p2, s2})

lim rPl=£Pl(i7', K)

lim tv =±151,

*j

I

V

r2 Cly/12 4- £Z)
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lim r,8=£,t(i/, Xs)
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+

■<

/

*-l

'/

^%±iJ^=^(v',zP2)=±

lim ts w. w=±

lim rPt=±＼
£

^

>*ioT'*=S'M'X>*)=±

zJ%*<oT>>=t>W'X'*)=±

lim ts

lim r

i-,Xs (r])±iO

$sXy', X..)=±

P2~~^P2^V > *<>V ~

lim r,=±|£|.

If £>0, then we have

~2 V

*T
r2

/r2 fly/ z-4-£2N>
＼cPz＼＼y +5

/> 1/12

-

I cUW 2+£2)
w,

,
1

C*2

+

c
V

r2

CH

+

I

1±

r2

)

+

2

-I?T

(cM?r>c$,l?T)

(cl＼y＼*<clt＼7}'＼*),

≪

(cl |5?2l<dJ)/i2)

-W＼2 (cl＼V*＼>c*＼r]'n

_ c!2(])?T+f)

LP2

(cU＼y2＼<cl2＼v'n

(*s, V ; 0 -≫ ^iiiC^s, >?) as C ― >?Sl(>?)+20

f <PiP2(x3) 7]) Q-+<ptPi(xt, if) as C-*^>,0?)+*0

I 0ip2(x3,
^ ; 0 -* <pIP2(x3, rj) as C -≫ ^P8(i?)-≪0

f 0is2(*3, 57; C) ― ^i"s2(^3, ^) as C -^ ^8(i?)+*"0,

I 0is2(^3,
57; 0 ―fe(^s, J?) as C-*^*,^)-^.

Here the limit functions ^>f/-r3,rj),/e{slf pz, s2}, are given respectively by the

following:
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<PUx3, ^)=|

(4.12)

~ V2x~ 15712

(4.13)

_JL 1_

~V27V~ ＼7]＼*

0f/(*S, f]), *3<0,

<l>ij＼x*, V)> *s>0, j(E{su p2, s2}

p, L A(r)',*,.) V

-S＼y'＼ ＼y'＼2

Mv',^ Mvf,^xW＼

(4.14) 4>U2(xs, 7})=<f>Ui(xit 7])=OZx2,

(4.15) <btL(xa, V) = <pis"(Xz, 7])= 0Zxz

(4.16) <pu＼(x3,7])=<plll(x3, rj)=O^,

(4.17)

<p:L(x3, f])

___1 1_

~V2F |)7|2

(4.18)

<pT"2(xs, rj)

_JL l_

~V2＼ I7]|2

Pi

)

?T /J

V Mv',iri) H,('?',yi'?'l -SpW.iptf'

Mv',*pJ ＼ ＼v'＼ M＼ '1'

p2l Mj)',XPt) V-

v'＼2

e＼v'＼

aw, ivye 2 2 v ^v w＼ )

+ e^Q
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(4.19)

<pTl2(x2,7])

_ 1 1

~V2＼ ＼v＼2

(4.20)

__i ^

~V2x~~＼tj＼*

Senjo Shimizu

Pl L Mr,',XSz) ＼$p(

A(y)' X..) ＼A(>?', X,t)

SS

v',W

-SW＼

e.xv'.Wv'i

)

y'＼2 )＼

If £<0, then the eigenfunctions ＼(plj{x3,y)}jBM and {<pv(x3, 7])}jt=M coincide with

the eigenfunctions {<pu(x3, tj)}jeM and {<ptj(x3,rj)}j&M in the case £>0, respec-

tively.

From Lemma 4.1, we get for /gM,

A[(7}')<pmxz> 7])=Ur))<ptj(x3> rj), *3<0,

A[lty)4>tjl(xs, r))=lj{7])<pij'(xz,y), x3>0,

BityWfjix,, i))＼x^0=B[＼rif)<ptjII(x,,)7)lx3=o.

This shows that <ptj(x3,rf) Q'eM) are generalized eigenfunctions for A^rj').

Next we define <pfj(x3, rj; Q (j'gM) as follows:

f 0f/7(*s, )?;C), x,<0,

YU ＼xs> 1} > sJ ―
c-^iyi2

Z-Uv)

<pf!I!(x3, y, C)=

fluids, y; 0, ^3<0,

Z-tiv)
<p{%xs, V; 0, x3>0.

From the expression of <J>ij(x3,rj;£)(/eM), we see that the limits

^f/'Us, V)= lim (Pff＼x3,n ; 0

J.StII(Y ＼― l thStlI(Y r＼
Yij ＼X3, ?])― llm YU ＼xz, V) , U
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exist. Moreover, by Lemma 4.1, ^f/7(x3, rf)and </>f//7(;t3,rj) satisfy for j'gM

AityW＼f＼xu ?)=cSil?'l W(*., r,), Xi<0,

Ai'tyWVixs, i?)=cIt|5?/IVf///(JCs,7), x3>0,

Bityypff'ix,, 7j)＼Xs=o=B[I(v/)<pfi(xs,V)＼X3=O-

This shows that 0f/(x3, ^) (/eM) are generalized eigenfunctions for ^iO/)

corresponding to the Stoneley wave. Let us give an expression of <pfj(xs,y)

for each j'eM. If sufficesto consider the case where the Lopatinski deter-

minant Air]',0 has real zero. If the Lopatinski determinant has no zero, we

consider 0f/(#3, ^)=0 (jgM), Put

AO/, O = (C-cI£!??T)W, 0,

and noting that cSt^cs <cp <cs <cp , we have

lim rPl

lim T.,= Urn
^f^^yj^'-^

tst

y/12 ―jtSt

lim rP2= lim
J-£--

|?'|≪= iJl^l'- -^-1VT =*Hl

I r I r2
r]rn r _ ＼＼m /_?__ y/12 ･ ＼ y/ 2 Lst |/|2 ―;est

C-≫c|ti,'|2 C-cltl,'|8＼ Cs2 V CS2

where £sp＼,£f/,£££,and $f* are all real. So we have for x3<0

(4.21)

^'(*'"')=ivlr4jVr
1

pi

1

*[

i

Ah&ljhWVl^J:

AO(V', c2st＼y'＼2)

W. ch＼y'＼2)

_A＼3tyJ_ch}yT:

My', cft＼v'＼*)

1

^W>chWV) &st l l

*hM,ch＼y'＼*)jSt 1 1
est
VP2

AW'Chly'}*)^,. 1
tst
S≪2

£St2

)

1

( ＼v'＼>

I
z£s2

c

EStgSt

― £St£St I
SP]>P2

＼v'＼2 ＼
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and for x3>0

(4.22)

+
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_1 l__(i^＼y'＼ -&tH＼＼

*≫"<**̂ IvIt^t
_

1

_

i≫2

_

1

_

i

+ AW^hhTL ,-*. ,_i i
W, citIV!2)

i i / W＼2_ Aj.fr',eg,Iy'|≪) g|i, J 1

W, chly'l2)
e-4i"

titty,ch＼y'＼%)

+~p

1 1
/V£SS v,/|

£S£ £_j£St ＼_£St£St

£s2 V *?S2 X ?J2?S2

'I ＼v'＼2

＼ csttst

I

1

0
±St＼

I 2

)]PM,
＼v'＼2

wv)

S-SttSt .

_/esj I ,/1)

u&.cwn_e-&*,j:

astgst

VS2VP2

+
W, Ch＼7]'＼2)

_Ai,07', ch＼v'＼2)
p-ef*Xi

1 1

w, c2st＼V'n

where jeM = {p1, su p2, s2}.

1

£St t :tSt

(

l

)

*T

＼v'＼2

')£St£St ;gStI,/

)

In conclusion, {<ptj(xitt])}j&M are generalized eigenfunctions corresponding

to the roots of the characteristicequation of A^rj'). {</>?/(x3,tj)}i&M are gener-

alized eigenfunctions corresponding to the zero of the Lopatinski determinant

of A^rj'). (4.9)-(4.20)and (4.21)-(4.22)are explicit formulas of these generalized

eigenfunctions for A^rj').



On the other hand, put

Ki(x3, 7)';O=ae~iT'iXs, xa<0,

K'Axz, v'; Q=peu**x＼ x3>0,

where a and /? are determined so that w1 and w11 satisfy the interface condi-

tions (5.2) and (5.3). Then the equations on a and /3 can be written in the

matrix form as follows:
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§5. Generalized Eigenfunctions of A2{yj')

In this section, we give an explicit representation of the Green function

Gz(x3, y3, rjf;0 for the operator A^rj^-QIiQ^R) by the same method as get-

ting Gi(x3, y3, f]';0, in order to define generalized eigenfunctions for the

operator Az(rj').

Consider the following interface problem:

(Aity, D)-C)u/7(x,, V'; Q=f(7]', x,), x3<0,
(5.1)

(A?ty, D^Qw'^x,, 7]';0=/(>?/, x3), x3>0,

(5.2) w＼x%} vf; 0＼,s=o=wII(x3, V'; C)lx8=o,

(5.3) BIWw'ix,, V'; Q＼Xa=o= Bl'ty)w"(x,, V'; 0!^,

where /(･, x8)gC"(K＼|0}). Let us seek the solutions w7(x3, -q';0 and w^ix^,

7]';0 in the form

w＼xz, 7]';Q=Ei(x,, r)';Q-K%xu V';Q,

w11^*, y'; 0=EiI(x>, n'＼Q-K[＼x3, v';Q.

The expressions of Ei and Ei1 corresponding to (2.16) and (2.18) in Section 2

are given in the following form:

E{(xS)V';'Q =
^ (f xs gi^-^Ks

+s:

£'.'(*., f}'＼0=
"2

r2 tCs.Ts,

e-i(.xz-y3)zSi

($:

+L

3 eUx*-y*)T'2

cslTsl

r2 r~

fty, y3)dy3

f(v'> ya)dya

f(y',yddyz)

r -

/£

V 6≪i

where

fty, y*)dy＼ xs>0,
g-t(^3-WrS2

X3<0,

＼ Cs2



z)dy3j

326

where

(,

hW, 0 = (°

J-co

hW, 0

1

Senjo Shimizu

-1

C2SlTSl p2C2S2TS2
XI

)

-^―W. y≫)dya+＼ -f―-

=,.(-$
0

-izs

0)

fty, ys)dys

fW, yi)dy3-＼ -zr-r

JO CS.T$.
fW, y3)dyz,

i^/O?', ys)dy3+＼"euhysf(7]', y3)dy3)

+ pA[j-iT**y*f(y', yz)dy^-^/Th^f{rj', ys)dy3)

The Lopatinski determinant for the problem (5.1),(5.2), and (5.3)

has no zero with respect to £ for |k'|^0. Therefore

(5.4) w＼x3, V'; Q = E{{xt, V';Q-Kl(x3> v'; Q

■oU ―^―w> ^rfy.+l ―^-.―

L ＼J-oo tSj"Sl JX3 '■Si'*!

1

A'()7', 0 2

Xl p2cl2TS2(

i T q X a

f° e~iZsiVs

J"°° C≪irsi

fty, ya)dya)

＼ J ―oo J0

-2p^euHy*f{f]', ys)dy3], x3<0,

(5.5) wu{xz, V'; C )=EiI(xs> r}'＼O-Ki'(x3, V'; 0

1

X

A'O?'

―2 fir]', yi)dyiJr

0 2e 2

[^･^(JL

W, y3)dysj

L ―-J- f(yf, y*)dy3)

g-f%!/3 TooOizsJlZ

Cs2~S2 J S2 S2

+
|02(T

e~iu*v*f(y',yJdya-^e^'fty, y
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-2,.f e-^'i^/O/, ys)dy9] *8>0

So, the Green function of v42(V)―C is given by the following form:

where

G2(x2, yif r)') 0―＼

Gi(xa, y3, rj';0

i V g^x3

]__ e izSixs

Gz (-^3,

G{＼xit yt, r,'; Q, x3>0,

i g-i(xa-y3)Ts
-+H{yi ―xi)

＼ptC2,sTti(H(―y9)

+ Pi(-H(-yt)e-it>iv≫+H(y9)ett>iv*)-2paH(y9)etthv≫}],

y*y';Q

(5.6)

and

i

2

[

H(xs ― ys)

1

A'd/, 0
e

e*<*≪ 2/3)

r2 -

ito Xq

Issz

+#(Vs ―*8)

j
/0iCf1T,1(#(―3>s)

g-i(.r3-^3Ks

rz r
CH~H

Cs2rs2

+H(yt)

^8＼

*3<Q,

eizhVB＼

+ pi(H(-y3)e-u≫2v*-H(y3)eu'iv*)-2p1H(-yi)e-it'iv*}＼ xs>0

Now we define (p2k(x3,tj; Q(k^N = {slts2}) by

f <pik(x3, rj; 0, x3<0,

{ <pii(xs, in; 0, x3>0,

<pik(xa,v ; Q=FyllGi(x2, y9, rj';O](0tf*O?)--Opl＼ *a<G,

(5.7)

<pil(x3,v ; O=F-llGil(x3, y3, rj';OW(Uv)-Opll, ^s>0,

where Xk(rj)(kGN = {su s2}) are the eigenvalues of A2(r]') which have concrete

expressions Xs%{rj)(=c|11 rj|2),XH(y))(=c|210712).

The motivation for these particular definitions(5.6) and (5.7) is shown in

Section 6 (Lemma 6.1) below. Then we can see that the limit

<l>2k(xt,ij)= lim 02*(*s, V
>
0

exist. Moreover applying Lemma 4.1 to A^r]'),(pik(x3,-q)and (pilixs,rj)satisfy

the equations
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x3<0,

Xs>0

where k^N={su s2}.

We note the followinff relations:

lim rs

C-J* 1

()?)±io 1

lim r

= + l£

s2― Ss2(V > *V

,
cSi＼＼7J I_T5_J

/|2 / 2 !, 2-^-2 V)>＼2＼

_ V C≪2

/ 72 nyi'l 24-£2N＼
/ /|2 L≪1^7; I TC I , 0 2/-.2 I /|2＼

lim r,2=±|£|.

We have for £>0

and also for £<0,

Uv)-Z

c-.^(?)±io%+Tk(y', Q

ik(v)-Z

where ck{k<^N) are definedby

r2 _

2cl£

―6Ckt >

2 _ifl≪,=

and Tkirj',Q are defined by

l~r
T*i=＼h2―＼v'＼2> lmT .^0, TS =

Pi

/C- ,'!･

If £>0, then we have the following expressions:

ImrSj!^O

(5 8) &Hx ,)--J―i-|>x,+ P<t-P>c°&>W> jfi^-Wl
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(5.10) $/2(x3, v)=(P^(x3, v)=0,

(5.11) fcUx,, V)=<fci'(xt,r))=0,

(5.12) 0i/2(jc8, ≪) =

1 1

2pzcsU
vVpx A'(≫

(5 13) dr"(x r>)―1--Me***'- PlCl&M'
''≫i±ftj£g-≪≪.1

If £<Q, then the eigenfimctions {(ptk{x3,7})}k<=N and {</>iU*3,rf)}k<=N coincide

with the eigenfunctions {^(x3, tj)}k<=N and {<pik(xz,rj)}keN in the case ^>0,

respectively.

In conclusion, {<p£k(x3,yj))k(=N are generalized eigenfunctions corresponding

to the roots of the characteristicequation of A2(r)').(5.8)-(5.13)are the explicit

formulas of these generalized eigenfunctions for Az{rj'). Since the Lopatinski

determinant of A2(in')has no zero, we need not consider other eigenfunctions.

§6. Construction of the Spectral Family of A

In this section, we construct the spectral family of A by means of the

generalized eigenfunctions of A^y') and A2(rj')defined in Section 4 and Section

5, respectively. Then we define tne Fourier transforms of f^SC with respect

to these generalized eigenfunctions of A and we prove the corresponding

Parseval formula (Theorem 6.5). The key lemma is Lemma 6.4 below, which

justifiesto pass to the limit under the integral sign over R3.

Using (pij(x3,rj; Q Q'eM) defined in Section 4, we define(pu(x, -q; Q(jeM)

by

(6.1)

where

x<=Rl

xseRI

Ay(*m+*m>UC(#,(*,,
v; QcOlxl)

-e*<*m+*≪2>UC(#K*8, rj; QROlxl)

TZ
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Here Onxn denotes the nXn zero matrix, and yj= (y]',f)= (^i, 7]z,<?). Using

<p2k(x<s,r)＼0 (k^N) defined in Section 5, we define </>2*<X v ; 0 (k^N) by

(6.2)

where

<P*k(x, rj; 0 = 1

xeJ2£

Further we define for /eC£(J23, C3)

(6.3)

(6.4)

fuiV ; O =
＼R3<I>ij(x,

7]; Q*f(x)p{x3)dx, j<=M,

Next lemma shows the motivation of definitions(4.1),(4.2),(5.6) and (5.7)

(6.5)

Lemma 6.1. Let /eC"(R3, C3). Then we have

Uv; 0
(UC)-1Fx[i?(C)/]= S ~rr^

/.*0?; 0

in the distribution sense.

Proof. Let <p<=C (R＼ C3). We denote by < , >,1.,,.fthe duality between

S and <S'where S is the space of rapidly decreasing C°°functions and S' the

space of temperate distributions. Fx denotes the Fourier transformation with

respect to x―(xu x2, x3). Then from the Parseval equality

=<<JKx), R(Of(x)>Xl,Xt.Xa

=<R(Q<p(x), f(x))Xl,X2,Xa

^(A-Q-Wx), f(x)>XltXitXi-(*)

From (1.10),it follows that

(6.6) (A-Q-Wx)

=F^^[UC((i41(≫/)-O-ie(^t(^/)-O-1)(UC)-l(F,^,.0)(≫/, x,y](x)
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=F-^x,[UC((^i(7y/)-O"1cOlxlXUC)-1(Fx^,^)()y', xs)](*)

so that from (4.1),(4.2),(5.6),(5.7),(6.1)-(6.4)and the Parseval equality

(*)=<^1[UC((^1(i7O-O"1c(^2()?/)-O-1)(UC)-1(F;e.0)]U), f(x)>Xl.Xt.Xa

= <UC((^1(jy/)-C)-1cOi,i)(UC)-1(Fx-0)(Jy', x3),(Fx>f)ty, xs)>Vl.Vi.Xs

+ <UC(O2x2c(^2(77')-O"1)(UC)-1(F,'0)()7/, x3),(Fx.f)(vf, x3)>Vl,Va.Xs

=<UC(G1(xs, 3>s,5?';0c01xi)(UC)-1(Fx^)(5y', 3>8),

(Fx'f)iy', X3)>Vl.rit.X3.vs

+ <UC(O2x2cG2(x3, j's,V; OCUQ-^F,^)^', y3),

= ≪UC(G1(x,, j'a,17';OeOixiXUC)"1,

(Fx.<l>)ty,ys)}y3,(Fx,f)(v', x3))VvV2,Xs

+ ≪UC(O2x2cG2(x3, 3;,,̂ ; OXUC)"1,

(Fx.<l>)ty,y3))V3,{Fx.f)ty, xs))n,V2.X3

=≪UC(F-J[G1(x3, 3-3,3?';ccOixJXSXUC)-1,

(Fy3Fx,<p)(v)>s>(Fx.f)ty, xs)yVvV2,Xs

+≪uc(F-i[o2x2cG2(^3,3'≫, ^; OIJC^XUC)-1,

(FW8F,.0)(7)>f,(F,./X7'f a;,^,,.,,.,,

= <UC(F-J[G1(A,-3,3;≫,57';0cGlxl])(f)(UC)-1(F1,8Fx^XJ7),

(FX'f)W, x3)>VvVt.e.S8

-f<UC(F-J[O2x2cG2(x3, 3/,,t?';QlXSXUCrKF^F^x??),

(FX'f)ty, x3)}VvVt.StXa

= S<UC(F-J[G1(x8, 3*3,5?';0c0lxl])(e)(^(5?)-0(JPi()?)e01xi)^(^3)"1

^(x,)(UC)-1(F,,Fx.0X^), aj(y)-Q-＼Fx.f)(v', x,)>n.Vt.e.Xa

+ S <UC(F-J[O2x2cG2(x3, y3, f]';O2)^)(Uv)-Op(x9rlp(x3)

(UCy＼FyzFx,<P)(v), (h{fi)~O-KFx,f){r]'> x,))^.,,.?.,,

= S <UC(^-(x3, V ; C)cOixi)!0(*s)
is3/
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(UCy＼FV3Fx,<p)(v), afa)-Q-KFx>f)ty, x3))VvV2,s,Xs

+ s <uc(02x2c^Mx3, v; Q)p(xt)

= .s((UC)-1(FVsF^^)(i7), (</>1}(xa,V; Q*ROlxl)p(x3)(UC)-1

X(Xj(y])-O-14~[e~UXiril+X2V2)f(x)dx/)

+ 2
((UO-^F^F,^)^),

(Olxic<M*s, 57; C^JioCxsJCUC)-1
kzM ＼

lit ) I rn.-fji.i.xo

= S
((UQ-XF^F^X)?),

UX^-Q-1^!/^, 17; Q*f(x)PMdx)

+ S
((UQ-KF^F,^)^),

{h(f])-0A^k(x, V; Q*f(x)p(xs)dx)
keN ＼ J /≫i.≫2'f

This completes the proof of (6.5). □

The self-adjointoperator A admits a uniquely determined spectral resolution:

HI Xdn(X)

where {n:(>0}_oo<a<≪>denotes the right-continuous spectral family of A. The

representation of x(A) is based on the well-known theorem of Stone (see, e.g.,

[14]):

(6.7)
7c(b)+n(b-) 7e(a)+7c(a―)

2

=s―lim-^-r-

s 4.0 i/Kl

f

Ja

2

[R(JL+ie)―R(JL-ie)ldlL, a<b

From (6.5)and (6.7),we obtain the following.

Lemma 6.2. Let /eC^CR3, C3) and 0<a<b<oo. Then we have

(6.8)
//Tt{b)+7c(b-) K{a)+7z(a-)＼ a
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lim ―( S ＼ dX＼ 7,-7--,―^j-t~~9 fijiv; X±ie)＼zd-n

Proof. From (6.5) and the resolvent identity

/?(0―/?(C/)=(C-C/)/?(C)/?(CO=(C―0^(0^(0,

we have

{lR(X+ie)-R(X-iey]f, f)

= {2ieR(X±ie)R(X+ie)f, f)

=2ie(R(Z+ie)f, R(X + ie)f)

=2ie((UC)-1F[Ra + ie)n, (UC)-1F[Ra+ia)n)

V^eifVii/^) ― U + 2£)' /lj(7])―(X + i£)/

:a(^I
-.≪M=≪i+Ji"l/u(':i±")|1<''

and hence by (6.7) for any interval (a, b)cR+

((K(b) + n(b-) 7t(a)+ 7t(a-)＼ ＼
{{

2 ≪
)f' f)

=lim-=―A

siO Z7CI J

*
(lR(X+ie)-R(X-ie)y, f)dX
a

^CSrta ^(ri-xy+e*
l/x/w; Z±ie)＼2dV

F 1/2*0?; X±it)Vdr])

1 / f Cb S

lim ― ( S ＼ ^>? ＼
"7-T7~＼ fTTT―2

＼f＼j(V; A±is)＼zdA
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+M,)J*iiXM^X)^^--X±it^iX)

since from (6.5) Syejf(/i/>7; O/^O?)―O + SneivC/ssO?; Q/h(j))―Q is a con-

tinuous L2-valued function of C for ImC^O. n

Using the generalized eigenfunctions <pfj(x3,rj)(given by (4.9)-(4.20))and

4>fKx3,7])(given by (4.21)-(4.22))(;eM) for A1(v') and <pik(xa,V) (given by

(5.8)-(5.13))(6eiV) for A2{r)'),we define the generalized eigenfunctions (pfj(x,

V), <P?f(x,V)U^M) and d>Zk(x,v) (k^N) for A by

(6.9)

where

(6.10)

where

and

(6.11)

where

<PUx, v)=＼

4>tj(x,v), x^Rl,

(jiij^x, rj), x<=R%,

<pfl(x,V) = -^et^^'2V^＼JC(<ptKx3, Vm0lxl)

#=/'(*, v)

<Pff'(x,V)=

2x
0≪*l≫l+*2*a>UC(#=/'(X3, l?)cOlxl)

2jt

xei2£

XGfi?

ei(*i"+**">UCW(;c8, ≪)0O1X1)

<pf/"(x,v)=-^etlxM+x >UC(<pff"(xa,7))RO1X1)

xeeRI,

jce/21,

<pt£{x,v)=
^-eHx^+x^UC(OZx2^4>ikI(x3,

V))

<Pik"(x,v)=
2^

ei(Xm+Z21?2)UC(O2x2c0f/'(x3, ≫))

xeRl

x(=Rl

xseRI

x^R%

x(=Rl

x(=Rl

Here we consider the case where the Stoneley wave exists, i.e., Z^cl^X) if

cSl<cSz and that D(cf2)>0 if cS2<cSl as shown in Section 3. Note that there

is no term <J>i}{x,rj)(/eM), if Stoneley wave does not exist.

Then we easilv have the following proposition.

Proposition 6.3. Let xei?3 and rj^Rz (rj^O). Then we have:

(1) <pij{x,7])(j'gM) belong to JCloc=Lfoc(Rs, C＼ p(x3)dx) and
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A<l>$,{x,V)=Zj(V)<PUx, r;),

<pi'(x,rj)＼X3=()=(pfjI(x,7?)L3=o,

<Jiz{(ptj{x,r1))＼x,i=0= oi,((ptjI(x,rj))＼x^Q.

(2) (pfj(x,j])(/eM) belong to MXoc and

A</>ff(x,7])= ch＼v'＼*<P?j(x>V)>

tff'ix, r])＼x^=$!}u(x, rj)＼Xs=0,

(3) <]>tk(x,rj){k<=N) belong to JCl0C and

<pu(x, r))＼X3=0=<I>2"(x,f))＼Xz=v,

(?is(<p2k(x,r]))＼X3~o= 0is(</>2kI(x,7}))＼X3=o-

Proposition 6.3 means that {(pij(x,rj),(pf}{x, -q),<ptk{x,rj)}j<=M.k^N and

{<pTj(x,r]),(pij(x,rj),(pu(x, rj)}jBM.keN) are two families of generalized eigen-

functions for the operator A. One is a family of outgoing eigenfunctions, and

the other is a family of incoming eigenfunctions. We shall show later the com-

pleteness of each family.

In order to obtain the desired representation of the spectral family, it

remains to pass to the limit under the integral sign over R3 in (6.8)and evaluate

the limit of the integral over (a, b). For f^M, we define the Fourier com-

ponents with respect to the generalized eigenfunctions (pfj(x,rj),<pff(x,rj)(j^M)

and (pik(x,ri)(k^N) for A by

(6.12)

(6.13)

(6.14)

/50y)=l. i. m. (pfj(x, rj)*f(x)p{xs)dx

/f/(^)=l.i.m.f <pfj{x, v)*f(x)p(xz)dx

/eM

j(=M

fZk(.7))=LLm.[ (pik(x, v)*f(x)p(xa)dx, k&N

Then the mapping / >->･(ffj, f?f, f£k) may be considered as the generalized

Fourier transform of /.

The following lemma gives the representation of the spectral family of A

by means of the generalized eigenfunctions of A.

Lemma 6.4. We assume that Z)(c|1)>0 if cSl<cg2 and that D(c2S2)>0 if cS2<
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Let f^C°S(Rs,Cz) and 0<a<b< . Then we have

//7c(b)+n(b―) 7c(a)+ n(a―)＼s a

= S(f ＼ftj(v)＼*dV+ ＼
2

＼fmy)＼*dV)

+ S( ＼f&.r))＼ldr).

Remark. Under the following two conditions (i.e., Stoneley wave does

not exist),the formula (6.15) holds without the second terms on the right hand

side:

(i ) If cSl<cS2, then either D(c2Sl)<0 or D(c2Sl)=O and the expression (6.23)

below does not vanish.

(ii) If cH<cSl, then either D(c2S2)<0 or D(cf2)=O and the expression (6.23),

exchanged with cSl and cH, does not vanish.

Proof. The essential part of the proof of this lemma is to justify the

passage to the limit under the integral sign over R% in (6.8).

First of all,from the definitionof <pij{x,ri; Q (j'gM)

(6.16) f^rj; O =
＼RS<PUx,

v ; Q*f(x)p(x3)dx

=-^Le~iUm+*mW*s' v> Q*Rolxl)(ucyif(x)Pldx

+
9^i

e-ilxw+*M*K<ttKx*, V, 0*R0lxlWC)-1f(x)pidx

=
[

(<pij(x3,y; 0*c0lxl)(UC)-1(F^/)()7/, xs)Pldxs

+f (#k*3, v ; Q*<5>olxl)(ycr＼Fx-f){7}',x3)Pzdxz

By the expressions (4.2),(4.7), and (4.8), the integrands in the last two integrals

of the right-hand side of (6.16) are summable with respect to xs. Furthermore,

using the inequality ＼a＼＼B |^(|a|2+ 1/3|2)/2, we have

(6.17) ＼/u(v; 0!2^C S S ( ―Kr"F^7T
'

j=ime^V TmOy)C |-Tm()y)

where C is a positive constant and g(j)')is a rapidly decreasing function with
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respect to rj'.

Next, we consider justifying the passage to the limit under the integral

sign over i?3. We separate the integral as follows:

JiJ3＼Ja

£

a (Xj(v)-Xy+es
1/^Oy; X±ie)＼*dX)dV

dkdv + ＼ dXdr) + ＼ dkdr]

Jni?l<3.R)n<l£l>5)Ja J(IV＼<3R}r＼l＼£＼<S)J≪ J(I)?l>3/2)Ja

= /A,(e) + /A/e) + /A/e).

We divide the proof into three steps. Without loss of generality, we can

assume that cSl<cS2, replacing cSl by cH when cH<cH.

Step 1. First we consider /A/e). Since

for |£|>d, the limits /^{rj; A±zO) exist when X=Xj{-q) and are continuous in

79. So, for any £ such that 0<£^s0

＼

<c

£

＼

s*
S1ls 1

-(Sj/e)
~~x*+i

1/

£

uO?; Z±ie)＼*dX

)^02+s2

dx

dX

where cx is a positive constant and independent of e and rj. Since

flHv; O=＼Bt<P?Kx,v; Q*f(x)P(x3)dx

the limits fiUri; X±iO) exists when l=clt＼ri'＼2and are continuous in tj. So

fuirj; 2±ze)＼2dX

~J4t.>?'.8-32'(ci7i?I8-^8+e2
/f/0?; X±ie)＼*dX

=C2k^'^2(c!£iV!2-A)2+s2

<CoK
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where c2 is a positive constant and independent of s and rj. It follows from

the well-known formula of Cauchy (see, e.g.,[15]) that

that

limit
b s

a {Xj(rI)-Xf+^

y
a.6)UX^))lim ―

eiO It

6

a a + £2
fWdZ=*<a.Mttfi)

＼fij(v; X±is)＼2dX

f.jirj; k±ie)＼*dX

+Z(a.≪(clth? )l≪n ―＼ ■―2 -----/-T

eiO ff Jc|{|,'|2-02 (Ch＼i) ＼ ■ ^)2 + £2
I/?/(>?; X±h)＼*dk

+Z(a.6)(i/w))lim max ＼fij(v;X±is)―flJ(n;X±i0)＼i
s|0 Ae.Gj(ij)-8i.Xj<.rj)+8i)

+^a,b,(c2st＼y]'＼z)＼fff(V;ch＼y'＼2±t0)＼2

+X(a,6)(cI,|)7'!2)lim max l/7/(^; Ji±ie)-fi/(V; X±iQ)＼*

ei0 -!s(c|jl,'l2-52.c|£lr?'|2+52)

By the Lebesgue bounded convergence theorem, we have

lim/A/s)

£iO J
=

( (lim
―f6 y -£ ＼f (v; X±ie)＼zdk)dr1

J[lr1＼<3R)nu$＼>S)＼si07tja (/(/fl)―X)2+£2 ' / '

f

J (i ijI<3/J)n{lll>o)n(as^ ,■(ij)£b}

＼fUfj)＼idii

r

J Ili?l<3fl}n{l5l>5)n{asc|f ＼tj'I2s6)

＼fft<Jl)＼%di

Step 2. Next we consider the /A/s). The principal difficultyin interchanging

limit and integration occurs when the zeros of the denominators of s/!C―^-(>?)l2

and the zero of the Lopatinski determinant A(r]',Q nearly coincide, that is,

when Cst―cSl. This is the case where D(c2Sl)―0.

1) Consider the firstterm of the right-hand side of (6.17). If sign £is

the same as sign rS],then

so we have

1 2

(£-rSl)(!+rSl)

_1

＼ts.＼ ＼$―ts,＼
<:

^(

2

V)

I

Cl

1

TsX%+TSl)

J
2 '
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HP e

s-10

(T

.

1
X

If sign $ is different from sign

J.

£

c

2 USl(5?)-2)2+e2

V'

hence

S
^)a+e2

rSl, then

1

Til |£―r,,|

limr £ i

<

*＼g{r)')＼*dl

r＼gW)＼HX

＼g(y')＼2dk)

_

1

_

2|£(V)I8^c4tt
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Here c3,c4 are positive constants and independent of s and rj.

2) Consider the second term of the right-hand side of (6.17). By the change

of variable z―C/lrj'l2',we have

AW, 0 D(z)

/

1, 2, 3, 4

since AO/, Q=＼r)'＼*D{z)and Alt(v',Q^jyT^U?), where

(6.18)

(6.19)

(6.20)

(6.21)

0!,(z)=aft,[2(^l-Ai,)o,ft≪(2(p1-/(!)―^?-)

DUz) = (2(j*-iu,)-^

DUz) =

+ ~7?7 -4(/ii-^2)2flia2M2
Cs2 /

+ a1b1(2^1-Pt2)+^)Z-a2bJ2(fi1-fJt2)-^f)2

N c$2 > ＼ cs /

(a1b2 ― a2b1)zi,
r2 r2

D9tl(2)=2ib1＼2a1btft1(fit-fi1)(4―ZA

6Sj v Cs Cs /J
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have the following asymptotic formulas for a,, b^, a, and b9 as functions

t=Vz―czs, respectively

61 =

1

0.0 =

―It

1

CVz

v-f+cL-c2,;^

b≫=- -V-fa+c

(6.22)

(6.23)

CH

lim

f

sJ-0 J

VCp2 ―CSj2 r2
, +2

VZ Csl/i I

^.""V1 2(CJi-c}l)

Vcit-c]~'2 Csl (-1
*

cS2 ＼ 2(c*2-c2Sl)

(t->Q)

+o(n) a-*o)

+0(*4)) (t^O)

6Pi cs2 CH

CPZ

b

C*2

y

2j ―ptiflz

=0

case where

cPl

r2

r2

this coefficient of t in

'igirj'WdX^w,

c＼gty)＼*dr)

2

S2
r2

We consider D(z) as a function of t. Then we obtain the expansion of D(t)=

D(z(t))in powers of t. By assumption Cst=cSl, we have that D(czSl),defined by

(3.11),is equal to zero. This means the constant term in D(t)is equal to zero;

that is,

(
9 _i_

C'i V
^Ck-c}WCH-TC*W

9 ^2

The coefficientof t in D{t) is given in the form

Vc2p ―c＼ Vc2p ―c? Vcf ―d

-≫//-2 /-2

cPl

From now on, we shallconsider only the

Dx{t)is not equal to 0.

On the other hand, we can see that for (6.18)-(6.21)

(6.24) DlSl(t)=DlSl(z(t))=const.Xt+O(t:i) as t ― 0 (/=1, 2, 3, 4),

hence the functions DlH{z)/D{z) are bounded when z varies near c2Sl. Thus

£

a IC-^0?)!2

where cB is a positive constant and independent of e and rj. This means that

in the case where D(c2Sl)=0, the Lopatinski determinant has no zeros under the

condition that the expression (6.23) does not equal 0. Therefore, by the Le-

besgue bounded convergence theorem, we have

lim ―7|,(e)=f

ej.0 71 J J{|ijl<3fl>r＼{lll<5>
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<＼ cd＼gty)＼Hri

J|!7'|<3iJ

->0 as

Step 3. Finally we consider /j^.(s)

follows:

(6.25)
Jl＼w＼>3R)r＼i＼y'i>2≪)J

8 ― 0.

Divide the domain of integration as

b
r r

dXdv + ＼ ＼
b

dXdrj

a

1) Let us consider the first term of the right-hand side of (6.25). Take

R such that R>max{l/3c% l/U%t). Since i?>(l/3cf), we have

＼$±Tj＼^＼$±iR＼=^＼+R~i,

and

1 1 * _1_

t£~$-tj = Ra

!_, 2< i k (J-<k＼
Ve+Rz =R$2+R2 ＼Ra= )

Since g{rj')is a rapidly decreasing function of r]',it follows that

I
[b £

<U?l>3fl)rl(li?'l>2.R>JaIC~^X^)I

J(l)?l>3fl)n{l)?'l>2ie}Ja R($ZjrR2)

-4^' w>i'<"*?

＼g(y')＼2dXdv

^L,>Jlwh)d^')l^

=£ir

where c6 is a positive constant and independent of s and rj. Since i?>(l/4cf£),

the zero of A(t]',0 does not exist in 0<A<R(£=A+is).

2) Consider the second term of the right-hand side of (6.25). Since |£|>/?

and we have, taking /?>(3/cf),

it follows that

2

£72

£+V/?72

J(l!?l>3ft)n{!i?'l<2fl}Ja ＼Z~^j(v)＼2' TA £ ― Tj

2

2＼g(V')＼2dXdV

J(l)?l>3iJ)n(l)?'!<2ffi> c£2 a2 ＼)a X ― tf＼Y]'＼2 /
＼g(vf)＼adv

where cn is a positive constant and independent of s and rj. The terms having

A(r)',0 as the denominator may be estimated in the same way as in IrXs).
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Thus we have

lim/£/e)―≫0

The second term in the right hand

same way. The proof of Lemma 6.4is

as R ―> co .

side of (6.15)

now complete.

can be handled in the

□

We can easily extend the equation (6.15) for all f<=M and obtain %{a)

7c(a―),ai=0.

Theorem 6.5. We assume that D(c2Sl)>0 if cSl<cSz and that D(cl2)>0 if

Cs2<cSl. Let f, g^M and 0<a<6<oo. Then we have

(6.26) ((7c(b)-K(a))f, g)

+ S
(

fZk(y)-gZk(y)d7],

and the Parseval formula

(6.27)

Rroof. It suffices to prove that 0^ap(A), where av{A) denotes the point

spectrum of A. As to A^rj') the characteristic polynomials associated with

A[{7]', D) and A['{rj', D) are c^cltf- ＼V' I)2(£+ I r)'1)2 and cltc＼tf- ＼-q'＼)2(f+1V' I)2,

respectively, so

V1 (a'

vii=(.
Vz

we have

i t j a ta i

Since u1 and u11 should satisfy the interface conditions, we

0

r2 -I-/-2

p

c*tl)＼y'＼

r2 ― r2

cPl c$1

1

^

-piC2Sl＼f]'

piC2s ＼7}'＼

0

rZ _|_/.2

(c|,-c|8) w＼

pzcL

PzCsypPz

r"1 ― r2

^

1

x3<0,

*8>0.

have

-p*tft＼v

― ptCL＼7)

≪8 I

aj

1



Eigenfunction Expansions for Elastic Wave Propagation Problems 343

The determinant of the 4x4 matrix above

A=(/)1d1)2(^2+cs22)+(lo2d2)2(41+ci1)(d2-c|2)

―21o1c|llo2cf2(c|1c|2+cf1cf2)

is negative, so (au a2, as, a4) have only the trivial solution (0, 0, 0, 0). As to

A2(jj'),0^ap(A2(rj')), because the Lopatinski determinant for the problem (5.1),

(5.2) and (5.3) has no zero with respect to £ for ＼r>'＼̂0 as showed in Section 5.

§7. Eigenfunction Expansions for A

In this section, we prove the eigenfunction expansion theorem for A. To

this end, we use the representation of the spectral family of A developed in

Section 6. Throughout this section, we assume that D(c2Sl)>0 if cSl<cS2 and

that L>(cs2)>0 if cS2<cSl. Note that, under the following two conditions (i.e.,

Stoneley wave does not exist), the theorems in this section hold without the

terms corresponding to the Stoneley waves:

(i) If cSl<cH, then either D(c2Sl)<0 or D(c2Sl)=O and the expression (6.23)

does not vanish.

(ii) If cSl<cSl, then either D(c?2)<0 or D(c%z)=O and the expression (6.23),

exchanged with cSl and cH, does not vanish.

Let us begin with definition of mappings needed to formulate and prove

the exnansion theorem.

Lemma 7.1. We define the mappings by

0fj: M^f―* ffity^LKRl, C")(£>0)e=L≪(#≪,C)(f<0), ;eM,

mh: JC=>f ―+ /2%(V)<=L＼RI C)($>0) <eL＼R＼Cs)($<0), k^N,

and tiutfor f(EH

veitf ieM Aeiv /

Then there exist a family of operators Q%fj), Q^＼f]),Qtijf)),and we have

(7

(7

(7

(7

(7

1)

2)

3)

4)

5)

0tj*0fl = Q, if j^l,

0ff*0fl'=O, if j*l,

QZ(y)$Zk=$Zk, k(EN,
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(7.6) 0i?0h=O, if k*i,

where 2,-GM<?K^)=2;eWf O?)=2*eivC?£O?)=/.

Moreover 0± is an isometry; thatis,

(7.7) 0±*0±= IJ(> R±R±*=P±)

where P± is the orthogonal projection in L＼R%, C*)RL＼R*, C*)($L*(Rl, Cs).

Proof. The formulas (7.1)-(7.6)follow immediately from the definition of

Of], 0?f and 0tk, while the formula (7.7) follows from Theorem 6.5. □

The firsthalf of next theorem expresses the Fourier inversion formula

with respect to generalized eigenfunctions. The latter half gives the canonical

form for A.

Theorem 7.2. Let f^M.

(1) The following expansion formula holds:

(7.8) /(*)= S 1.L m.f (#,-(x,y)fi%y)+<P?f(x, y)ffKy))dy

+ S 1.i.m.＼ ^(x, y)f2k(y)dy.

(2) /GD(i4) if and onlyif we have

Uv)fi%V), ^Q%r))L＼Rl, C*), jgM,

chly'^ffKy^Qf'tyLW, C3)> J^M,

*k(y)My)&Qt(y)L＼Rl C3), k^N.

Moreover, in thiscase,we have the followingformulas:

(7.9) Af(x)=2Li.m.[ ttj(r})<ptj(x,y)fi%y) + ch＼v'＼*<f>fKx, ?)/#(?))<fy

+ S 1.i.m.f Zk(7))<f>Zk(xtr])f2%(7])d7],

kEiN R-,00 J|)}|SiS

and

(7.10)

(7.11)

(7.12)

(Af)fKV)=ch |V' 12f＼f(r]), j^M

Proof. Let /g! have a compact support,and geC~GR±,C3). We have



and so

(7.13)
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= ((pf*(x,T))f(x),g(f]))<KxLHRl.CZ)

=(f(x), <b＼j{x,r])g(in))jcXL2(Ri.cs)

=＼j'Ml s<ptj(x,
rj)g{rj)dr^p{xz)dx

Qtj*g(x)=^ga<f>Ux, i))g{f))dyj.

By virtue of the boundedness of 0fj and 0fj*, we find that (7.13) holds for all

g<=Lz(Rl, C3), where the integrals are taken in the sense of the limit in the

mean.

Similarly, we can verify that

0ff*g(x)=LLm.＼ <p??(x,V)g(V)dV, for g<=L＼R*, C>)

0ik*g(x)=llm.^

i<R<pik(x,
rj)g{r])dri, for g^L＼RlCs).

Thus (7.8)follows from (7.2),(7.4),(7.6),and (7.7).

Next we prove the diagonalrepresentationof A. From Theorem 6.5, we

hnvp

(ff(j)/,*)=s(( Ji%v)'it,(v)dv+＼
t

J6'(v>e＼f(y)dv)

+ 2 f Mty-gUy)dv
ke.NJXj(n)S/

for /, g^M. It is well known that f^D(A) if and only if

r
vdw)f, /)<oo,

J―oo

(e.g., [4]). Thus it is easy to see that f^D(A) if and only if

ftj(y),Uy)fftv)^Q1(v)l<＼Rl C% /e=Af,

Uk(v)> Uy)M(y)^Qt(y)Lzm, C*), k^N.

Let ar(x) be a C°°real valued function such that ar(x)=l for ＼x＼<r,=0 for

＼x＼>r+l. For f^D(A),

(i/)&O?)=l.i.m.f (ptj{x,v)*ar(x)(Af)(x)p(xs)dx
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where

=1 i. m.

r-≫oo

+1

}rs

. i. m

1.i. m

+1

+1

+1

I

)
rs

i. m.
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[^'(arWf/U, rim*nx)Pldx

3[/l//(≪r(x)^(x,
rj))-＼*f(x)Pidx

+

(A'iPfjix, v))*ar(x)f(x)Pldx

(
3

KA'aMWtfix, 7})l*f(x)Pldx

i.m.f ,04'WC*, V))*ar(x)f(x)p2dx
r-≫≫JR+

i.m.f [(^^^(x^/^x, V)-]*f(x)ptdx

r-.co J{j;eftV.,r S|X| gr +l)

1.i. m.f (A<ptj(x, 7)))*ar(x)f(x)p(x3)dx

=l.i.m.＼ Hri)<pt){x, 7})*ar(x)f(x)p(x3)dx

=Uy)fi%y),

f AIu{x)=MIu{x), x3<0,
Au(x)=＼

{ AIIu(x)=MIIu(x), xs>0,

for u(=D(A). This proves (7.10).

Similarly we can show (7.11) and (7.12), and thereby (7.9) follows. The

proof of Theorem 7.2 is now complete. □

The following theorem gives an explicit expression of the ranges R(0±s),

R{Ofi), R(0fl) and R(mk)-

Theorem 7.3. (1) For R(0±), we have

(7.14) R(0±)=J] RQ%r})L＼Rl C3)0 S ^Qf^L'iR9, CS)

0 S Qi{ri)L＼Rl, C*)
ke.N

= L＼R%, CB)cL2(i23, C3)cL2(J?|, C3).

(2) For /?(^fj),R(0ff) and R(0&), we have

(7.15) R(0ti)=Q^(v)Li(Rl C3), 0fJ0fl*=Q, j±l,

(7.16) R(0ff) = Qft(y))L＼Rt,C3), 0ff0flt*=Q, j^l,

(7.17) R{0tk) = Qt(,rj)L＼Rl,Ci), 0^0^=0, k*i,
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that is, the mappings @fj, 0fj and @ik are partial isometries.

This implies that 0± are unitary operators in M, and that the systems of

generalized eigen functions {<pfj,<pff,<pik}jGM,k<=N and {<pTj,<pff,<pzk}jeM,keN are

complete, respectively.

Proof. It suffices to prove that:

g^N(0±*)n

=^g=0.

ie.M teiv /

Let

g(v)^sts1(v)e---egfP2(v)Rgfs＼(v)R---RgiP2(v)Rsis1(v)Rg2S2{r])

c2 cQf ir])L＼R＼C3)0 S RQi(V)L＼Ri, C3))

Then it follows that

0 = 0**g=Li:m.gK＼Bl<f>Ux, V)gL(V)dV

+1 i. m

iV->oo
fj/M V)gdv)dv

+ll_m.g
N

＼

Rl(pik(x,
v)gL(v)dy

where gL(y])=g{f]) for ＼rj＼<L,=0 for ＼rj＼>L. Hence, for non-real £,we have

(7.18) . (UC)-1FJ-(^-O"1^±*g/.-^0 in L＼R＼ C3) as L-≫oo.

Let f(=LHR＼ C3) such that Fz'f^C^R3, C'A). By (7.18) and (6.6), we have

(/, (UC)-1FAA-O-10±*gL)= S (/, (.(A1(ri/)-O-1ROlxl)(UC)-1Fx.0tJ*gL)

+ sv(A (o2x2c(^2(J?/)-o~1)(uc)-iFa.0r^i)

+ .s (flf/^ttJcxwxO^-creoixi)/, **)

+ s (^r*F-,i(uo(oaxS!c(^2(i?o-o-1)/. ^i)
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+ .2 dch Iv' 18-C)-^is/F^(UC)/, gL)

+ 2 ((^(>?)-O-1^2±^-,1(UC)/, gL)

^0 as L ―> c≫

0=sf _i

+ sf L

jgm)r3 c2St＼y'＼

QtfFJQJQf-gdT}

2

and hence we obtain that

＼0f!F-l＼UC)f-gdv

r0hF?(VC)f-gdv,

= S(( *&MUC)/-gd^+(
2 9

OftFjHVQf-gdi})

+ 23 ( 0ikF-l(UC)f-gdv

= 53((0&MUC)/, gtt(A))+WffF?<yC)f, g?f(A)))
JdzM

+ 53 (0&F^(UC)/, ^r*(A))

je.M

where

+ S(/, <VQ-lFx.0ffgii{A)),

So we have

gij{A)=g(jj) for a^lj{r])^b, =0 otherwise.

gfj(A)=g(7j) for a^clt＼f]'＼2^b, =0 otherwise.

gik(&)=g(y) for a^lk(f])^b, =0 otherwise.
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=g
M(UC)-1Fx.^Ra-^eilx^+x

>＼JC(<f>Uxs,V)ROlxl)gtJ(A)dV＼

+ ^(UC)-1Fx-[Jij32^i(^^+^^)UC(O2x2c#ftU3, V))gik(A)dr]]

= S(( (0f^s, ^)0Olxl)5f/A)^+f (<p?f(xs>v)ROlxl)gff(X)de)

+ a
(

(o2x20#*(*3, ^^i^d^

= a(( (^(^3, v)Rolxl)g(yj)d$

+ [

2
(0f/(^a, y)ROlxl)g(v)d$)

+ S
(

(O8X2c0&(^3, i}))gi?))dS.

It follows that

g(7))=0 in E @Q%ri)L＼Rl, C3)c S RQlK-q)L＼R＼ C3)

3<=M j(=:M

c 2 RQi<jj)L＼Rl, C3) ,

since a and ^> are arbitrary, and <pfj(xa,rj), (J>if(x3,rj)(j'gM) and (j}fk{xz,rj)

(k<BN) are linear independent.

This completes the proof of Theorem 7.3. □
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