TITS' SYSTEMS IN CHEVALLEY GROUPS OVER LAURENT POLYNOMIAL RINGS

By
Jun Morita

0. Introduction.

Our aim is to show that the elementary subgroup of a Chevalley group over a Laurent polynomial ring has the structure of a Tits' system with an affine Weyl group (as for Tits' system, see [2]).

We let denote \boldsymbol{Z} the rational integers.
Let Δ be a (reduced) root system (cf. [2], [4]). Then there is a finite dimensional complex semisimple Lie algebra $L=L(\Delta)$, unique up to isomorphism, whose root system is Δ. Let ρ be a finite dimensional complex faithful representation of L.

Let G be a Chevalley-Demazure group scheme associated with L and ρ (as for the definition, see [1], [8]). Since G is a representable covariant functor from the category of commutative rings with 1 to the category of groups, we get a group $G(R)$ of the points of a commutative ring R, with 1 . We call $G(R)$ a Chevalley group over R. For each root $\alpha \in \Delta$, there is a group isomorphism of the additive group R^{+}of R onto a subgroup X_{α} of $G(R)$ (cf. [1], [8]). The elementary subgroup $E(R)$ is defined to be the subgroup of $G(R)$ generated by X_{α} for all $\alpha \in \Delta$.

If Δ is of type A_{l} and ρ is of universal type (cf. [4]), then $G(R)=S L_{l+1}(R)$ and $E(R)$ is the subgroup $E_{l+1}(R)$ of $S L_{l+1}(R)$ generated by $I_{l+1}+a e_{i j}$ for all $a \in R$ and $1 \leq i \neq j \leq l+1$, where I_{l+1} is the $(l+1) \times(l+1)$ identity matrix and $e_{i j}$ is a matrix unit (1 in the i, j position, 0 elsewhere).

If R is a field, then $E(R)$ has the structure of a Tits' system associated with the Weyl group of Δ (cf. [9]). If R is a field with a discrete valuation, then $E(R)$ has the structure of a Tits' system associated with the affine Weyl group of Δ (cf. [5]). Let $K\left[T, T^{-1}\right]$ be the ring of Laurent polynomials in T and T^{-1} with coefficients in a field K. In this paper, we will show that $E\left(K\left[T, T^{-1}\right]\right)$ has the structure of a Tits' system associated with the affine Weyl group of Δ. Let L_{Z} be a Chevalley lattice in L (cf. [4]) and set $g_{K}=K\left[T, T^{-1}\right] \otimes{ }_{Z} L_{Z}$. Then g_{K} is isomorphic to a Euclidean Lie algebla (cf. [6]). Thus, if ρ is of adjoint type, and if

[^0]char $K=0$ or ≥ 5, then our result correspons to the special case of [7].
Let x and y be elements of a group, then the symbol $[x, y]$ denotes the commutator $x y x^{-1} y^{-1}$ of x and y. For two subgroups G_{2} and G_{3} of a group G_{1}, let $\left[G_{2}, G_{3}\right]$ be the subgroup of G_{1} generated by $[x, y]$ for all $x \in G_{2}$ and $y \in G_{3}$. We shall write $G_{1}=G_{2} \cdot G_{3}$ when a group G_{1} is a semidirect product of two groups G_{2} and G_{3}, and G_{3} normalizes G_{2}.

The author wishes to express his hearty gratitude to Professor Eiichi Abe for his valuable advice.

1. Characterization of affine Weyl groups.

Let Δ be a (reduced) root system of rank l, W the Weyl group of Δ, and W^{*} the affine Weyl group of Δ (cf. [2], [4], [5]). Let $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ be a simple system of Δ, and Δ^{+}(resp. Δ^{-}) the positive system (resp. negative system) of Δ with respect to $I 7$. Let α and β be in Δ, then we abbreviate $2(\beta, \alpha) /(\alpha, \alpha)$ by $\langle\beta, \alpha\rangle$, where (,) is a scalar product (cf. [4]). For each $\alpha \in \Delta, w_{\alpha}$ denotes the reflection with respect to α. Set $\Delta_{1}=\Delta \times \boldsymbol{Z}$, then an element of Δ_{1} is represented by $\alpha^{(n)}$, where $\alpha \in \Delta$ and $n \in \mathbb{Z}$. For each $\alpha^{(n)} \in \Delta_{1}$, let $w_{\alpha}^{(n)}$ be a permutation on Δ defined by

$$
w_{a}^{(n)} \beta^{(m)}=\left(w_{a} \beta\right)^{(m-\langle\beta, \alpha) n)}
$$

for any $\beta^{(m)} \in \Lambda_{1}$. Let W_{1} be the permutation group on Δ_{1} generated by $w_{\alpha}^{(n)}$ for all $\alpha^{(n)} \in A_{1}$. We shall identify W with the subgroup of W_{1} generated by $w_{\infty}^{(0)}$ for all $\alpha \in \Delta$. Set $h_{\alpha}^{(n)}=w_{\alpha}^{(n)} w_{\alpha}^{(0)-1}$ and let H_{1} be the subgruop of W_{1} generated by $h_{a}^{(n)}$ for all $\alpha^{(n)} \in A_{1}$.

Lemma 1.1
(1) Let $\alpha^{(n)}$ and $\beta^{(m)}$ be in Δ_{1}. Then

$$
h_{\alpha}^{(n)} \beta^{(m)}=\beta^{\left(m_{+}\langle\beta, \alpha\rangle n\right)} .
$$

(2) H_{1} is a free abelian group generated by $h_{\alpha_{i}}^{(1)}$ for all $\alpha_{i} \in \Pi$.
(3) Let $\alpha^{(n)}$ and $\beta^{(m)}$ be in Δ_{1}, and set $\gamma=w_{a} \beta$. Then

$$
w_{\alpha}^{(n)} h_{\beta}^{(m)} w_{\alpha}^{(n)-1}=h_{t}^{(m)} .
$$

Proof. (1) and (3) are confirmed by direct calculation. We will show (2). Set $\alpha^{*}=2 \alpha /(\alpha, \alpha)$ for each $\alpha \in \Delta$, then $\Delta^{*}=\left\{\alpha^{*} ; \alpha \in \Delta\right\}$ is also a root system and $I^{*}=$ $\left\{\alpha_{i}{ }^{*} ; \alpha_{i} \in I\right\}$ a simple system of Δ^{*}. Let α be in Δ and write $\alpha^{*}=\sum_{i=1}^{i} c_{i} \alpha_{i}{ }^{*}\left(c_{i} \in Z\right)$, then we have $h_{\alpha}^{(1)}=h_{a_{1}}^{\left(c_{1}\right)} h_{a_{2}}^{\left(c_{2}\right)} \ldots h_{a_{l}}^{(c)}$. On the other hand, $h_{\alpha}^{(n)}=\left(h_{\alpha}^{(1)}\right)^{n}$. Hence H_{1} is generated by $h_{x_{i}}^{(1)}$ for all $1 \leq i \leq l$. Next assume $h_{x_{1}}^{\left(m_{1}\right)} \ldots h_{x_{l}}^{\left(m_{l}\right)}=1\left(m_{j} \in Z, 1 \leq j \leq l\right)$. This yields $\sum_{i=1}^{i}\left\langle\beta, \alpha_{j}\right\rangle m_{j}=0$ for all $\beta \in \Delta$. Thus $m_{j}=0$ for all j. q.e.d.

Proposition 1.2 Let W, W^{*}, W_{1} and H_{1} be as above. Then $W_{1}=H_{1} \cdot W$. In particular, $W_{1} \simeq W^{*}$.

Proof Lemma 1.1 implies $H_{1} \triangleleft W_{1}$ and $H_{1} \cap W=1$. For any $\alpha^{(n)} \in \Delta_{1}, w_{\alpha}^{(n)}=$ $h_{\alpha}^{(n)} w_{\alpha}^{(0)} \in H_{1} W$. q.e.d.

Lemma 1.3 Let $\alpha^{(m)}$ be in Δ_{1} and w in W_{1}, and set $\beta^{(n)}=w \alpha^{(n)}$. Then $w w_{\alpha}^{(m)} w^{-1}=w_{\beta}^{(n)}$.

Proof We can assume $w=w_{r}^{(k)}$ for some $\gamma^{(k)} \in \Lambda_{1}$. For any $\delta^{(c)} \in \Lambda_{1}$, we have $w_{r}^{(k)} w_{\alpha}^{(m)} w_{r}^{(k)-1} \delta^{(c)}=w_{\beta}^{(n)} \delta^{(c)}$ by the following formula:

$$
\langle\delta, \gamma\rangle+\left\langle w_{a} w_{r} \delta, \gamma\right\rangle+\left\langle\delta, w_{r} a\right\rangle\langle\alpha, \gamma\rangle=0 .
$$

q.e.d.

Let $\Delta=\Delta^{(1)} \cup \Delta^{(2)} \cup \cdots \cup \Delta^{(r)}$ be the irreducible decomposition of Δ (cf. [2], [4]), and set $\Pi^{(j)}=\Delta^{(j)} \cap \Pi$ for each $j(1 \leq j \leq r)$. Let β_{j} be the unique highest root of $\Delta^{(j)}$ with respect to $I^{(j)}$ for each j. Set $\Pi_{1}=\left\{-\alpha_{i}^{(0)}, \beta_{j}^{(1)} ; 1 \leq i \leq l, 1 \leq j \leq r\right\}$ and $Y=$ $\left\{w_{\alpha}^{(n)} ; \alpha^{(n)} \in \Pi_{1}\right\}$.

Proposition 1.4 Let W_{1} and Y be as above. Then Y generates W_{1}.
Proof We can assume Δ is irreducible. Let X be the subgroup of W_{1} generated by Y. If Δ has only one root length, then $w_{\alpha}^{(1)} \in X$ for all $\alpha \in \Delta$ by Lemma 1.3. Thus $h_{\alpha}^{(1)} \in X$ for all $\alpha \in \Delta$, and $X=W_{1}$. Assume that Δ has two root lengths. Then we can choose α and β in Π such that α is short, β long, and $\langle\alpha, \beta\rangle=-1$. By Lemma 1.3, $w_{\beta}^{(1)} w_{\alpha}^{(0)} w_{\beta}^{(1)-1}=w_{r}^{(1)} \in X$, where $\gamma=w_{\beta} \alpha$. Hence $w_{\alpha}^{(1)} \in X$ for all $\alpha \in A$, which yields $X=W_{1}$. q.e.d.

When $w \in W_{1}$ is written as $w_{1} w_{2} \cdots w_{k}\left(w_{j} \in Y, k\right.$ minimal), we write $l(w)=k$: this is the length of w. Set $\Delta_{1}^{+}=\left(\Delta^{+} \times Z_{>0}\right) \cup\left(\Delta^{-} \times Z_{\geq 0}\right)$ and $\Delta_{1}^{-}=\Delta_{1}-\Delta_{1}^{+}$. For each $w \in W_{1}$, set $\Gamma(w)=\left\{\alpha^{(n)} \in \Delta_{1}^{+} ; w \alpha^{(n)} \in \Lambda_{1}^{-}\right\}$and $N(w)=$ Card $\Gamma(w)$. We will show $N(w)=l(w)$. The following proposition is easily verified.

Proposition 1.5 Let $\alpha^{(n)}$ be in Π_{1} and w in W_{1}. Then:
(1) $\Gamma^{\prime}\left(w_{\alpha}^{(n)}\right)=\left\{\alpha^{(n)}\right\}$,
(2) $w_{\alpha}^{(n)}\left(\Gamma(w)-\left\{\alpha^{(n)}\right\}\right)=\Gamma\left(w w_{\alpha}^{(n)}\right)-\left\{\alpha^{(n)}\right\}$,
(3) $\alpha^{(n)}$ is in precisely one of $\Gamma(w)$ or $\Gamma\left(w w_{\alpha}^{(n)}\right)$,
(4) $N\left(w w_{\alpha}^{(n)}\right)=N(w)-1$ if $\alpha^{(n)} \in \Gamma(w), N\left(w w_{a}^{(n)}\right)=N(w)+1$ if $\alpha^{(n)} \oplus \Gamma(w)$.

Lemma 1.6 Let t be in $\mathbb{Z}_{>1}$ and $\alpha^{(n)}$ in Π_{1}. Let w_{j} be in $Y(j=1,2, \cdots, t-1)$ and set $w_{t}=w_{\pi}^{(n)}$. Suppose $w_{1} w_{2} \cdots w_{t-1} \alpha^{(n)}$ is in Δ_{1}^{-}. Then $w_{1} \cdots w_{l}=w_{1} \cdots w_{s-1} w_{s+1} \cdots$ w_{t-1} for some index $1 \leq s \leq t-1$.

Proof Write $\gamma_{k}=w_{k+1} w_{k+2} \cdots w_{t-1} \alpha^{(n)}(0 \leq k \leq t-2), \gamma_{t-1}=\alpha^{(n)}$. Since $\gamma_{0} \in \Delta_{-}^{-}$and
$\gamma_{t-1} \in \Delta_{1}^{+}$, we can find a smallest index s for which $\gamma_{s} \in \Delta_{1}^{+}$. Then $w_{s} \gamma_{s}=\gamma_{s-1} \in \Lambda_{1}^{-}$, so $\gamma_{s} \in I I_{1}$. Thus $w_{s}=w_{r}^{(m)}$, where $\gamma^{(m)}=\gamma_{s}$. By Lemma 1.3, $w_{s}=\left(w_{s+1} \cdots w_{t-1}\right) w_{t}\left(w_{t-1}\right.$ $\cdots w_{s+1}$), which yields the lemma. q.e.d.

Corollary 1.7 If $w=w_{1} w_{2} \cdots w_{t}\left(w_{j} \in Y, 1 \leq j \leq t\right)$ is a reduced expression (i.e. $l(w)=t)$, and if $w_{t}=w_{x}^{(n)}$ for some $\alpha^{(n)} \in \Pi_{1}$, then $w \alpha^{(n)} \in J_{1}^{-}$.
proposition 1.8 Let w be in W_{1}. Then $N(w)=l(w)$.
Proof Proceed by induction on $l(w)$. If $l(w)=0$, then $w=1$, so $N(w)=0$. Assume $l(w)>0$, and write $w=w_{1} w_{2} \cdots w_{t}$ as a reduced expression, where $w_{j} \in Y, 1 \leq j$ $\leq t$. For some $\alpha^{(n)} \in \Pi_{1}, w_{t}=w_{\alpha}^{(n)}$. By Corollary 1.7, wa ${ }^{(n)} \in A_{1}^{-}$and $\alpha^{(n)} \in \Gamma(w)$. Thus $N\left(w w_{\alpha}^{(n)}\right)=N(w)-1$ by Proposition 1.5(4). On the other hand, $l\left(w w_{\alpha}^{(n)}\right)=l(w)$ -1. By induction, $N\left(w w_{a}^{(n)}\right)=l\left(w w_{a}^{(n)}\right)$, which implies $N(w)=l(w)$. q.e.d.

2. The statement of Main Theorem, some basic results.

Let Δ be a (reduced) root system of rank l and $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{i}\right\}$ a simple system of Δ (cf. [2], [4]). Let $L=L(\Delta)$ be a finite dimensional complex semisimple Lie algebra whose root system with respect to a Cartan subalgebra if of L is Δ, and let ρ be a finite dimensional complex faithful representation of L. Let G be a Chevalley-Demazure group scheme associated with L and ρ (as for the definition, see [1], [8]). Let $\left\{h_{i}, e_{\alpha} ; 1 \leq i \leq l, \alpha \in A\right\}$ be a Chevalley basis of L (cf. [3]). Then we have a Chevalley lattice $L_{Z}=\sum_{i=1}^{i} Z h_{i}+\sum_{u \in \Omega} Z e_{\alpha}$ in L. Let \mathcal{U} be a universal enveloping algebra of L and U_{z} the subring of U generated by 1 and e_{Δ}^{k} / k ! for all $\alpha \in \Delta$ and $k \in Z_{>0}$. Then L_{Z} is a $U_{\boldsymbol{Z}}$-module. Let V be the representation space of ρ, A the weights of V with respect to h, and $V=\Pi_{\mu \in A} V_{\mu}$ the weight decomposition of V. Let M be an admissible lattice in V (cf. [4], [9]), and set $M_{\mu}=M \cap V_{\mu}$. Let $K\left[T, T^{-1}\right]$ be the ring of Laurent polynomials in T and T^{-1} with coefficients in a field K. Set $M^{\prime}=K\left[T, T^{-1}\right] \otimes_{Z} M$ and $M_{\mu}^{\prime}=K\left[T, T^{-1}\right] \otimes_{Z} M_{p}$. For each $t \in K$, $n \in Z$ and $\alpha \in \Delta$,

$$
\exp t T^{n} \rho\left(e_{\alpha}\right)=1+t T^{n} \rho\left(e_{\alpha}\right) / 1!+t^{2} T^{2 n} \rho\left(e_{\alpha}\right)^{2} / 2!+\cdots \cdots
$$

induces an automorphism of M^{\prime} under the following action:

$$
\left(t^{k} T^{k^{n}} \rho\left(e_{\alpha}\right)^{k} / k!\right)(f \otimes v)=\left(t^{k} T^{k^{n}} f\right) \otimes\left(\rho\left(e_{\alpha}\right)^{k} / k!\right) v
$$

where $f \in K\left[T, T^{-1}\right]$ and $v \in M$. Then $X_{\alpha}=\left\langle\exp t T^{n} \rho\left(e_{\alpha}\right) ; t \in K, n \in \boldsymbol{Z}\right\rangle$ is a subgroup of $G\left(K\left[T, T^{-1}\right]\right)$ and isomorphic to the additive group of $K\left[T, T^{-1}\right]$. Let $E\left(K\left[T, T^{-1}\right]\right)$ denote the subgroup of $G\left(K\left[T, T^{-1}\right]\right)$ generated by X_{α} for all $\alpha \in A$. We shall write $x_{\alpha}^{(n)}(t)=\exp t T^{n} \rho\left(e_{\alpha}\right)$ for each $\alpha \in \Delta, n \in \mathbb{Z}$, and $t \in K$. Let K^{*} be the multiplicative group of K. For each $\alpha \in \Lambda, n \in \boldsymbol{Z}$, and $t \in K^{*}$, we write

$$
\begin{aligned}
& w_{\alpha}^{(n)}(t)=x_{\alpha}^{(n)}(t) x_{a}^{(-n)}\left(-t^{-1}\right) x_{\alpha}^{(n)}(t), \\
& h_{\alpha}^{(n)}(t)=w_{\alpha}^{(n)}(t) w_{\alpha}^{(0)}(1)^{-1} .
\end{aligned}
$$

Let U be the subgroup of $E\left(K\left[T, T^{-1}\right]\right)$ generated by $x_{\alpha}^{(n)}(t)$ for all $\alpha^{(n)} \in \Delta_{1}^{+}$and $t \in K, H_{0}$ the subgroup generated by $h_{a}^{(0)}(t)$ for all $\alpha \in \Delta$ and $t \in K^{*}, B$ the subgroup generated by U and H_{0}, and N the subgroup generated by $w_{a}^{(n)}(t)$ for all $\alpha^{(n)} \in \Delta_{1}$ and $t \in K^{*}$.

Theorem 2.1 (Main Theorem) Notation is as above. Set $E=E\left(K\left[T, T^{-1}\right]\right)$ and let Y be as in §1. Then (E, B, N, Y) is a Tits' system.

The proof of Theorem 2.1 will be completed in §4.
Lemma 2.2 Let $\alpha^{(m)}$ and $\beta^{(n)}$ be in A_{1}, and assume $\alpha+\beta \neq 0$. Then

$$
\left[x_{\alpha}^{(m)}(t), x_{\beta}^{(u)}(u)\right]=\Pi x_{i \alpha+j \beta}^{(i m+j n)}\left(c_{i j} i^{i} u^{j}\right)
$$

for all $t, u \in K$, where the product is taken over all roots of the form $i \alpha+j \beta, i, j \in \mathcal{Z}_{>0}$ in some fixed order, and $c_{i j}$ is as in [9, Lemma 15].

Proof Let ξ and η be indeterminates, and let α and β be in Δ such that $\alpha+\beta \neq 0$, then we have

$$
\left[\exp \xi e_{\alpha}, \exp \eta e_{\beta}\right]=\Pi \exp c_{i j} \xi^{-i} \eta^{j} e_{i \alpha+j \beta} \text { in } U_{z}[[\xi, \eta]],
$$

where $c_{i j} \in Z$ (cf. [9, Lemma 15]). The representation ρ induces a map, also denoted ρ, of U_{Z} to $\operatorname{End}(M)$ because M is admissible. Following this with the map $\varphi \rightarrow \operatorname{id} \otimes \varphi$ of $\operatorname{End}(M)$ to End $\left(M^{\prime}\right)$ yields a map, again called ρ, of ϑ_{Z} to $\operatorname{End}\left(M^{\prime}\right)$. Next, map $\mathcal{U}_{Z[\xi, \eta]}$ to End $\left(M^{\prime}\right)$ as follows: (for $t, u \in K$, and $u_{i j} \in \mathcal{U}_{Z}$)

$$
\sum_{i, j} u_{i j} \xi^{i} \eta^{j} \rightarrow \sum_{i, j} t^{i} u^{j} T^{i m+j^{n}} \rho\left(u_{i j}\right),
$$

where in general, if $f \in K\left[T, T^{-1}\right], g \in \operatorname{End}\left(M^{\prime}\right)$ then $f g$ is the element in $\operatorname{End}\left(M^{\prime}\right)$ which is "first act by g and then left multiply by f." Then our lemma is established. q.e.d.

Lemma 2.3 Let $\alpha^{(n)}$ and $\beta^{(n)}$ be in Δ_{1} and set $\gamma=w_{\alpha} \beta$. Then:
(1) $w_{a}^{(n)}(1) h_{a}^{(n)}(t) w_{a}^{(n)}(1)^{-1}=h_{i}^{(m)}(t)$ for any $t \in K^{*}$.
(2) $w_{\alpha}^{(n)}(1) x_{\beta}^{(n)}(t) w_{\alpha}^{(n)}(1)^{-1}=x_{r}^{(m-\langle\beta, \alpha) n)}$ (ct) for any $t \in K$, where c is as in [9, Lemma 19].
(3)
$h_{\alpha}^{(n)}(t) x_{\beta}^{(m)}(u) h_{\alpha}^{(n)}(t)^{-1}=x_{\beta}^{(n+\langle\beta, \alpha\rangle)}\left(t^{(\beta, \alpha)}\langle t)\right.$ for any $t \in K^{*}$ and $u \in K$.
Proof These follw as in [9, Lemma 20].
Lemma 2.4 (cf. [3], [9]) Let α be in Δ, m and n in \mathscr{Z}, and t and u in K^{*}. Then:
(1) $h_{\alpha}^{(n)}(t)$ acts as multiplication on M_{μ}^{\prime} by $t^{\langle\mu, \alpha\rangle} T^{\langle\langle, \alpha\rangle \lambda}$.
(2) $h_{\alpha}^{(n)}(t) h_{\alpha}^{(n)}(u)=h_{a}^{(m+n)}(t u)$.
(3) $w_{a}^{(n)}(t)=w_{-\alpha}^{(-n)}\left(-t^{-1}\right)$.

Let N_{0} be the subgroup of $E\left(K\left[T, T^{-1}\right]\right)$ generated by $w_{\alpha}^{(0)}(t)$ for all $\alpha \in \Delta$ and $t \in K^{*}$, and H the subgroup generated by $h_{\alpha}^{(n)}(t)$ for all $\alpha^{(n)} \in \Lambda_{1}$ and $t \in K^{*}$.

Lemma 2.5
(1) $B=U \cdot H_{0}$.
(2) H_{0} and H are normal subgroups of N.
(3) $N=H N_{0}$ and $H \cap N_{0}=H_{0}$.

Proof (1): Any element of U is a superdiagonal unipotent matrix of infinite degree and any element of H_{0} is a diagonal matrix of infinite degree with respect to an appropriate choice of a K-basis of M^{\prime}. Hence $U \cap H_{0}=1$. By Lemma 2.3(3), H_{0} normalizes U. Thus $B=U \cdot H_{0}$. (2): By Lemma 2.3(1), we see that N normalizes H_{0} and H. (3): For any $\alpha^{(n)} \in \Lambda_{1}$ and $t \in K^{*}$, we have $w_{\alpha}^{(n)}(t)=h_{\alpha}^{(n)}(t) w_{\alpha}^{(e)}(1) \in H N_{0}$, so $N=H N_{0}$. Clearly $H \cap N_{0} \supseteq H_{0}$. Conversely we take $h \in H \cap N_{0}$ and write $h=\prod_{i=1}^{i} h_{a j}^{\left(m_{j}\right)}\left(t_{j}\right)$ $\left(\alpha_{j} \in \Pi, m_{j} \in \boldsymbol{Z}, t_{j} \in K^{*}\right)$. Then h maps $K \otimes_{\boldsymbol{z}} M_{\mu}$ to itself and hence, by Lemma $2.4(1), \sum_{j=1}^{l}\left\langle\mu, \alpha_{j}\right\rangle m_{j}=0$ for all weights μ of the module. Thus we have $m_{j}=0$, which implies $h \in H_{0}$. q.e.d.

Theorem 2.6 Notation is as above. Then $N / H_{0} \simeq W_{1}$.
Proof By Lemma 2.5, we have $N / H_{0}=\left(H / H_{0}\right) \cdot\left(N_{0} / H_{0}\right)$. Since $H / H_{0} \simeq H_{1}$ and $N_{0} / H_{0} \simeq W$, our theorem is established by Lemma 1.1(3), Proposition 1.2 and Lemma 2.3(1). q.e.d.

We sometimes identify an element of W_{1} with a representative in N of N / H_{0} through the isomorphism in Theorem 2.6.

3. The case of rank 1 .

In this section, we assume Δ is of rank 1, i.e. $\Delta=\{ \pm \alpha\}$. Then we have $\Delta_{1}=$ $\left\{\alpha^{(n)},-\alpha^{(n)} ; n \in \boldsymbol{Z}\right\}$ and $\Delta_{1}^{+}=\left\{\alpha^{(m)},-\alpha^{(n)} ; m \in \boldsymbol{Z}_{>0}, n \in \boldsymbol{Z}_{\geq 0}\right\}$. Set $E=E\left(K\left[T, T^{-1}\right]\right)$, and for each $\beta^{(m)} \in \Delta_{1}$ let $X_{\beta}^{(m)}$ be the subgroup of E generated by $x_{\beta}^{(m)}(t)$ for all $t \in K$. We identify $w_{\alpha}^{(0)}$ (resp. $w_{\alpha}^{(1)}$) in W_{1} with $w_{\alpha}^{(0)}(1)$ (resp. $\left.w_{\alpha}^{(1)}(1)\right)$ in N, and simply write $w_{\lambda}=w_{\alpha}^{(\lambda)}$ for $\lambda=0, \lambda$. Set $S_{\lambda}=B \cup B w_{\lambda} B$. Our purpose in this section is to establish the following theorem.

Theorem 3.1 Notation is as above. Then S_{λ} is a subgroup of E for $\lambda=0,1$.
The proof of Theorem 3.1 is given by the next proposition.
Proposition 3.2 Let $\lambda=0$, 1. Then $w_{\lambda} U w_{\lambda}{ }^{-1} \subseteq S_{\lambda}$.
We shall give the proof of this proposition after Lemma 3.7.
Lemma 3.3 The following statements hold.
(1) $w_{0} X_{\alpha}^{(n)} w_{0}^{-1}=X_{-\alpha}^{(n)} \subseteq \subseteq$ if $n \geq 1$.
(2) $w_{0} X_{-\alpha}^{(n)} w_{0}^{-1}=X_{\alpha}^{(n)} \subseteq B$ if $n \geq 1$.
(3) $w_{0} X_{-\alpha}^{(0)} w_{0}^{-1}=X_{\alpha}^{(0)} \subseteq S_{0}$.
(4) $\quad w_{1} X_{\alpha}^{(n)} w_{1}^{-1}=X_{-\alpha}^{(n-2)} \subseteq B$ if $n \geq 2$.
(5) $w_{1} X_{-\alpha}^{(n)} w_{1}^{-1}=X_{\alpha}^{(n+2)} \subseteq B$ if $n \geq 0$.
(6) $w_{1} X_{\alpha}^{(1)} w_{1}^{-1}=X_{-\alpha}^{(-1)} \subseteq S_{1}$.

Proof (1), (2), (4) and (5) are clear. (3): For any $t \in K^{*}$,
$x_{\alpha}^{(0)}(t)=x_{-\alpha}^{(0)}\left(t^{-1}\right) w_{-\alpha}^{(0)}\left(-t^{-1}\right) x_{-\alpha}^{(0)}\left(t^{-1}\right) \in S_{0}$, hence $w_{0} X_{-\alpha}^{(0)} w_{0}^{-1}=X_{\alpha}^{(0)} \subseteq S_{0}$. (6) is similarly shown. q.e.d.

Definition Let x be in E.
(1) x is called a ($Q S, 0$)-element if x can be written as

$$
x_{-\alpha}^{(0)}(t) x_{\alpha}^{(0)}(u) x_{\beta_{1}}^{\left(m_{1}\right)}\left(t_{1}\right) \cdots x_{\beta_{k}}^{(m k)}\left(t_{k}\right) x_{-\alpha}^{(0)}(v)
$$

where $\beta_{j}^{\left(m_{j}\right)} \in \Delta_{1}^{+}-\left\{-\alpha^{(0)}\right\}, k \in \mathbb{Z}_{\geq 0}, t, u, t_{1}, \cdots, t_{k} \in K$, and $v \in K^{*}$.
(2) x is called a $(Q S, 1)$ element if x can be written as

$$
x_{\alpha j}^{(1)}(t) x_{-\alpha}^{(-1)}(u) x_{\beta_{1}}^{\left(m_{1}\right)}\left(t_{1}\right) \cdots x_{\alpha_{k}}^{\left(m_{k}\right)}\left(t_{k}\right) x_{\alpha}^{(1)}(v)
$$

where $\beta_{j}^{\left(m_{j}\right)} \in \Delta_{1}^{+}-\left\{\alpha^{(1)}\right\}, k \in \mathbb{Z}_{\geq 0}, t, u, t_{1}, \cdots, t_{k} \in K$, and $v \in K^{*}$.
(3) x is called an $(S, 0)$-element (resp. ($S, 1$)-element) if x is a ($Q S, 0$)-element (resp. $(Q S, 1)$-element) with $u=0$.

Lemma 3.4 Let x be in E and $\lambda=0,1$. If x is an (S, λ)-element, then $w_{\lambda} x w_{\lambda}{ }^{-1} \in S_{\lambda}$.

Proof Set $\lambda=0$. We proceed by induction on k. If $t=0$, clearly $w_{0} x w_{0}^{-1} \in S_{0}$ by Lemma 3.3. Assume $t \neq 0$. If $\beta_{1}^{\left(m_{1}\right)}=-a^{(m)}, m>0$, then

$$
\begin{aligned}
w_{0} x w_{0}^{-1} & =w_{0} x_{-\alpha}^{(0)}(t) x_{-\alpha}^{(m)}\left(t_{1}\right) x_{\beta_{2}}^{\left(m_{2}\right)}\left(t_{2}\right) \cdots x_{\beta_{k}}^{\left(m_{k}\right)}\left(t_{k}\right) x_{-\alpha}^{(0)}(v) w_{0}^{-1} \\
& =w_{0} x_{-\alpha}^{\left(m_{\alpha}\right)}\left(t_{1}\right) x_{-\alpha}^{(0)}(t) x_{\beta_{2}}^{\left(m_{2}\right)}\left(t_{2}\right) \cdots x_{\beta k}^{\left(m_{k}\right)}\left(t_{k}\right) x_{-\alpha}^{(0)}(v) w_{0}^{-1} \in X_{\alpha}^{(m)} S_{0}=S_{0}
\end{aligned}
$$

If $\beta_{1}^{\left(m_{1}\right)}=\alpha^{(m)}, m>0$, then

$$
\begin{aligned}
w_{0} x w_{0}^{-1}= & x_{\alpha}^{(0)}(-t) x_{-\alpha}^{(m)}\left(-t_{1}\right) x_{2} \cdots x_{k} x_{\alpha}^{(0)}(-v) \\
= & x_{-\alpha}^{(0)}\left(-t^{-1}\right) w_{-\alpha}^{(0)}\left(t^{-1}\right) x_{-\alpha}^{(0)}\left(-t^{-1}\right) x_{-\alpha}^{(m)}\left(-t_{1}\right) x_{2} \cdots x_{k} x_{-\alpha}^{(0)}\left(-v^{-1}\right) w_{-\alpha}^{(0)}\left(v^{-1}\right) x_{-\alpha}^{(0)}\left(-v^{-1}\right) \\
& \in B w_{0} x_{-\alpha}^{(0)}\left(-t^{-1}\right) x_{-\alpha}^{(m)}\left(-t_{1}\right) x_{2} \cdots x_{k} x_{-\alpha}^{(0)}\left(-v^{-1}\right) w_{0}^{-1} B \subseteq B S_{0} B=S_{0},
\end{aligned}
$$

where $x_{j}=w_{0} x_{\beta j}^{\left(m_{j}\right)}\left(t_{j}\right) w_{0}^{-1}, 2 \leq j \leq k$. The case when $\lambda=1$ is similarly shown. q.e.d.
Lemma 3.5 Let x be in E.
(1) If x is an (S, 0)-element, then

$$
w_{0} x w_{0}^{-1} \in B w_{0} X_{-\alpha}^{(0)} X_{\alpha}^{(0)} w_{0}^{-1}
$$

(2) If x is an ($S, 1$)-element, then

$$
w_{1} x w_{1}^{-1} \in B w_{1} X_{\alpha}^{(1)} X_{-\alpha}^{(-1)} w_{1}^{-1}
$$

Proof Proceed by induction on k as in Lemma 3.4. Then we have (1) and
(2). q.e.d.

Lemma 3.6 Let x be in E and $\lambda=0$, 1 . If x is $a(Q S$, λ)-element, then $w_{\lambda} x w_{2}^{-1} \in S_{2}$.

Proof Set $\lambda=0$. If $t=0$, clearly $w_{0} x w_{0}^{-1} \in S_{0}$ by Lemma 3.3. Assume $t \neq 0$. Then

$$
\begin{aligned}
w_{0} x w_{0}^{-1}= & x_{-\alpha}^{(0)}\left(-t^{-1}\right) w_{-\alpha}^{(0)}\left(t^{-1}\right) x_{-\alpha}^{(0)}\left(-t^{-1}\right) x_{-\alpha}^{(0)}(-u) \\
& \times x_{1} \cdots x_{k} x_{-\alpha}^{(0)}\left(-v^{-1}\right) w_{-\alpha}^{(0)}\left\langle v^{-1}\right) x_{-\alpha}^{(0)}\left(-v^{-1}\right) \\
\in & B w_{0} x_{-\alpha}^{(0)}\left(-t^{-1}-u\right) x_{1} \cdots x_{k} x_{-\alpha}^{(0)}\left(-v^{-1}\right) w_{0} B \subseteq B S_{0} B=S_{0},
\end{aligned}
$$

where $x_{j}=w_{0} x_{p_{j}^{(m)}}^{\left(m_{j}\right)}\left(\ell_{j}\right) w_{0}^{-1}, 1 \leq j \leq k$. The case when $\lambda=1$ is similarly shown. q.e.d.
Lemma 3.7 Let x be in E.
(1) If x is a (QS, 0)-element, then

$$
w_{0} x w_{0}^{-1} \in B w_{0} X_{-\alpha}^{(0)} X_{\alpha}^{(0)} w_{0}^{-1} .
$$

(2) If x is a (QS, 1)-element, then

$$
w_{1} x w_{1}^{-1} \in B w_{1} X_{\alpha}^{(1)} X_{-\alpha}^{(-1)} w_{1}^{-1}
$$

Proor Lemma 3.5 implies this lemma. q.e.d.
Proof of Proposition 3.2 Set $\lambda=0$ and let x be in U. We can assume $x=$ $x_{1} \cdots x_{k}$, where x_{j} is an ($S, 0$)-element, $1 \leq j \leq k$. If $k=1, w_{6} x w_{0}^{-1} \in S_{0}$ by Lemma 3.4. Assume $k>1$. By Lemma 3.5, $w_{0} x_{1} w_{0}^{-1} \in B w_{0} X_{-\alpha}^{(0)} X_{0}^{(0)} w_{0}^{-1}$. Thus we have $w_{0} x_{1} x_{2} w_{0}^{-1}$ $=b_{2} w_{0} y_{2} w_{0}^{-1}$, where $b_{2} \in B$ and y_{2} is a ($\left.Q S, 0\right)$-element. By Lemma 3.7, $w_{0} x_{1} x_{2} x_{3} w_{0}^{-1}$ $=b_{3} w_{0} y_{3} w_{0}^{-1}$, where $b_{3} \in B$ and y_{3} is a $(Q S, 0)$-element. Recurrently we have $w_{0} x w_{0}^{-1}$ $=b w_{0} y w_{0}^{-1}$, where $b \in B$ and y is a ($Q S, 0$)-element. By Lemma 3.6, $w_{0} x w_{0}^{-1} \in S_{0}$. The case when $\lambda=1$ is similarly shown. q.e.d.

4. Proof of Main Theorem.

Notation is as in $\S 2$. A quadruple ($G^{*}, B^{*}, N^{*}, S^{*}$) consisting of four sets G^{*}, B^{*}, N^{*}, and S^{*} is called a Tits' system if the following axioms are satisfied (cf. [2]):
(T1) G^{*} is a group, and B^{*} and N^{*} are subgroups of G^{*} such that G^{*} is generated by B^{*} and N^{*}, and $B^{*} \cap N^{*} \triangleleft N^{*}$;
(T 2) S^{*} is a subset of the group $N^{*} /\left(B^{*} \cap N^{*}\right)$ consisting of involutions and generates $N^{*} /\left(B^{*} \cap N^{*}\right)$;
(T3) For any $\sigma \in S^{*}$ and $w \in N^{*} /\left(B^{*} \cap N^{*}\right), w B^{*} \sigma \subseteq B^{*} w B^{*} \cup B^{*} w \sigma B^{*}$;
(T4) For any $\sigma \in S^{*}, \sigma B^{*} \sigma \nsubseteq B^{*}$.
To prove Theorem 2.1 we proceed in steps. For each $\alpha^{(n)} \in \Lambda_{1}$, let $X_{u}^{(n)}$ be the subgroup of $E\left(K\left[T, T^{-1}\right]\right)$ generated by $x_{\alpha}^{(n)}(t)$ for all $t \in K$. Let $\alpha^{(m)}$ and $\beta^{(n)}$
be in Δ_{1} such that $\alpha+\beta \neq 0$. Then, by Lemma 2.2 ,

$$
\begin{equation*}
\left[X_{\alpha}^{(m)}, X_{\beta}^{(n)}\right] \subseteq\left\langle X_{r}^{(k)} ; \gamma=i \alpha+j \beta \in A, k=i m+j n, i, j \in \mathbb{Z}_{>0}\right\rangle \tag{4.1}
\end{equation*}
$$

For each $\alpha \in \Delta^{+}$, set $P_{\alpha}=\left\langle X_{\alpha}^{(m)}, X_{-\alpha}^{(n)} ; m \in Z_{>0}, n \in Z_{20}\right\rangle$ and $Q_{\alpha}=\left\langle X_{\beta}^{(m)}, X_{\beta}^{(n)} ; \beta \in \Delta^{+}\right.$ $\left.-\{\alpha\}, m \in Z_{>0}, n \in Z_{z 0}\right\rangle$. Then (4.1) implies

$$
\begin{equation*}
U=P_{a} Q_{u} \tag{4.2}
\end{equation*}
$$

Let σ be in Y. We can write $\sigma=w_{a}^{(n)}$ for some $\alpha \in \Delta^{+}$and $n \in \mathscr{Z}$ because $w_{\alpha}^{(n)}$ coincides with $w_{-\alpha}^{(-n)}$. Then, by Theorem 3.1 and (4.2),

$$
\begin{aligned}
\sigma B_{\sigma^{-1}} & =\sigma\left(P_{\alpha} Q_{\alpha} H_{0}\right) \sigma^{-1} \\
& =\left(\sigma P_{\alpha} \sigma^{-1}\right)\left(\sigma Q_{a} \sigma^{-1}\right)\left(\sigma H_{0} \sigma^{-1}\right) \\
& \subseteq(B \cup B \sigma B) B H_{0} \\
& =B \cup B \sigma B
\end{aligned}
$$

Hence
(4.3) $B \cup B \sigma B$ is a subgroup of E.

We see that $E\left(K\left[T, T^{-1}\right]\right)$ acts on $\Omega_{K}=K\left[T, T^{-1}\right] \otimes_{Z} L_{Z}$ naturally, i.e.

$$
x_{\alpha}^{(n)}(t)(f \otimes v)=\left(\exp \text { ad } t T^{n} e_{\alpha}\right)(f \otimes v)
$$

where $\alpha^{(n)} \in \Delta_{1}, t \in K, f \in K\left[T, T^{-1}\right]$ and $v \in L_{Z}$. For each $\beta^{(m)} \in \Delta_{1}$, set $e_{\beta}^{(m)}=T^{m} e_{\beta}$, $h_{\beta}=\left[e_{\beta}, e_{-\beta}\right]$ and $h_{\beta}^{(m)}=T^{m} h_{\beta}$ in g_{K}. Let g be in U and $\alpha^{(n)}$ in Π_{1}, and set $J_{\alpha}^{(m)}$ $\sum \beta_{\beta}^{(m)_{\in A_{1}+}+(\alpha)}{ }^{(n)} K e_{\beta}^{(m)}$. Write $g e_{-\alpha}^{(-n)}=e_{-\alpha}^{(-n)}+\zeta h_{\alpha}^{(n)}-\zeta^{2} e_{\alpha}^{(n)}+z$, where $\zeta \in K$ and $z \in J_{\alpha}^{(n)}$. Let $\theta_{\alpha}^{(n)}$ be a map of U onto K defined by $\theta_{\alpha}^{(n)}(g)=\zeta$. As $g h_{\alpha}^{(0)}=h_{\alpha}^{(0)}-2 \zeta e_{\alpha}^{(n)}+z^{\prime}$ ($z^{\prime} \in J_{\alpha}^{(n)}$) and $g J_{\alpha}^{(n)} \subseteq J_{\alpha}^{(n)}$, the map $\theta_{\alpha}^{(n)}$ is a group homomorphism of U onto the additive group K^{+}of K. Let $D_{a}^{(n)}$ be the kernel of the homomorphism $\theta_{a}^{(n)}$. By (4.3),

$$
w_{\alpha}^{(n)} D_{\alpha}^{(n)} w_{\alpha}^{(n)-1} \subseteq B \cup B w_{\alpha}^{(n)} B
$$

For any $x \in D_{\alpha}^{(n)},\left(w_{\alpha}^{(n)} x w_{\alpha}^{(n)-1}\right) e_{\alpha}^{(n)}=e_{\alpha}^{(n)}+z^{\prime \prime}\left(z^{\prime \prime} \in J_{\alpha}^{(n)}\right)$, so $w_{\alpha}^{(n)} x w_{\alpha}^{(n)-1}$ can not be in $B w_{a}^{(n)} B$. Thus,

$$
\begin{equation*}
w_{\alpha}^{(n)} D_{\alpha}^{(n)} w_{\alpha}^{(n)-1} \subseteq B \tag{4.4}
\end{equation*}
$$

If g is in $U, \alpha \alpha^{(n)} \in \Pi_{1}$ and $\theta_{\alpha}^{(n)}(g)=\zeta$, then $g x_{a}^{(n)}(-\zeta) \in D_{a}^{(n)}$. Hence,

$$
\begin{equation*}
U=D_{\alpha}^{(n)} \cdot X_{\alpha}^{(n)} \tag{4.5}
\end{equation*}
$$

Let $\alpha^{(n)}$ be in H_{1} and w in W_{1}, and set $\sigma=w_{\alpha}^{(m)}$. If $N(w \sigma)>N(w)$, then (4.4) and (4.5) imply

$$
\begin{aligned}
(B w B)(B \sigma B) & =B w\left(X_{\alpha}^{(n)} D_{\alpha}^{(n)} H_{0}\right) \sigma B \\
& =B\left(w X_{\alpha}^{(n)} w^{-1}\right) w \sigma\left(\sigma^{-1} D_{\alpha}^{(n)} \sigma\right)\left(\sigma^{-1} H_{0} \sigma\right) B \\
& =B w \sigma B
\end{aligned}
$$

Assume $N(w \sigma)<N(w)$. Set $w^{\prime}=w \sigma$, then $N\left(w^{\prime} \sigma\right)>N\left(w^{\prime}\right)$. Thus,

$$
\begin{aligned}
(B w B)(B \sigma B) & =\left(B w^{\prime} \sigma B\right)(B \sigma B) \\
& =\left(B w^{\prime} B\right)(B \sigma B)(B \sigma B) \\
& \subseteq\left(B w^{\prime} B\right)(B \cup B \sigma B) \\
& =\left(B w^{\prime} B\right) \cup\left(B w^{\prime} B B \sigma B\right) \\
& =(B w \sigma B) \cup(B w B) .
\end{aligned}
$$

In general, we have
$(B w B)(B \sigma B) \subseteq(B w \sigma B) \cup(B w)$.
By the definition, $B \cap N \supseteq H_{0}$. Conversely let x be in $B \cap N$. Then $\bar{x} \in W_{1}$, where \bar{x} is the image of x under the canonical homomorphism - of N onto $N /$ H_{0}. Since x is in $B, \bar{x} \Delta_{1}^{+} \subseteq \Delta_{1}^{+}$, hence $N(\bar{x})=0$. Thus $\bar{x}=1$ and $x \in H_{0}$. This implies

$$
\begin{equation*}
B \cap N=H_{0} . \tag{4.7}
\end{equation*}
$$

These facts show that (E, B, N, S) is a Tits' system.

Remarks

1. There exists a canonical group homomorphism of the group G_{K} defined by Moody and Teo (cf. [7]) onto our group E under the following conditions: (1) G_{K} is defined over a 1 -tiered Euclidean Cartan matrix, (2) char $K=0$ or ≥ 5, (3) ρ is of adjoint type.
2. If the scheme G is simply connected (i.e. ρ is of universal type), then $G(K[T$, $\left.\left.T^{-1}\right]\right)=E\left(K\left[T, T^{-1}\right]\right)$.
3. The group $E\left(K\left[T, T^{-1}\right]\right)$ is not simple. Congruence subgroups, for example, are normal subgroups.
4. For 2 -tiered or 3 -tiered Euclidean types, the corresponding groups would be the twisted Chevalley groups over $K\left[T, T^{-1}\right]$.

References

[1] Abe, E.: Chevalley groups over local rings, Tôhoku Math. J., 21 (1969), 474-494.
[2] Bourbaki, N.: "Groupes et algèbres de Lie," Chap. 4-6, Hermann, Paris, 1968.
[3] Carter, R. W.: "Simple Groups of Lie Type," J. Wiley \& Sons, London, New York, Sydney, Tronto, 1972.
[4] Humphreys, J. E.: "Introduction to Lie Algebras and Representation Theory, "SpringerVerlag, New York, Heidelberg, Berlin, 1972.
[5] Iwahori, N. and Matsumoto, H.: On some Bruhat decomposition and the structure of the Hecke rings of \mathfrak{p}-adic Chevalley groups, Publ. Math. I. H. E. S., 25 (1965), 5-48.
[6] Moody, R. V.: Euclidean Lie algebras, Canad. J. Math., 21 (1969), 1432-1454.
[7] Moody, R. V. and Teo, K. L.: Tits' Systems with Crystallographic Weyl Groups, J.

Algebra, 21 (1972), 178-190.
[8] Stein, M.: Generators, relations and coverings of Chevalley groups over commutative rings, Amer. J. Math., 93 (1971), 965-1004.
[9] Steinberg, R.: "Lectures on Chevalley groups," Yale Univ. Lecture notes, 1967/68.

Institute of Mathematics
University of Tsukuba
Sakura-mura, Niihari-gun
Ibaraki, 305, Japan

[^0]: Received April 24, 1979

