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STABILITY OF MINIMAL SUBMANIFOLDS

IN SYMMETRIC SPACES

1. Introduction.

By

Makiko Sumi Tanaka

We determine the stabilityof totally geodesic submanifolds in a compact

symmetric space, which are called polars and meridians (see 2.1). These sub-

spaces were introduced by Chen and Nagano ([CN-1]) and we have many inter-

esting results after that ([CN-2], [N-l], [N-2], [NS-1], [NS-2] and [NS-3]).

Recently, several results have been obtained about the stabilityof totally geodesic

submanifolds in compact symmetric spaces. Ohnita gave the formula for the

index, the nullityand the Killing nullity of a totally geodesic submanifold in a

compact symmetric space in [0], in which he also proved that the Helgason

sphere in a compact symmetric space is stable. Tasaki proved that the Helgason

sphere in a compact Lie group is homologically volume-minimizing in its real

homology classin [Ts-1]. He used the calibrationtheory. And there are studies

about the stability of certain closed subgroups in a compact Lie group by

Mashimo and Tasaki ([MT-1] and [MT-2]). Mashimo determined all the un-

stable Cartan embeddings of compact symmetric spaces in [M]. And there is

a result about the stabilityof symmetric i?-spaces in Hermitian symmetric spaces

and totally complex submanifolds in quaternionic Kahler symmetric spaces of

classical type by Takeuchi ([Tk-2]). Recently Nagano and the author have

obtained a result on a relationshipbetween the stabilityof minimal submanifolds

and that of /^-harmonic maps ([NS-3]). In the present paper we study the

stability of all the polars and meridians in every compact symmetric space by

using Ohnita's method in Section 3. We will also study the stabilityof totally

complex totallygeodesic submanifolds in quaternionic Kahler symmetric spaces

of exceptional type in Section 4.
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2. Preliminaries.

Definition 2.1 ([CN-1]). Let M be a compact symmetric space and o a

point in M. Then we call a connected component of the fixed points set of s0,

the symmetry at o, inM a polar of o. We denote it by M+ or by M+(p) if M+

contains a point p. We also call a connected component of the fixed point set

of Sp-So in M through p a meridian of M+(p) in M and denote it by M~(p) or

simply by M~. When a polar consists of a single point, we callit a pole.

Remark 2.2. The congruence class of M~(p) is independent of p.

Polars and meridians are totallygeodesic submanifolds in M; they are thus

symmetric spaces. And they were determined for every compact connected

irreducible symmetric space ([CN-1], [N-l] and [N-2]). One of the most im-

portant properties of these subspaces is that M can be determined by any pair

of (M+(p), M~(p)) completely (1.15 in [N-2]). M+ relates to M in its topology

and on the other hand M~ does in its local structure. For example, M is

orientable if and only if each M+ has an even dimension. And M" has the

same rank as M (see [N-l]).

Definition 2.3 ([CN-2]). Let M be a compact symmetric space and o a

point in M. And suppose there is a pole p of o in M. Then we calla set

consisting of the midpoints of the geodesies from o to p a centrosome and denote

it by C(o, p) or simply by C.

A centrosome is alsoa totallygeodesic submanifold of M.

Remark 2.4. When thereis a pole p of o, there existsa double covering

map tc: M->M" from M to another space M" such that k(o)=k(P). And the

image of each connected component of C(o,p) is a polar of n(o)in M".

Definition 2.5. Let (M, g) and (N, h) be compact Riemannian manifolds

and <f>:M->N be a minimal immersion. Then we say <j)(or M) is stableif the

second derivative of the volume function V(M, $t*h) at £=0 is non-negative for

every smooth variation {<f>t}of 0 with <f>0―^>-

The second variation formula of V(M, 6t*h) reads as follows:

-jpV{M, tt*h)lt,=[ <J(v),v}dv

where v is an element of r(TL(M)), the space of all smooth sections of the
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normal bundle T±(M) of M in N, and &v is the Riemannian measure of (M, g).

And I is the Jacobioperatordefinedby

J=-bL+A++Rt,

where A^ is the Laplacian of the normal connection 1L of TL{M), and A$, R$

are smooth sections of End (T^(M)) (refer to [0]). / is a self-adjoint strongly

ellipticlinear differentialoperator and hence / has discrete eigenvalues /ii<^2<

･･■<co. The eigenspaces of / have finitedimensions.

Definition 2.6. The index of <f>(or of M) is the sum of the multiplicities

of the negative eigenvalues of /.

Obviously <j>is stable if and only if the index of 0 vanishes.

From now on we assume that <j)＼M=G/K―>N―U/L is a totally geodesic

isometric immersion between compact symmetric spaces. We choose U so that

G is a subgroup of U. We denote the Lie algebra of G and U by g and u

respectively. And let g=!0m and u=I0}) be the canonical decompositions. We

have the decomposition u=g0gi as a G-module as well as the if-module decom-

positions I=fcf1 and £=m0mx, where m (resp. mx) is isomorphic to ToM (resp.

7VM) as a /^-module. Decompose g1 into the sum of simple G-modules g*1

and denote by pt and ^ the corresponding representations of G (l^i^k). We

have the decompositions gi±=fi±0mi-L as /T-modules where ii±―t-Lr＼5i-Land

m,-x= mxr＼o,:J-.

Theorem 2.7 ([0]). Let 0: M=G/K^N=U/L be a totallygeodesic iso-

metric immersion from a compact symmetric space M into another compact sym-

metric spave N. Then we haue

(2.7) index (M)=S £ dimHom^F^, (mtL)c)-dim Vx

where D(G) denotes all the equivalence classes of complex irreducible representa-

tions of G and Vx denotes its representation space for an element X in D(G) and

ax denotes the eigenvalue of the Casimir operator of X. While at denotes the

eigenvalue of the Casimir operator of ftt.Hom^(F^, (m^)0) denotes the K-module

homomorphisms from Vx into the complexification(m^)0 of m^.

Now we apply (2.7)to theinclusionmaps c+: M+-*M and c : M ―>M of a

polar M+―G+/K+ and the meridian M~= G~/K~in M=G/K. Here we may

take K+=K- (fN-ll, [N-2]). We fixa point o with K(o)=o. We note that we
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may consider M+ containing o. Let g+, g~and g be the Lie algebras of G+, G~

respectively. And let g+=f+0m+, g~=f~0m~ and g=!0m be the canonical

decompositions, where m+ and m~ are isomorphic to T0M+ and T0M~ as K+-

modules respectively. Since m = m+0m~, we have (m+)-L= m" and (m")i = m +.

m+=m1+0 ･■･cmfe+ and m"=mr0 ■･■0mft~ as if+-modules.

The next lemma is an immediate consequence of the theorem 2.7.

Lemma 2.8. With the above notation, the indices of M+ and M are given

as follows:

(2.8.1)

(2.8.2)

index(M+)

index (M~)

k

― 2-i 2-i
i =l AeD(.G + ),ax>a.i

h
= 2

dimHom^+CF;, (mf )cl)-dimF/i

2 dim HomK-(Vv, (m/)c)-dim Vv

j=l veLD(G-),av>a.j

where we follow the notation of Theorem 2.7

3. Stability of polars and meridians in symmetric spaces.

In this section we determine the stability of all polars and meridians in

every compact connected irreducible symmetric space by using Lemma 2.8.

We denote by M=G/K a compact connected irreducible symmetric space,

by M+=M+(p)=G+/K+ one of the polars of a point o in M and by M~=M~(p)

―G~IK~ its corresponding meridian, where K~=K+ as mentioned in Section 2.

We also denote by g, g+ and g" the Lie algebras of G, G+ and G~ respectively.

When K or K+ is not connected, we denote its identity component by Ko

or Ko+ respectively. Since M+(p) is a /Co-orbit(see 1.5a(ii)in [N-2]), we may

assume G+=K0.

In order to apply (2.8.1)(resp. (2.8.2))to study the stabilityof M+ (resp.

M~) in M, what we should do is the following (3.0.1) through (3.0.3):

(3.0.1) To determine every representation of G+ on g/g+ (resp. G~ on g/g~)

which is denoted by p (resp. p) and to decompose p (resp. p) into the irre-

ducible representations.

Here g/g+ is isomorphic to T0M as a G+-module, that is, p is equivalent to

the isotropy representation of K. Hence p is irreducible. On the other hand,

G/G~ is another symmetric space and p is the isotropy representation of G~. p

is irreducible or the sum of two irreducible representations which are equivalent

to each other. (One can check it case by case.) So even if p is not irreducible,

we denote its irreducible component by the same p.
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(3.0.2) To find every complex irreducible representation X of G+ (resp. v

of G~) which satisfiesthe condition a^>aM (resp. av>ap) where ax denotes the

eigenvalue of the Casimir operator of 1 and similarly for aM, av and ap. (We

can get the eigenvalue of the Casimir operator by Freudenthal's formula.)

(3.0.3) To examine whether each representation X (resp. v)in (3.0.2) satisfies

the following condition or not: when we restrictI (resp. v) to K+, it includes

at least one of the simple /C+-submodules of (m~)c(resp. (m+)c).

If a representation satisfiesboth conditions in (3.0.2) and in (3.0.3),we say

that this representation is admissible. If there is no admissible representation

of G+ (resp. G~),we conclude that M+ (resp. M~) is stable.

Notation. We follow the notation of [B] concerning the numbering of

the fundamental weights and that of FN-ll concerning the symmetric spaces.

The isotropy representation of K+ on the tangent space of M+ is denoted

by pt+ and on that of M~ by pT. (Refer to Appendix for the isotropy repre-

sentations.)

For two representations V and I" of some groups G' and G", the repre-

tation X'-＼-X"denotes the representation of a group G'xG" whose representa-

tion space is Vxi(S)Vx≫. Note that the eigenvalue of the Casimir operator satisfies

ax'+X'^a-x'+ Q-X"- We denote by A'($A" the representation of a group G'xG"

whose representation space is Vx>RVx≪ such that G" acts triviallyon Vx> and

G' does on Vx≫.

Though T denotes U(l), we also denote its representation by T.

Lemma 3.1. If M is a Hermitian symmetric space, all the polars and the

meridians of M are stable.

Proof. When M is a Hermitian symmetric space, all the polars and the

meridians are hermitian (See 2.30 in [N-2]). As a Hermitian symmetric space

is Kahlerian, we get their stability from the well-known fact; the complex

submanifolds of a Kahlerian manifold are homologically volume-minimizing in

their real homology class. q.e.d.

A 4n-dimensional symmetric space M is called a quaternionic Kdhler sym-

metric space if M has the following property: there is a point x in M such that,

through an identificationof TXM with Hn, the linear holonomy group of M at

x is contained in Si)in)-Sp(l).
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Lemma 3.2. Suppose M is a quaternionic Kdhler symmetric space and one

of its polars is also quaternionic Kdhler, then this polar and its corresponding

meridian are stable.

Proof. We can check that when M is a quaternionic Kahler symmetric

space and one of its polars is also quaternionic Kahler, its corresponding

meridian is also qaternionic Kahler. Since the quaternionic Kahler submani-

folds in a quaternionic Kahler manifold are homological volumeminimizing in

their homology class (see [Ts-2]), they are stable. q.e.d.

Lemma 3.3. Let M+=K0/K+ be a polarin a compact connectedsymmetric

space M―G/K and M~ its meridian. If K+ is connectedand M~ is a local

directproduct of the circleS1 and a semisimple symmetric space, then M+ is

unstable.

Proof. When M is a local direct product of S1 and a semisimple sym-

metric space, (m~)c includes one dimensional subspace as a /C+-module. Because

of the connectedness of K+, a trivialrepresentation is admissible. So M+ is

unstable. q.e.d.

Lemma 3.4. Let M" be a finitecovering space of M and it: M"-^M the

projection such that tt(o")=o for a point o~in M" and o in M. If a polar M"+

of o" in M" is stable,then the image x(M~+) is a stable polar of o in M. And

similarly if a meridian M"~ of o" in M" is stable, then so is the image iz(M*~),

a meridian in M.

Proof. Suppose M+ := 7r(M~+) is unstable, then there exist a normal vector

field v on M+ which contributes to the index of M+. When we consider the

lift of v, it is a vector field on M" which also contributes to the index of M~ +

because rt is locally isometric. It contradicts the assumption. As for a meridian,

we can prove itin the same manner. q.e.d.

Lemma 3.5. Let M~ be a double covering space of M and 7c:M~-≫M the

projection such that tc(o*)=o for a point o~in M" and o in M and Tc{o")―n{p)

for a point p in M". If a connected component C :=■C(o", p)0 of the centrosome

C(o", p) in M" is stable then the image x(C) is a stable polar of o in M. And

similarly if an orthogonal space C1 of C in M" is stable, then the image tt(O)

is a stable meridian in M.

Proof. We can prove it similarly to Lemma 3.4.
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Definition 3.6. We say a connected component of centrosome C(o, p) is

of s-size when it meets one of the shortest geodesic segments joining o to p

Lemma 3.7. Let M be a compact connected irreducible symmetric space.

And suppose that there exists at least one pole p of a point o in M. If C{o, p)0

is of s-size,then its orthogonal complement is the space of local direct product

of S1 and a compact simply connected symmetric space.

Proof. One can check this by using the classificationin [CN-1] and [N-l].

For another proof, the shortest geodesic through x<=C(o, p)0 is unique and hence

its tangent vector at x is fixed by the isotropy subgroup. q.e.d.

Proposition 3.8. Let M be a compact connected irreducible symmetric space.

And suppose that there existsat least one pole p of a point o in M. If C(o, p)0

is of s-size,then it has a trivialline bundle as a subbundle of the normal bundle

in M. Hence. C(o. b)n is unstable.

Proof. For all M except for AI{2n) and EV, the isotropy subgroup of the

automorphism group of C := C(o, p)0 is connected. So we get their instability

by Lemma 3.3 and 3.7. As for M=v4/(2m) and EV, we also get the instability

of C in M by examining the action of each component of the isotropy subgroup

of the automorphism group of C. q.e.d.

Lemma 3.9. Let M" be a double covering space of a compact connected

symmetric space M and tz: M~^M the projection such that 7r(o~)=ofor a point

o" in M~ and o in M. Where we assume that M~ is neither SO(2n) with n=odd

nor Gn(R2n) with n―odd. And suppose that there existsa pole p of o" in M"

and n(o~)=7c(p). If C(o~,p)0 is of s-size, the image tc(C(o",p)0) never has a

trivialline bundle as a subbundle of a normal bundle in M.

Proof. We can construct a totally geodesic sphere Sm which contains S1

in Lemma 3.7 except for the case in which M* is SO(2n) with n=odd or

Gn(R2n) with n=odd, and which has the same dimension as the Helgason sphere

of M" (refer to [NS-2]). Since this S1 is a shortest geodesic through o" and

p, Sm meets the s-sized C(o", p)0 in Sm~l. The image is 7t(Sm)―RPm with its

polar RPm~l which is contained in M+ := jt(C(o^,/>)o).Its meridian is RP1=S1.

By the relationship between the orientations of RPm and of its hypersurface,

we can conclude that the normal bundle of RPm~l is not orientable, that is, M+
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does not have a trivialline bundle as a subbundle of a normal bundle in M.

n.e.d

Now we examine the stability of M+ and M of each M case by case

Here we arrange the spaces according to the root system of M.

Type A

[1] SU(n)/Zk (Zk is a subgroup of the center of SU(n))

Case 1. k is odd.

(M+, M-)=(Gr(Cn), {T-(SU(r)xSU(n-r))}/Zk), 0<r=even^n.

Every polar is unstable by Lemma 3.3 since K+= {T-(SU(r)xSU(n-r))＼/Zk

is connected and M~ is a local direct product of S1 and the other space. On

the other hand, every meridian is stable. In fact, we have G~={T-(SU(r)X

SU(n-r))}/ZkX {T-(SU(r)xSU(n-r))}/Zk with p= {(J' +(iil(A'T_l)+a>l{A'n-r-J)

+0}R{0-{-(T"+a>1(A＼_1)+<l>1(A''n_r_l))} and ju^T+ahGVO+ohC^n-r-i), where

T' (resp. T"), A'r_, (resp. A"r^) and A'n_r_x (resp. A"n_r^) denote T, SU(r)

and SU(n-r) which are subgroups of G~ acting on M" to the left (resp. right)

side respectively and T, Ar_1 and An^r^l denote T, SU(r) and SU(n―r) which

are subgroups of K~, the diagonal subgroup of G~, respectively. If an element

v^D({T-(SU(r)xSU(n-r))}/Zkx {T-(SU(r)xSU(n-r))}/Zk) satisfies a≫>ap,

then v=Q+v or a+0, where o<=D({T-(SU(r)xSU(n―r))}/Zk) which satisfies

aa>ap> or v=a)1{A'r^)+a)l{A"r_l) if r<n ―r and y=o)1(i4'B_r_0+o>1(/l//n_r_1)if

r>n―r. As for v=0+o" or </+0, we have V0+a―Wa and Va+0=Wo as iT+-

modules where W,, is the representation space of the representation a of /C+.

As for v=a)1(y4/r_i)+a)i(i4*r_i)if r<n―r and p=G)1(A/n_r_1)+to1(^l//re_r_1)if r<

n―r, An_r-i in /C+ is trivialin the former and non-trivialin ^+. Ar^ in K"+

is trivialin the latter and non-trivialin fi+. So we conclude that any of the

above v is not admissible.

Case 2. k is even and n/k is odd.

(M+, Af-)=(Gr(CB)*, {T'(SU(r)xSU(n-r))＼/Zk), 0<r^n/2.

When we consider the projection ttfrom SU(n)/Zk/2 to SU(n)/Zk, the re-

striction of the projection to each polar is diffeomorphism if ri^n/2. So the

stabilityof M+ ―Gr{Cny―Gr{Cn) with r^n/2 is reduced to the case 1, that is,

all polars Gr(Cn)* with r^n/2 are unstable. But Gn/2(Cn)* is stable. Since it

is the image of Gn/2(C"), one of the connected components of the centrosome

of s-size,by the above projection n, the trivialrepresentation is not admissible

by Lemma 3.9. And we can see that the other representations which satisfy
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the condition in (3.0.2)are not admissible either by restricting them to K+. On

the other hand, every meridian is stable from the result of the case 1 and by

Lemma 3.4.

Case 3. k and n/k are even.

(M+, M-)=(Gr(Cn)*, {T-(SU(r)xSU(n-r))}/Zk), 0<r=even^n.

Every polar except for Gn/2(C71)*is unstable and every meridian is stable

5≫Gin < >̂C!O0

[2] U(n)/Zk

We can get the following results in a similar way to [1].

Case 1. k is odd.

(M+, M-)=(Gr(Cn), (U{r)xU(n-r))/Zk), 0<r£n.

Every polar is unstable but every meridian is stable.

Case 2. k is even and n/k is odd.

(M+, Af-)=(Gr(CB)*, (U(r)xU(n-r))Zk), 0<r^n/2.

Every polar except for Gn/2(Cn)* is unstable and every meridian is stable,

Case 3. k and n/k are even.

(M+, Af-)=(Gr(Cn)*, (U(r)xU(n-r))/Zk), 0<r£n.

Everv oolar except for Gn/≫(Cn)*is unstable and every meridian is stable

[3] AI(n)/Zk

Case 1. k is odd.

(M+, M-)=(Gr(Rn), {T-(AI(r)xAI(n-r))}/Zk), 0<r=even^n.

Every polar is unstable since the trivialrepresentation of K is admissible.

In fact, each connected component of K+ acts on T in M~ triviallythough K+

is not connected. On the other hand, every meridian is stable. In fact, we

have G-={T'(SU(r)xSU(n-r))}/Zh with io=T+<Oi(i4r_1)+a>1G4B_r_1) and fi+=

o)1(SO(r))+co1(SO(n-r)). If an element v =D({T-(SU(r)xSU(n-r))＼/Zk) satisfies

av>ap, then v is a representation in which at least SU(r) or SU(n-r) acts

trivially. So when we restrict these representations to K+, at least SO(r) or

SO(n-r) acts trivially. But in n* both SO(r) and SO(n―r) act non-trivially.

So we conclude that none of such v is admissible.

Remark 3.10. By using homomorphisms between symmetric spaces, we can

also prove the instability of M+=Gr(Rn) in M=AI(n)/Zk as follows. There
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exists an inclusion i: M-*SU(n)/Zk which carries a polar Gr(Rn) of AI(n)/Zk

into a polar Gr(Cn) of SU(n)/Zk for each r respectively. And c also carries a

meridian {T-(AI(r)xAI(n-r))}/Zk into a meridian {T-(SU(r)xSU(n-r))} /Zk

for each r respectively, where we note that the image of T of {T-(AI(r)x

AI(n-r))}/Zk coincides with T of {T-(SU(r)xSU(n-r))}/Zk, in particular it

is tangent to the image of AI(n)/Zk. Since Gr(Cn) has a trivialline bundle as

a subbundle of the normal bundle in SU(n) by the result in [1], we can con-

clude that Gr(Rn) also has a trivialline bundle by restricting the trivialline

bundle to the image of a polar Gr(Rn).

Case 2. k is even and n/k is odd.

(M+, Af-)=(Gr(/2B)*, {T-(^/(r)x^/(n-r))}/Z*), 0<r^n/2.

Every polar Gr(Rn)*=Gr(Rn) with r^n/2 is unstable but every meridian is

stable since the similar arguments work as the case 2 in [1]. And also we

get that M+=Gn/2(Rn)* is stable. In fact, we have G=SU(n)/Zk, Ko=SO(n)*

and if+o=S(0(n/2)-O(n/2)) with ti=2a)l(SO{n)) and j≪-=0c2q>1(SO(m/2))c

2a)i(SO(n/2)). If Ae£>(S0(n)*) satisfiesax<all, then ,2=0 or <y2. And we have

the next decomposition of A=a)2 as a /C+-module.

So ^=g)2 is not admissible. As for ^―0, since K+ acts on T as ±1 times the

identity, we conclude that ^=0 is not admissible either.

Case 3. k and n/k are even.

(M+, M-)=(Gr(Rn)*, {T-(AI(r)xAI(n-r))}/Zk), 0<r=even^n.

Every polar except for Gn/2(Rn)* is unstable and every meridian is stable

similarly to the case 2.

[4] UI(n)/Zk

We can get the following results similarly to [3].

Case 1. k is odd.

(M+, M-)=(Gr(Rn), (UI(r)xUI(n-r))/Zh), 0<r£n.

Every polar is unstable but every meridian is stable.

Case 2. k is even and n/k is odd.

(M+, M-)=(Gr(Rn)*, (UI(r)xUl(n-r))/Zk), 0<r^n/2.

Every polar except for Gnl2(Rn)* is unstable and every meridian is stable

Case 3. k and n/k are even.
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(M+, M-)=(Gr(Rn)*, (UI(r)xUKn-r))/Zk), 0<r£n.

Every polar except for Gn/2(Rn)* is unstable and every meridian is stable.

[5] AII(n)/Zk

Case 1. k is odd.

(M+,M-)=(Gr(Hn), {T>{AII{r)xAIl{n-r))}/Zk), 0<r=even^n.

Every polar is unstable since we can conclude that it has a trivialline

bundle as in Remark 3.10. In this case the inclusion map: M-+SU(2n)/Zk

carries a polar Gr{Hn) of AII{n)/Zk into a polar G2r(C2n) of SU(2n)/Zk for

each r. On the other hand, every meridian is stable as in [1].

Case 2. k is even and n/k is odd.

(M+, M~)={Gr{Hn)*, {T'(AII(r)xAIl(n-r))}/Zk), 0<r£n/2.

Every polar except for Gn/2(Hn)* is unstable and every meridian is stable

as in case 2 of [1].

Case 3. k and n/k are even.

(M+, M-)=(Gr(Hn)*, {T-(AU(r)xAII{n-r))}/Zk), 0<r=even^n.

Every polar except for Gn/i(Hn)* is unstable and every meridian is stable

as in case 2.

[6] UII(n)/Zk

We can get the following results as in [5].

Case 1. k is odd.

(M+, M-)=(Gr(Hn), (UII(r)xUII(n-r))/Zk). 0<r£n.

Every polar is unstable but every meridian is stable.

Case 2. k is even and n/k is odd.

(M+, M-)=(Gr(Hn)*, (UIl(r)xUII(n-r))/Zk), 0<r£n/2.

Every polar except for Gn/2(£f")*is unstable and every meridian is stable

Case 3. k and n/k are even.

(M+, M-)=(Gr(H≫)*, (UII(r)xUII(n-r))/Zk), 0<r£n.

Every polar except for Gn/2(Hn)* is unstable and every meridian is stable

[7] E1V

(M+} M-)=(FII, T-S*).



38 Makiko Sumi Tanaka

M+―FII is unstable by Lemma 3.3 since K+=S0(9)~ is connected and M~

is the local direct product of T and S9. On the other hand, M~―T-Ss is stable.

In fact, we have G- = T-SO(10)~ with p=T+a6(Dt) and pt+=a)4(B4). And if

veJ9(T'SO(10)~) satisfiesav<ap, then v=0 or T+g>i. Then we can conclude

that neither one is admissible.

Type B or D

[8.1] SO(n)~

(M+, M-)=(G2r°(Rn), S0(2r)~-S0(n-2r)~), 0<r=even^n/2.

The polar G2r°(Rn) is stable unless n=4m+3 with r=2m or n=2r-＼-2.

When n=4m+3 with r=2m, the polar is unstable since ^=ft>i(52m+i)is admis-

sible.(Note that a>i has the smallest eigenvalue of the Casimir operator among

the fundamental weights of B2m+1 if m^2). When n=2r+2, we have the in-

stabilityof the polar by Lemma 3.3 since K+ is connected and its corresponding

meridian is SO(2)-SO(2r)~. In general, we have G = SO(n)~xSO(n)~, K=SO(n)~,

K+=SO(2rY-SO{n-2ry, pL=(oi{SO{nT) and i≪-=a)8(SO(2rr)ca>8(SO(n-2r)~).

If X^D{SO(n)~) satisfiesax<atl, then ^=0 or o>xif n^l6. Since we have the

next decomposition as a /f+-moduie

^<≪1(SO(n)~)=rM'a)1(SO(2r)~)c'/^a)1(SO(n-2r)~)>

we conclude that l=(ox is not admissible when 2r and n―2r are sufficiently

large. If ≪<16, the spin (or the half spin) representation of SO(n)~ satisfies

the condition ax<aIJt, but we can see that it is not admissible. Obviously ^=0

is not admissible either. On the other hand, each meridian M~=SO(2r)~-

SO{n-2rT is stable. In fact, we have G-=SO(2r)~-SO(n-2r)~xSO(2r)~-

SO(n -2r)- with p = {(o>1(SO/(2r)~)+ a)1(SO＼n~2ry))+0} c {0 + (a≫1(SO*(2r)~)+

o)l{SO"{n-2r)-))) and ^+=(y1(SO(2rD+o)1(SO(n-2r)~), where we refer to [1]

for the notations SO' and SO". If v<ED(SO'(2ry-SO＼n-2ryxSO"{2r)~-

SO"(n―2rY) satisfies av<ap, then v=0+(T or (7+0, where a^D(SO(2ry-

SO(n-2r)~) which satisfiesa^a^ or v=o>1(SO/(2r)~)+o>1(SO//(2r)~)if 2r<n-2r

and v=(y1(SO'(n-2r)~')+ft)1(SO//(n-2r)~)if 2r>n-2r. We can conclude that

none of these representations is admissible as in [1],

[8.2] SOiAnY

[8.2-1] (M+, M-)=(G2r0(R4n), (SO(2r)~-S0(4n-2r)~)/{l, 5}),0<r=even^n.

[8.2-2] (M+, M-)=(GURin)*, SO(2n)~-SO(2n)~)/{l,d}).

These polars and meridians are stable from the result in [8.1] and by

Lemma 3.4.
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[8.2-3] (M+, M-)=(DIII(2n)*, U~(2n)/Z2) where £T(2n) is the connected

subgroup of S0(4n)~ which doubly covers U(2n) in S0(4n).

The polar is stable by Lemma 3.9. And so is the meridian. In fact, we

have G = SO(4n)*xSO(4n)*, G- = U~(2n)/Z2xU~(2n)/Z2> K+ = U＼2n)/Z2, p=

(T/+a)2(^2ra_1)+O)0(O+T"+O>2(^2n_1)) and fi^T+ahiA^). If v^D(JJ＼2n)/

Z2XU~(2n)/Z2 satisfies av<ap, then v is a trivialrepresentation since T+o>x

cannot be a representation of U~(2n)/Z2. Clearly the trivialrepresentation is

not admissible.

[8.3] SO(n)

(M+, M-)=(Gr(Rn), SO(r)xSO(n-r)), 0<r=even^n.

All polars and all meridians are stable. In fact, when r=0 (mod 4), we can

conclude that all polars and all meridians except for some cases are stable from

the results in [8.1] and by Lemma 3.4. So we may consider the following

three cases only : (1) r=2 (mod 4),(2) n=4m+3 with r―＼m, and (3) n=2 (mod 4)

with r―n―2. As for the cases (2) and (3),the representations which are admis-

siblein [8.1] can not be admissible in this case because of the disconnectedness

of K+. And as for the case (1), the similar arguments work as in [8.1].

[8.4] S0(2n)*

[8.4-1] (M+, M~)=(Gr(R2n)*, SO(r)-SO(2n-r)), 0<r^n.

We can conclude that these polars and meridians are stable by the results

in [8.3] and Lemma 3.4.

[8.4-2] (M+, M-)=(DIII(n)*, U(n)/Z2).

When n is even, the polar is stable by Lemma 3.9. And when n is odd,

the polar is unstable by Lemma 3.3 since the isotropy subgroup of DIII(n)*=

DIII(n) is connected. On the other hand, the meridian is stable by the results

in [8.2-3] and Lemma 3.4 if n is even and the similar argument works if n

is odd.

[9.1] G°r(Rn)

(M+, M-)=(Ga°(Rr)-Gb°(Rn-r), Ga%Rn-2b)-Gb°(R2b)), a+b=r, 6=even.

The polar and the meridian are stable unless r=2ra+l with a= l. In fact,

we have G = SO(ny, K=SO(r)~xSO(n-r)~, G- = SO(n-2b)~xSO(2b)~, /C+ =

SO(ayxSO(brxSO(brxSO(n-r-bT, p.= wx{$O(jy) + (ssx{$O{n-ry), p =

at^SOin - 2bY) + 0)1{S0{2bY), pi+ = {^(SOCa)-) + ^(SOibr)} 0 {^(SO^D +

a>1(SO(n-r-6)~)}and≪- = {a)1(SO(fl)~)+(o1(SO(n-r-6)~)}c{o>1(SO(6r)+(≫1(SO(6)"')}.
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When r=2m+l with a = l, the polar is S^-Gzm0^""2 "1) and we can see that

w^SOir)-) is admissible. And in that case the meridian is Sn-im-1'G2m°(R4m)

and (!)l{SO(n―2b)")is also admissible.

[9.2] Gr(Kn)*

[9.2-1] (M+, M-)=(Ga°(Rn)'Gb(Rn), {Ga＼R )-Gb°(R>b))/{l,d}),

a+b=n, 0<6=even<n/2.

[9.2-2] (M+, M~)={Gb{Rn)* -Gb{Rn)＼ Gb{Rn)* ･Gb{Rn)*).

[9.2-3] (M+, M-)=(SO(n)*, Ur(n)/{1, 8}) where Ur(n)=U"(n)/SO(n) and

see [8.2-3] for £T(n).

We can conclude that these polars and meridians are stable similarly to the

case [8.2].

[9.3] Gr{Rn)

(M+, M-)=(Ga(Rr)XGb(Rn-r), Ga(Rn-*b)xGb(Rib)), a+b=r.

All polars and all meridians are stable. In fact, when b is even, we can

conclude that all polars and all meridians except for some cases are stable from

the resultsin [9.1] and by Lemma 3.4. So we may consider the following two

cases only: (1) b is odd and (2) r=2m+l with a ―I. As for the case (1), the

similar arguments work as in [9.1]. As for the case (2), the representations

which are admissible in [9.1] cannot be admissible in this case because of the

disconnectedness of K+.

[9.4] Gr(Rn)*

[9.4-1] (M+, M-)=(Ga(Rn)xGb(Rn), Ga(R2a)-Gb(R*b)), a+b=n, 0<a<n/2.

[9.4-2] (M+, M')=(Ga(Rn)-Ga(Rn), Ga(Rn)-Ga(Rn)).

We can conclude that these polars and meridians are stable from the results

in [9.3] and by Lemma 3.4.

[9.4-3] (M+, M-)=(SO(n)*, UI(n)/Zs).

The polar is stable if n is even by Lemma 3.9. And when n is odd, the

polar is unstable by Lemma 3.3 since the isotropy subgroup of SO(n)*―SO(n)

is connected. On the other hand, the meridian is stable from the results in

[9.2-3] and by Lemma 3.4 if n is even and the similar argument works if n

is odd.

Type C or BC

[10.1] Sp(n)
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(M+, M~)=(Gr{Hn), Sp(r)xSp{n-r)), 0<r<n.

Every polar is stable. In fact, we have G=Sp(n)xSp(n), K―Sp{n), K+=

Sp(r)xSp(n-r), pt^2wl{Cn) and ft-=2a>1(Cr)R2<Q1(Cn-r). If X(ED(Sp(n)) satisfies

O'xKdfi, then ^=0, o>ior w2 and if n―2>,a>3. We have the next decompositions

as /f+-modules.

V<Ol(Cn)=:Wa>1(Cr)RWa>1<.Cn-r-)-

L2(Cn,=^2,Cr,c^2(CB.r)e^l(Cr)R^l(cB.r,ec

Va)3lC3)=Wa>1(Ax)RWQ)i{Ci)RW0)l (C2).

So we can conclude that each 1 is not admissible. Every meridian is also stable.

In fact, we have G- = Sp(r)xSp{n-r)xSp{r)xSp(n-r) with p― {(fl>i(C'r)+

≫i(C',.r))+0}e|O+WC'r)t<≫i(C',.r))} and ju+= a>x(Cr)+ fi>i(CB_r). If ve

D(Sp(r)xSp(n-r)xSp(r)xSp(n―r)) satisfies av<ap, then v=0+o or a+0

where o(=D(Sp(r)xSp{n ―r)) which satisfies aa<ap, v=6>1(C/r)+G>1(C//r)if r<

n―r, or y=<y1(C/71_r)+<y1(C%_r) if r>n―r. Then we can conclude that these

representations are not admissible as in [1].

[10.2] Sp(n)*

[10.2-1] (M+, M-)=(Gr(Hn)*, Sp{r)-Sp{n-r)), 0<r£n/2.

Both the polar and the meridian are stable from the results of [10.1] and

by Lemma 3.5.

[10.2-2] (M+, M-)=(CJ(n)*, U(n)/Z2).

The polar is stable. In fact, we have G = Sp(n)*xSp(n)*, K0=Sp(n)*, K＼

=U(n)/Z2, ^=2a)1(Cn) and Ju"=0c(a>1+G>re_1)(^n_1). If X<^D(Sp(n)*) satisfies

ax<a/i, then ^―0 or <y2. We have the next decomposition as a if+0-module.

Vo,2(cn)=PFa,2(4Jl_1)0Wa,n_2(4n_1)0PV(<Ul+tt)n_1)an_1)･

Because Cl{n) is the centrosome of s-sizein Sp(n), we can conclude that ^=0

is not admissible by Lemma 3.10. And J.=o)2is not admissible either by the

disconnectedness of K+ despite of the above decomposition. The meridian is

also stable. In fact, we have G-=U(n)/ZtxU(n)/Zt with p={(T/+2o)1(A'n_1))

+0}c{0+(T"+2a>1(,4*B_1))} and pt+=T+2m1(An_1). If v<=D(U(n)/Z2xU(n)/Zt)

satisfies av<ap, then v=Q+a or <y+0 where o<BD(U(n)/Z2) which satisfies

aa<ap. These representations are not admissible as in [1].

[11.1] Gr(Hn)

(M+, M-)=(Ga(Hr)XGb(H≫-'), Ga(Hn-*b)xGb(H*b)), a+b=r
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Every polar is stable. In fact, we have G ―Sp{n), K=Sp(r)xSp(n―r),

K+ = Sp(a)XSp(b)xSp(b)xSp(n-r-b), ^=a)1(Cr)+a)1(CB_r) and it£-=(a≫i(CB)+

tt≫i(CB_M_a))c(a>1(C6)+a≫1(C6)).If k(ED(Sp(r)XSp(n-r)) satisfies a^a,,, ther

,?=Q+0, o+O or 0+ff', where a^D{Sp{r)) and a'^D{Sp{n-r)) which satisfy

aa<all and aa'<aM. Because at least S/)(r) or Sp(n―r) acts triviallyin these

representations and non-triviallyin p.",we can conclude that these representa-

tions are not admissible. Every meridian is also stable. In fact, we have G'―

Sp(2b)xSp(n-2b) with /o=o>1(C26)+a)1(CB_M) and Ju+= (a>,(Ca)+a)1((C6))c(<o1(C6:

+(y1(Cn_r_6)). If v^D(Sp(2b)xSp(n-2b)) satisfies av<ap, then v=0+0, <r+(

or 0+<y', where a^D{Sp{2b)) and o'<^D(Sp{n―2b)) which satisfy aff<fl^ anc

aa'Kdf,. Because at least Sp(2b) or Sp(n―2b) acts triviallyin these representa-

tions and non-trivially in fi+, we can conclude that these representations are

not admissible.

[11.2] Gn(H2nr

[11.2-1] (M+, M-)=(Ga(Hn)xGb(Hn), Ga(H*a)-Gb(H>b)), a + b=n,0<a<n/2,

[11.2-2] (M+, M-)=(Ga(Hn)-Ga(Hn), Ga(Hn)-Ga(Hn)).

Both the polars and the meridians are stable from the results of [11.1] anc

by Lemma 3.5.

[11.2-3] (M+, M")=(S/>(n)*, UII(n)/Z2).

The meridian is stable. In fact, we have G―Sp(2n)*, K0=Sp(n)*xSp(n)*s

K+0=Sp(n)*, fi=Q)1(Cfn)-＼-<o1(Cn)and /T=0c<y2(Cn). If Z<=D(Sp(n)*xSp(n)*]

satisfies ax<ap, then ^=0+0, <y2+0 or 0+o>2. And we can see that these

representations are not admissible by the disconnectedness of K+. And the

meridian is also stable. In fact, we have G~―U(n)/Z2 with p=T+2oo1(An-.1]

and pi+■=2<Mi(Cn).If v<=D(U(n)/Z2) satisfiesau<ap, then v=0 or T+w^n/a.x).

We can see that neither one is admissible.

[12.1] Gr{Cn)

(M+, M-)=(Ga(Cr)xGb(Cn-r), Ga(Cn-2b)xGb(C*b)), a+b=r.

[12.2] Gr{Cn)*

[12.2-1] (M+,M-)=(Ga(Cn)xGb(Cn), Ga(C2a)-Gb(C2b)), a + b=n, 0<a<n/2.

[12.2-2] (M+, M-)=(Ga(Cn)-Ga(Cn), Ga(Cn)-Ga(Cn)).

[12.2-3] (M+, M-)=(U(n)/Zt, U(n)/Z2).

[13.1] C/(n)
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(M+, M-)={Gr{Cn), Cl{r)xCI(n-r)), 0<r<n.

[13.2] Cl{n)*

[13.2-1] (M+, M-)=(Gr(Cnr, CI(r)-CI(n-r)), 0<r<n/2.

[13.2-2] (M+, M-)=(UI(n)/Za, UI(n)Z2).

[14.1] /?///(≪)

(M+, M-)=(Gr(Cre), DIIKr)xDIII(n-r)), 0<r=even£n.

[14.2] D///(2n)*

[14.2-1] (M+, M-)=(Gr(£72n)*, Dlll(r)-DIII(2n-r)), 0<r=even^n

[14.2-2] (M+, M-)=(UII(n)/Za, UII(n)/Za).

[15.1] £F//

(M+, M-)=(EIII, S2XG2°(R12)).

[15.2] £7/7*

[15.2-1] (M+, M-)=(EIII, S2-G2°(R12)).

[15.2-2] (M+, M-)=((T ■EIV)/Zt, (T ･EIV)/Zt).
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[16] EIII

[16-1] (M+, M-)=(G2°(R10), G2°(R10)).

[16-2] (M+, M-)=(DIII(5), S'xG^C6)).

Because [12.1], [13.1], [14.1], [15.1] and [16] are Hermitian symmetric

spaces, we can conclude that both their every polar and meridian are stable by

Lemma 3.1. As for [12.2], [13.2], [14.2] and [15.2], their polars and meridians

of [12.2-1], [12.2-2], [13.2-1], [14.2-1] and [15.2-1] are stable by Lemma 3.5.

And their polars of [12.2-3], [13.2-2], [14.2-2] and [15.2-2] which are con-

gruent to their meridians corresponds to the connected centrosomes of the

spaces [12.1], [13.1], [14.1] and [15.1] respectively and we can see that the

indices of these centrosomes are equal to one. So we conclude that both polars

and meridians of these spaces are stable by Lemma 3.10.

[17] FII

(M+, M-)=(S＼ S8).

The polar which is congruent to the meridian is stable. In fact, we have

G=Fit K=S0(9y, K+ = S0(8y, ^=0)4(^4) and ^-=<o,(Z)4) or o>4(£>4).If ^

D(S0(9)~) satisfies a/;<a≪, then ^=0 or g>i. As for X=<ou we have the next
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decomposition as a /C+-module.

VBl,i4)=^l(i,4,cC.

So we can conclude that o>iis not admissible. Clearly the trivialrepresentation

is not admissible either.

Remark 3.12. These S8 are congruent with the Helgason sphere of FII.

Ohnita studied the stabilityof Helgason spheres of compact symmetric spaces

in [0] and got the result that they are allstableminimal submanifolds.

Type E6

[18] E6

[18-1] (M+, M~)=(E1I, Sp(l)-SU(6)).

The polar is stable. Since we have G=E,xE6> K=E6, K+=Sp(l)-SU(6),

ft=Qh(E6) and [t-=2a)1(A1)R((i)1+a)5)(A5). If X^D(E6) satisfies ax<a^, then

^=0, Q)i or o)6. And we have the next decompositions as /C+-modules.

Va)l(E6)=W(OlUl)0Wa)lU5)RWWi(A5)

So we can conclude that each X is not admissible. The meridian is also stable.

Since we have G-=Sp(l)-SU(6)xSp(l)-SU(6) with p={(a>1(A'1)+o>i(A's))+0}R

{<d+{Q)1{A"l)+a)z{A＼))} and ft+= (o^A^+^A,). If v e£>(S/>(1)-S£/(6)xS/>(1)-

SU(6)) satisfies av<ap, then v=a+Q or 0+<r where a^D(Sp(l)-SU(6)) such

that aa<ap, v=2(o1(A'1)+2(o1(A＼), v=2a)1(A'1)+(a)1(A＼)+a)1(A＼)) or v=2wl(A＼)

+(ft>1(^4//1)+a>5(^4//B)).We can see ^=<r+0 or 0+<7 is not admissible and v=

2a)1(^l/1)+2(yi(^4//1)is not admissible either because SU(6) acts triviallyin this

representation and non-triviallyin pt+. By the following decompositions:

^I(i1,R(^1u;,Ryffll(^,)=^1u1,≫1u6,c^

where dimFF^dimPF'^12, we can conclude that v=2o)1(A'1)-＼-(o>1(A//1)+m1(A//5))

or v=2mx{A'＼)+{<til{A"＼)+<i)h(A"'6))is not admissible because of dim M+=40.

[18-2] (M+, M-)=(EJII, T-SO(lOr).

The polar is unstable by Lemma 3.4 since K+=T 'SO(10)~ is connected. On

the other hand, the meridian is stable. Since we have G~=T/-SO/(10)~xT//-

SO'(10r with p={(T'+a>s(DfB))+0}@{0+(T"+ats(D'>6))} and ≪+=T+<yB(I>5). If
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v =Z)(r'-S0'(lO)~xT*-SO"(lOr) satisfiesav<ap, then y=0+0, (T'+w^D'^+O,

or 0+(T"+0)^0"'B)). But we can see easily that these representations are not

admissible.

[19] El

[19-1] (M＼ M-)=(C/(4)*, S2-Af(6)).

The polar is stable. Since we have G=E6, K=Sp(4)*, K+O=U(4)/Z2, p=

(OiiCi) and £T=Tc2g>2(,43). If teD(Sp(4)*) satisfies axKa^, then X=0, Q)2or

2g)!. And we have the next decompositions as ZCVmodules.

^o)4(C4)==W(o>1+a≫3)(48)(BWa>2(A3)(&WW2(43).

^ 2o>!(C4)= M'2(Uj(^3)
c^20)3(^3)c"

(fflj+iBjXjlg)c^.

So we can conclude that there is no admissible representation. The meridian

is also stable. Since we have G~=Sp(l)-SU(6) with p=a)l{A1)+<i)s{Ah)and /i+=

T+2wl{Az). If vGD(Sp(l)-SU(6)) satisfiesav<ap, then v=<;+0 or 0+<7', where

<;eZ)(S/>(l)) and o'gD(SU(6)) which satisfies aa<ap and aa><ap, v=<y1+<Wi,

y=a>!+(y5, v=3<yi+<Wi, or v=3(yi+(y5. Because both T and /l3 act non-trivially

in fi+,we may consider only v=q>i+o)i and v=3o>1+o>i since Wi(As) and fy3(^43)

are equivalent under the outer automorphism of A3. We have the next decom-

positions as ZTVmodules.

Va)lu1^Vmi(A;>)^(V(w1(A1)mV(-w1(Ai)))^(Wa>l(A3)eCeC),

V3<ttlU^Va,, iA6,=(V(3(O1(A1))RV(Q)1(Al))

eF(-ft>1(.41))cF(-3ft>1(^1)))0(^1(^)0CeC)

where V(a) denotes a weight space of a weight a. So we conclude that there

is no admissible representation.

[19-2] (M+, M-)=(G2(H4)*, T-Gb°(R10)).

The polar is unstable. Since we have the inclusion c: EI―*E6 which carries

the polar G2(^4)* of El into the polar Elll of Es and the corresponding meri-

dian T-Gb°(R10) of El into the corresponding meridian T-S0(1O)~ of E,. We

can conclude that M+ = G2(H4)* has a trivialline bundle as in Remark 3.11. On

the other hand, the meridian is stable. Since we have G ―E6, G~=T-SO(10y,

K+ = SO(5)~'SO(5)~,io= T+ftjB(JD5)and ^+=o>1(C2)+aj1(C"2). If vtED(T-SO(10)~)

satisfiesav<ap, then v=0 or T+o>i. And we have the next decomposition as

a K+-module.
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Because g>,(jB2)=<w2(C2)and <Oi(B'2)=aUC S),v=T+≪i is not admissible.

Type £7

[20.1] £7

(M+, M~)=(EVI, S/>(1)-SO(12)~).

The polar is stable. Since we have G=E,xE1, K=En, K+=Sp{l)-SO {12Y,

//=a>i(£7) and pt"=2&)1(^41)0oj2(D6). If k^D(E^) satisfies a^Ka^, then ^=0 or

<u7. And we have the next decomposition as a /C+-module.

So we can conclude that A=<d7 is not admissible. The meridian is also stable.

Since we have G-=Sp(l)'SO(12)~xSp(X)-SO(12)~ with p={(a)1(A/1)+(1)6{D'6))+0}

R{0-＼-(<o1(A＼)+<ot(D＼))＼ and fi+=(o1(A1)+<o9(Dt). If y =0(S/>(l)-S0(12)~xS/>(l)-

SO(12)~) satisfies dv<fl,, then v=#+0 or 0+a where <yeD(S/>(l)-SO(12)~) such

that aa<ap, or v=2a>i(yl1)+2ft>i(^4/1). As for v=a+Q or 0+<r, we can see that

these representations are not admissible. And v=2a)1(A1)+2a)l(A'＼) is not admis-

sible either because SO(12)~ acts trivially in the representation and non-trivially

in p+.

[20.2] £7*

[20.2-1] (M+, M-)=(EV1, Sp(l)-SO(l2)*).

Both M+ and M~ are stable from the result of [20.1] and by Lemma 3.5.

[20.2-2] (M+, M~)=(EV*, SU(8)/Zt).

The polar is stable. Since we have G=£7*x£7*, K=E,*, K+=SU(8)/Z4,

fi=oh(E1*) and Ju-=(a≫i+<u7)(i47). If ^eZ)(£7*) satisfies a^Ka^, then ^=0 be-

cause <y7 is not a representation of £7*. As pT does not include a trivial re-

presentation, X=0 is not admissible. The meridian is also stable. Since we

have G-^SU(8)/ZixSU(8)/Zi with ^(^(^HO^O+^C^)) and pt+=wi(.A1).

If v^D(SU(8)/ZixSU(8)/Zi) satisfies av<ap, then v=0+0 because a)j(l£j^

n ―l, y^4) is not a representation of SU(8)/Zi. As
jU+

does not include a trivial

representation, v=0+0 is not admissible.

[20.2-3] (M+, M-)=(EVII*,T-E9).

Because EVII is the centrosome of s-size in E1 whose index=l, the polar

EVII* is stable by Lemma 3.10. The meridian is also stable. Since we have

G~=T-E6xT-E6 with p = {(T' + m^E'6))+ O}0{O+(T" +(ol(E＼)) and pi+=

T+a>i(Et). If v^D(T-E6xT-Ee) satisfies av<ap, then j;=0+0. Because ≪+



Stability of minimal submanifolds in symmetric spaces 47

does not include a trivialrepresentation, v=0+0 is not admissible.

[21.1] EV

(M+, M~)=(G4(C8)*, S2-Ge°(R12)).

The polar is stable. Since we have G = £7*,K=SU(8)/Z4, K+O=S(U(4)/ZZ-

U{A)/Z2), fn=a>4(A7) and /r = rc(a>8(4s)+<o2(,4'8)). If X^D(SU(S)/Zt) satisfies

a.x<alJ, then ^=0 or fth+av And we have the next decomposition of -?―g>i+o>7

as a /fVmodule.

≫Iui,e^,fi1,(8)^l(i;,cC.

So X=(t)i-＼~o)7is not admissible. The meridian is also stable. Since we have

G- = S/>(1)-SO(12)~with io=ft>1(^1)+6>6(^6)and ft+= T+(oh(Ai)+Q>i(Afs)). If v£

Z)(S/>(1)-SO(12)~)satisfies av<ap, then v=0+0, <Wi+<Wi, 2<Oi+0, Scot+cDi or

M+0. Because SU(4)/Z2･ SU(A)/Zt acts triviallyif v=0+0, 2^+0 or 4fl)x+0

and non-triviallyin pt+,these representations are not admissible. And we have

the next decompositions of v=a>!+<yi and y=3(y!+ce>i as /T+o-modules.

FSa,l(iil)07a,l(2,6)=(7(3a)1)c7(a)1)eF(-a≫1)c7(-3a≫1))0(^a,l{B,)ePr<Bl(i,;))

where F(a) denotes a weight space of a weight a. So both v=<s>i+ft>iand v=

Sg^+Oi are not admissible.

[21.2] EV*

[21.2-1] (M+, A/-)=(G4(C8)*, S2-G6(i?12)#).

We can conclude that both M+ and M~ are stable by the result of [21.1]

and Lemma 3.5.

[21.2-2] (M+, M-)=(AI(8)/Z<, AI(8)/Z4).

The polar which is congruent to the meridian is stable. Since we have

G = £7*, K=SU(S)/Zt, K+O=SO(8)*, fi^co^A,) and n-=2a>3{Di) or 2<o4(D4). II

A<=D(SU(8)/Z4) satisfiesaxKa^, then X=0 or <w1+o)7. And we have the next

decomposition of A=o)i-{-cd7as a if+o-module.

V (u)l+a>1)<.A1):=WW2(Di)(BW2w1(Di)-

So ^=G>i+<y7 is not admissible.

[21.2-3] (M＼M-)=(AIM)*,T-E1).
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The polar is stable by Lemma 3.10, since All {A) is one of the connected

components of the centrosome of EV which is of s-size and whose index=l.

The meridian is also stable. Since we have G = £7*, G~= T-E6, K+0=Sp(i)*,

p=T+(ol{Ei) and fi+=(D2(C4). If v<eD(T-E6) satisfiesav<ap, then v is a trivial

representation or a representation in which only T acts non-trivially. We can

see these representations are not admissible because K+o acts triviallyin these

representations and non-triviallyin p.+.

Type E8

[22] E8

[22-1] (M+, M')=(EVIII, S0(16)*).

The polar is stable. Since we have G = EgxE8, K=ES> K+=SO(16)*, p=

Q)8(E8) and (i~=<oi{D8). If X<=D(E8) satisfies ax<all, then ^=0. But we can

easily see that the trivialrepresentation is not admissible. The meridian is

also stable. Since we have G-=SO(16)*xSO(16)* with p=a>7(D'8)Ra>a(D"s) and

fi+=(o,(Ds). If veD(SO(16)#xSO(16)*) satisfies au<ap> then i,= <r+0 or 0+e;

where <reD(S0(16)*) is <*>ior &>2. We can see each v is not admissible, since

at least one simple factor of G~ acts triviallyin v and both simple factors act

non-triviallyin p.+.

[22-1] (M+, M~)=(EIX, Sp(l)-E,).

The polar is stable. Since we have G=E8xEs, K=ES, K+=Sp(l)-E7, ft=

o)8(E8) and fi-=2a)1(A1)R<o1(E1). If 1(eD(E8) satisfiesaxKa^, then ^=0. Be-

cause fi~does not include a trivialrepresentation, ^=0 is not admissible. The

meridian is also stable. Since we have G~= Sp(l)-E-,xSp{l)'E1 with p =

{(ft>1(^/1)+ct>7(£:/7))+0}e{0+(Q>1(^%)+G>7(£%))}and Ja+=o>1(/l1)+a>7(£;7).If ve

D(S/>(1)-£7XS/>(1)-E7) satisfiesa,,<a,,,then v=ff+0 or 0+c where a^D(Sp(l)-

En) is 0+0, 0+o>! or 0+o>6. We can see these representations are not admis-

sible, since Sp(l) acts triviallyin each v and non-triviallyin fi+.

[23] EVIII

[23-1] (M+, M-)=(G8(JR16)#, G8(≪16)#).

The polar which is congruent to the meridian is stable. Since we have

G = E8, K=SO(16)*, K+=SO~(8)-SO~'(8), fi=<oa(Ds) and ft-=o)3(D4)+a)3(D'4) or

(o^D^+cd^D'i). If ^eZ)(SO(16)*) satisfiesax<all, then ^=0, ft>ior ft>2.And we

have the next decompositions of X=o)i and A=<d2 as iT+-modules.
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Since <i)i(D^),<o3(D4)and g>4(D4)are not equivalent to each other (they are equi-

valent under the outer automorphism of D4), we can conclude that there is no

admissible representation.

[23-2] (M+, Af-)=(0///(8)*, S2-EV).

The polar is stable. Since we have G=ES, K=S0(16)*, K＼=U(8)/Z2, p=

(os(Ds) and /r=Tca>4(^47), ^eD(S6>(16)*) which satisfiesthe condition ax<aM

is same as in [23-1]. And we have the next decompositions of X=<ol and X―(o2

as /C+o-modules.

^2u)8)=:^(≫2uj)c^6(j,)c^(≪)i+b,)u,)cC.

So we conclude that each X is not admissible. The meridian is also stable.

Since we have G~=Sp(l)-E7 with jo=o>1(^1)+cy7(£17)and fjt+―T-＼-Q)2(A7).If vg

D(Sp(l)-EJ satisfiesav<ap, then v=a+Q or 0+a7 where <reD(S/≫(l))and o'<=

D(Et) such that aa<ap and a/<ap. Since at least one of simple factor of G~

acts triviallyin each v and both simple factors act non-trivially in ^+, neither

Type F4

[24] F4

[24-1] (M+, M-)=(F1, Sp(l)-Sp(3)).

The polar is stable. Since we have G=FixFi> K=F4, K+=Sp(l)-Sp(3),

pi-co^F,) and fi-=2a>i(A1)R2a>1(Ca). If X^D(Ft) satisfiesaxKa^, then ^=0 or

G)4. And we have the next decomposition as a /^-module.

V≫4(F4)=WrO,1M1)(8>^≪1(C,)0W≪1(C8).

So we conclude that there is no admissible representation. The meridian is also

stable. Since we have G-=Sp(l)-Sp(3)xSp(l)-Sp(3) with p={(a>1(A'1)+a>t(C9))

+0}c{0+(a>1(^1)+a>3(C"3))} and fjt^^AJ+w^C,). If v^D(Spa)-Sp(3)xSp(l)

-Sp(3)) satisfies av<a9, then v=a+0 or Q+o where a^D(Sp(l)-Sp(3)) such

that ao<ap, or v=2ft>1(/l/1)+2(y1(^4'/1).As for v=<r+0 or 0+or, we can see that

it is not admissible as in [1]. v―2q)1(A/1)-＼-2(o1(A"1),is not admissible either

because Sp{3) acts triviallyin the representation and non-triviallyin p.+.
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[24-2] (M+, M-)=(FII, SO(9)~).

The polar is stable. Since we have G=F4XF4, K=Fif K+=SO(9T, pt=

a>i(F4)and pt'―WziBi). If X^D(F4) which satisfiesaxKa^ is same as in [24-1]

We can see that A=o>4 is not admissible because dim 7^=26 and dimM~=36

The meridian is also stable. Since we have G~―SO(9)~xSO(9)~ with p-

(o>4(B/4)+0)c(0+a>4(JS//4))and /i+=o>4(54). If y =Z)(SO(9)~xS0(9)~) satisfies

av<ap, then y=0+0, ^(.B'^+O or O+ahCB^). We can see these representation?

are not admissible as in [1].

[25] FI

[25-1] (M+, M-)=(G1(fiT≫),G4%R9)).

[25-2] (M+, M-)=(S2-C/(3), S2-C/(3)).

[26] £//

[26-1] (M+, M")=(G2(C6), G4°(i210)).

[26-2] (M+, M-)=(S2-G3(C6), S2-G3(C6)).

[27] EVI

[27-1] (M+, M-)=(G4°(i212),G4°(E12)).

[27-2] (M+, M-)=(S*-DIII(6), S2-DIII(6)).

[28] £/X

[28-1] (M+, M-)=(£F7, G4°(E16)).

[28-2] (M+, M-)=(S8-E7/7, S2-EV1I).

Type G2

[29] GI

(M+, M~)=(S2-S＼ S2-S2).

The spaces [25], [26], [27], [28] and [29] are quaternionic Kahler sym-

metric spaces. Since both the polars and meridians of [25-1], [26-1], [27-1]

and [28-1] are quaternionic Kahler, we conclude that these spaces are stable

by Lemma 3.2. And we can conclude that among the polars in [25-2], [26-2],

[27-2], [28-2] and [29] which are totally complex subspaces (see Section 4)

only the polar and the meridian in [29] are unstable. Since in the case of

[25-2], [26-2], [27-2] or [28-2], m+ and m" are not isomorphic to each other

as ZT^-modules, we can see that there is no admissible representation. And in

[29], 2(o1(A1)is admissible.



Stability of minimal submanifolds in symmetric spaces 51

[30] G2

(M+, M~)=(GI, S0(4)).

The polar is unstable. Since we have G = G2xG2, K―G2, K+=SO(4), p=

a)2(G2) and fi-=2a)1(A'1)R2a>1(A"1). If X^D(G2) satisfiesax<all, then A=Q or

a>u And we have the next decomposition as a if+-module.

Vail<.G2)=WaJlu1)<g>WO)lU-l)(BW2o,1<.A>l).

So we can see X=o)i is admissible. The meridian is also unstable. Since we

have G- = SO(4)XSO(4) with P={(o)1(AL1)+3(D1(A/L1))+0m0+((l)1(AE1)-＼-3a}1(A/R1))

and ft+=a>l(Al)+3&>1(^L/1).We can choose v={q)1{Al1)+(o1{A'l1))+{2q)1{Ar1)+Q)

as veD(SO(4)xSO(4)) which satisfiesav<.ap. And we have the next decom-

position as a /C+-module.

^a,1Ui1)<8)^a,1U'i1)(8)^2a)lUfi1)=WA≪UlU1)(S)^3a>1U'1)c^,

where W is certain /C+-module. So we conclude that v is admissible.

Now we have the next theorem:

Theorem 3.12. Let M be a compact connected irreducible symmetric space

and N a polar or a meridian of M. If N is unstable, then it fallsinto one of

the following five cases:

Case 1. M=G2 and N=GI or SO(4).

Case 2. M=SO~(4n+3) and N=Gin°(Rin+s).

Case 3. M=G2m+1°(Rn) and A^=S2m-G2m°(≪re-2m-1)or Sn'4m'1-G2m°(R4m).

Case 4. M-Gl and N=S2-S2.

Case 5. N has a trivialline bundle as a subbundle of the normal bundle

in M.

4. Some other results.

We have next proposition.

Proposition 4.1. Let M―G/K be a compact irreducible quaternionic Kdhler

symmetric space. Assume that a meridian M~(p) is not quaternionic Kdhler.

Then M~{p) is congruent with M+(p).

Proof. Let Q(p) denote sp-s0. Then adQ(p) does not triviallyact on the

normal subgroup, Sp(l) of K. In fact, if adQ(p) does, Sp(l) can act on M~(p)

because Q(p)(kx)=Q(p)kQ(py1Q(p)x = adQ(p)(k)(Q(p)x)=kx for any k in Sp(l)

and x in m~. This is contrary to the assumption. Thus ad(sp) does not act
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on Sp(X) as identity because ad(s0) does. Then there exists an one-parameter

subgroup Si of Sp(l) such that the restriction of ad(sp) to St is su the point

symmetry at the unit element of Si. Take / in Sx with J2――1, then we have

Sp(Jx)=spJspSpX = ad(sp)(J)(SpX)=J-＼-x)=(-JX-x)=Jx for any x in m".

That is /xem+ and so /m~ is contained in m +. On the other hand, for any

y in m+, we have sp(Jy)=(―J)y = ―Jy, that is, /yew". Here /m+ is con-

tained in rrT and nt+ in Jm~. Now we have rn+=/m~ and we conclude that

M~(p) is congruent with M+(p) by / because of their connectedness, q.e.d.

Remark 4.1.1. We have a similar fact in case of a symmetric i?-space of

a Hermitian symmetric space (see 2.23 in [N-2]).

In the above proposition, M+(p) or M (p) is a totally complex submanifold

in M. Let M be a compact irreducible quaternionic symmetric space with

dim M―m and N its totallycomplex totallygeodesic submanifolds with dim iV=

m/2 (see [Tk-2] for the definitionof "totallycomplex"). We call such N totally

complex subspace for brevity. In [Tk-2] Takeuchi classifiedthe totally com-

plex subspaces in each compact irreducible quaternionic symmetric space and

studied their stabilitywhen M is of classicaltype. Here we have the result

for the case when M is of exceptional type.

Theorem 4.2. Let M be a compact irreducible quaternionic symmetric space

of exceptional type and N its totallycomplex subspace. Then the stabilityof N

in M is the following:

(1.

(1.

(1.

(2.

(2.

(2.

(3.

(3.

(4)

(5)

1)

2)

3)

1)

2)

3)

N=S2-GZ(C6) in M―EII is stable.

N=DIII(5) in M=EII is stable.

N=CI(A)* in M-EU is stable.

N=S2-DIII(6) in M=EVI is stable.

N=EIII in M=EVI is stable.

N=Gt(C')* in M=EVI is stable.

1) N=S*-EVII in M=EIX is stable.

2) N=DIII(S)* in M=EIX is stable.

iV=S2-C/(3) in M-Fl is stable.

N=S2-S2 in M=GI is unstable.

Proof. We can find that these spaces

each irreducible quaternionic symmetric space

are totally complex subspaces in

of exceptional type by [Tk-2].
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Refer to the results in the previous section for the cases (1.1),(2.1),(3.1),(4)

and (5) since N is a polar of M in these cases.

Case (1.2). The automorphism group of N, GN is Spin (10) and that of M,

GM is E6. Then we can see the representation of GN on g1 is equivalent to

the restrictionof the isotropy representation, that is, co^co^ where gx is the

orthogonal complement of g^ in qm which are the Lie algebras of GN and GM

respectively. If X<=Z)(Spin(10)) satisfies that the eigenvalue of its Casimir

operator is less than that of <y4 or <y5,then A=0 or <Oi. On the other hand,

mx is isomorphic to the tangent space of N at a point 0 T0N as an £/~(5)-

module, where mx is the orthogonal complement of T0N in T0M. And we have

(mA)c=^.t(^,eP7.,(il4)

as an £/~(5)-module.Since we get the next decomposition as an £/~(5)-module

Va>l<d6)―Wa)lU^Wo^A^,

we can conclude that DIII(5) is stable.

Case (1.3). The automorphism group of N, GN is Sp(A)* and the auto-

morphism group of M, GM is E6. Then we can see the representation of GN

on g1 is equivalent to the isotropy representation, that is, o>4 where q1 is the

orthogonal complement of QN in qm which are the Lie algebras of GN and GM

respectively. If A<=D(Sp(4)*) satisfiesthat the eigenvalue of its Casimir operator

is less than that of <y4,then X―0,(o2or 2ax. On the other hand, mx is isomor-

phic to the tangent space of N at a point o T0N only as a vector space not as

an t/(4)/Z2-module, where mx is the othogonal complement of T0N in T0M. In

fact we have

(m^c=(V(VRWza>3(As)mV(-X)(g)W2a)1us))

mc-(F(2W2ffllU3))0(F(-2)(g)^3U3))

as an £/(4)/Z2-module where V{X) and V(―X) are the weight spaces of ft>i(^4i).

So 2q>!is not admissible. Since we get the next decomposition as an U(A)/Z2-

module

V(u2(Ci)= Wa>2(.As)£BWa)2(As)(§)W((Ol+(Os)(Az),

q)2is not also admissible. Now we conclude that C/(4)* is stable.

For the case (2.2) the similar argument works as the case (1.2). And for

the case (2.3) and (3.2) the similar arguments work as the case (1.3). q.e.d.

We discussed the stabilityof ^-harmonic maps in [NS-3] and got the fol-
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lowing result.

Theorem 4.3 (2.12 in [NS-3]). Let f: M-^N be a non-constant smooth mat

of a compact connected Riemannian manifold M into another. Assume that f it

isometric and totallygeodesic immersion. Then f is stable as a p-harmonic maf

for a sufficientlylarge p if and only if f is stable as a minimal immersion.

We get the immediate corollary of this theorem.

Corollary 4.4. Let M be a compact connected irreducible symmetric spaa

and N a polar or a meridian of M which does not belong to the five cases it.

Theorem 3.12 in the previous section. Then the inclusion map f: N-*M is c

stable p-harmonic map for a sufficientlylarge p.

Appendix. The isotropy representations (cf. [Be] for example)

M―G/K isotropy representation

SU(n)=SU(n)xSU(n)/SU(n) (<Wi+<o≫-i)(4≫-i)

Spin(n)=Spin(n)xSpin(n)/SO(n) o)2(SO(n))

Sp(n)=Sp(n)xSp(n)/Sp(n) 2o)1(CB)

Ee=E6xE6/Ee o)2(E6)

E^E.xEJEn (d^Et)

ES=ESXE8/E8 <yg(£8)

F4=F4XF4/F4 <yx(F4)

G2=G2xG2/G2 Q)Z(G2)

AI(n)=SU(n)/SO(n) 2e>1(SO(n))

AII(n)=SU(2n)/Sp(n) o>2(Cr)

Gr°(Rn)=SO(n)/SO(r)xSO(n-r) ay^SOir^+^SOin-r))

Gr(Cn)=SU(n)/T-(SU(r)xSU(n-r)) T+fi>1(ylr_1)+Q>1(>lB_r..1)

Gr(Hn)=Sp(n)/Sp(r)xSp(n-r) <Oi(Cr)+w1(Cn-r)

CI(n)=Sp(n)/U(n) T+2m1(An-i)

DIII(n)=S0(2n)/U(n) T+a>t(An_i)

EI=E6/Sp(4)* c4(C4)
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EII=E,/Sp(l)-SU(6)

EIII=Ee/T-Spin(10)

EIV=Et/F<

EV=E1/SU(8)/Z2

EVI=EJSp{l)-Spin(X2)

EVII=En/T-Et

EV11I=EJSO(16)*

EIX=E8/Sp(l)-E7

FI=FJSp(X)-Sp&)

FII=FJSpin(9)

GI=G2/SO(4)

T+Q>b(Db)

a>4(F4)

g>4(^7)

w^AJ+aeiD,)

a)7(D8)

G>1(^1)+0>7(£7)

a>1(^4x)+<ws(C,)

6>4(54)

G>1(^1)+3ft>1(^/1)
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