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1. Introduction and statement of the result

Let M be a smooth 4-manifold which admits an open subset K with one end N
and an open submanifold W, with two ends N_,N,. W,W,,--- denote copies of
W,. The 4-manifold M will be called end-periodic if it admits a decomposition
M=Ku, Wyu,y W -, where N c K is identified with the end N_ of W, and
the end N, of W, is identified with the end N_ of W, and so on. Let ¥ be the
compact oriented 4-manifold which is obtained from W, by identifying the two
ends. The manifold Y has a Z-cover Y =---, W, U, W, U, W, -+ with projection
7YY A geometric object on M, a vector bundle, a connection, a differential
operator, a Riemannian metric etc. will be called end-periodic if its restriction on
EndM= W, U, W, is the pull back by 7 of an object on Y. By making choose a
smooth function s: W, —[0,1] such that s|N.=0 and s|N, =1, we obtain a
smooth step function ¢ on M such that #(x)=n+s(x) if xeW,.

Let P— M be an end-periodic principal SU(2)-bundle, and A, be an end-
periodic connection on P which is gauge equivalent over EndM to the product
connection on EndM x SU(2). Then by the lemma 7.1 in [7]

1= (1/8n2)jM tr(F, AF,)

is an integer, where tr( ) is the trace on the adjoint representation of the group

SU(2). Let E— M be an end-periodic vector bundle which is associated to the
principal bundle P— M. Put [’.c(E)={sectionu,ue’(E|s) for every

measurable A cc M}, where we assume that the set A has a finite measure, and
denote by ||-|ls, the norm by the covariant derivative V. : C7(E)— CJ(E® T M)
of compactly supported smooth sections, further VY’ denotes the j-times iterated

derivative V4 ---V, . For >0, put

,(8)={A, +a;a € s, (adP ® T* M) with norm | a4, <},
k 0 A
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where [|ala, = elﬁzizo |[V@a|? and define the small gauge group g’ (8)={he

M
L6 10(AutP);||V 4, 2|l4, <o, and tends to the identity at infinity},where we have

used the adjoint representation ad:SU(2)/Z, »End(su(2)) and the embedding
C*(Px,, SU(2)! Z,) = C”(P X,y End(su(2)).

Let ., *(8) c % (J) denote the subset of irreducible connections, and g, be
an end-periodic metric on the tangent bundle TM and % be the set of
asymptotically periodic metrics ((6.1) in [7]). Consider a &, equivariant map

P A (E)XE 3(A,8) > P(g,)(¢ ) F, € P41 (adP® P A°T* M),

where P denotes the projection to the anti-self dual part. Let
T M= P (0)] G’ & be the projection. Put Z(¢), =7’ (¢). According to
the lemmas 5.3, 5.8 and 8.4 in [7], there exists a positive number 8% >0 such that

for any §,0 <8 < &x,.Z($)N(*(8)/ F’(8)) is a smooth manifold. Q* denotes

the 3-fold iterated loop space of mappings of degree k. In this paper we consider
the case of the manifold M =S'xR’> which has been considered as an end-
periodic manifold, M' = S' x D*32Y(S"' x 82 x(1,3)Y (8" x §? x(2,4))V --- (Proposi-
tion 1 in [1]). Now we have the following result which is proved in Appendix.

PROPOSITION. The manifold M’ admits an end-periodic metric.
Then the main result in this article is

THEOREM. There exists a map /(@) — Q% (S*) which induces a surjection
of homology groups

H (A4 ($)) > H, (Q«(S*)) for ¢=[k/2].

In the previous paper [1] we have discussed the moduli space of self-dual,
asymptotically periodic instantons. There we have used the gauge group
Z(8)={h € L*s10c (AutP);||V 4, k|4, <o} instead of the small gauge group Z’(5).
Let 7:.4, =(07""(0)/52(5)0(,%*(6))/2 )—> % be the projection and put
M(@)=7"(¢). Then we have a principal SO(3)-bundle .Z’(¢)N
(4, (BN Z(8) > 4,(9).

We prove the main theorem in the sections 2 and 3. Our main tools are
periodic instantons due to Harrington-Shepard, Atiyah-Jones diagram and Taubes’
existence theorem ([3], [2], [8]).

I am grateful to Doctor Yamaguchi K. for his indication of the usefulness of
the proposition (A.1) in [6], and wish to thank the referee for his kind advices.
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2. Deformation of Harrington-Shepard’s periodic instantons

We abbreviate hyperbolic functions as follows:
ch = cosh, and sh = sinh.

Let r be the distance from the source to a point in R and 7€[0,2x].
Then Harrington-Shepard’s periodic solution is given by

p=1+1 _Sm (3

r chr—cost

Let ¢ be the smooth step function in the selection I, and f be a smooth cut off
function such that f| K- N =1 and {support f} < K. We put

shr -8
#(8) = yL1 _ shr for §>0
(=1 r chr—cosT © oro=

1 shr F()

r chr cosT

$=1+

Then ¢ is an end-periodic function and ¢ = o+(p— ¢) We put V, =V, for
i=1,2,3. By a direct calculation

- e A 1—chr cost
V1 A — _shr | (T CWCOST 4 ssh
log¢ ¢ r’(chr—cost) ( r chr cost &shr
We denote by G, the factor % and by G" the factor
i 2

r~(chr —cosT)
(_sh_r . 1-chrcost

-f 6shr). By further calculations
r chr cost

1 sin7 shr 15

The gauge potential is given by
A, =+-15,V (log), where &, =(1/4-1)[o,,0,]for i,j=1,2,3 and &, =

[/

——;—O’,-, (c.f.[3] and Jackiw, R., Nohl, C., Rebbi, C., Conformal properties of

pseudo particle configurations, Phys. Review D 15, 8 (1977)). To get the
curvature we need the following formulas,

V.V, logh= —éize*”(c,. -G* )G, G*)+;;7—V,-Vi¢3

vw{["s" PRSI S L

i

r r*(chr—cost) r*(chr—cost) r° (chr—cost)’

2 2 .

xjshr ijhl' shrcost X; (1-chr cost)shr X; l"5ijhr xjt’ﬁchr
+ - - Rl - G
r r chr—cost r  (chr—cost)’ r r r !
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V.V e —x;sinT 4, . _sin’rsint
v r(chr —cost)’ (chr —cost)?

. V.9 - .
V.V, logé= V’[%] = —#(V,W + %Vyqu)

_ shr chrcost—sin’t—1

V.V o=
Ve9=e r (chr —cosT)’

Since ¢=0 as r=1, we obtain approximately the difference between our
potential and H-S’s in [3]:
x;t’6 shr

V.ilog:e”® i
logg:e r*(chr —cost)

i r i

- W% &x,(¢”shr +t’ch
V. V.log¢:e°{2G,G"G (1’8 shr) - G,G,(t'Sshr)’} +e™° @ GGt + LS rehy)

Therefore A=A+ (A—A)e &/ (26) for any O such that 0 <28 < d,, where A and
A denote the connections derived from ¢ and ¢.

Now we consider an electric field E:R— R’U{eo} which is by definition
linear and the field of a single charge has the properties:

1) E—0Oatoe, 2) E— e at the source, 3) E is spherically symmetric

(c.f.[2]). Then we have
LEMMA. The map (V,log@): C,(R*) = Q*(S*) gives an electric field.

PROOF. As r—oo,¢0—1e" —0, is bounded. Then V,logd—0. As
r—0, shr/r—1, chr—1, e“=1, =0. Let T to be zero. Then
(=shr/r—=1)—>-2. By the fact (x, /) +(x,/r’) +(x;/r’)> > we have
[(V.log$)|| =o. Now clearly (V,log@) is spherically symmetric in R’. Thus,
we obtain the lemma.

Next we consider homotopic deformation,

- 1-s)shr _;s
ST I )L L P S
9 (9) r ' r(chreost) ¢ 0=s
Then ¢(5) is homotopic to ¢, = l+1/r and so Vlog$(§) is homotopic to
Vlog q;m , which is self-dual in R*. In the same way we can see that Vloge(5) is
homotopic to Vlogé which is trivial on EndM. Now we consider k-instantons.

For this purpose we consider the functions

§,(8)=1+ shr, g8

1
izt 1, chr,—cosT
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— - f(r)

. chr, —cost

where 7 denotes the distance from a point to i-th base point in R,i=12,--k. A
set of k-distinct base points can be regarded as an element of the configuration
space C,(R’). We denote by A the connection which is obtained from 43,(. The
space R’ is deformable onto the unit open disc by a homotopy

2sTan || x| .

-s)x+
x|

for 0=s=1 and x+0,

where the origin in R’ is fixed. Thus we can assume that k-distinct points lies in
the unit open disc in R’. Then by the construction in Remark 2 in [1] we have a
1-form a such that A+a is self-dual where the connection A has a compact
support. Therefore the 1-form a also has a compact support. For ge Z’(8), by
making use of the homotopy g™ (A+(1—-s)a)g+g 'dg, 0=s=1, we can see that
the homotopy gives a homotopy in the space Z’(8)=.%(5)/%’(6). Then the
class [A+a] is homotopic to the class [A]. Thus the gauge potential Vlog(g,)
gives an element of .Z,(5).

3. Proof of Main theorem

We prove the theorem by making use of a modified Atiyah-Jones diagram [2].
We denote by B, and M, the moduli space of connections and self-dual
connections on an SU(2) bundle over R* with topological charge k respectively.
By the consideration in Section, log@(8) is homotopic to log@m. Then by the
lemma (3, 6) in [2] we have a homotopy-commutative diagram

. Vlog¢,8)
Cu(R) Q' (8)
i M, B,
/ \ Ak
Cu(R T ke

where A, is the map (3.4) in [2].
We denote by Q'7¢(S) the set of based maps from the space S' x 5> to §° of
degree k. For amap p:S'xS§> — §° we define a map p:S'xS5> > §° by

P(t,x)=p(t,x,)" p(t, x)p(ty, x)™
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where x,,7, are base points in §',S”. Then the map p gives a map p:S° — §°.
Thus we have a map P: Q" (8% - Q% (SY). By making use of the natural
projection §'xS$? — S° we have a map j:Q%(S5%) - Q"% (S?) such that P-j =
the identity map. By the proposition 2.3 in [2] we have a homotopy equivalence
B, = Q*(S”). By mimicking the proof of this proposition, we obtain a map
C: %/(8)— Q"(S’) which is compatible with the homotopy equivalence
B, = Q%(S”). Precisely the space %’(§) is deformable into the subspace
%/(0)., of the classes of connections which are flat outside a compact set in
M=S"xR’ (this fact can be seen by making use of a cut off function and a
homotopy as in the consideration in the section 2). For any such connection A
there exists a flat section & of the principal bundle P—S'xR® with
a|K‘ =K, xg,, where KZ° denotes the complement of the subspace
K, =KUNWOUNWIU---UNW" for a sufficiently large n. Pick any section f of P
which agrees with @ on §'x¢,/ is a line through the origin in R’,(S'x R’
retracts onto S' x ¢, therefore such B exists). For a sufficiently large n and a
subspace S'xS$’>x(f) in W,o and B differ by a map g:S' xS’ x () > SU(2)
with g(S'x/¢)=1. Then by assigning g to A we get the required map
B(8) = Q2 (S).
Thus we obtain the following homotopy-commutative diagram:

. Vlogd,(8)
C(R) Q (S
/ \ y @ ; -/ Tp
¢ ¢ B, Q"%x(S%)
C(R)
3 h
C
Ci(S'X RY),

where i and y denote the inclusion maps and # denotes the composite map of
P-C and a homotopy inverse Q’ — B,. The commutativity in the lower part
follows from the consideration in the section 2. By the theorem due to GeSegal
([5]) the induced homomorphism

(V1og,(8)), :H,(C,(R*)) = H (Q%(5%))

is an isomorphism for k >>¢g. The homotopy type of Q’«(S”) is independent of k.
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Then by the proposition (A.1) in [6], H,(C,(R’)—>H, (Q(S*) is an
isomorphism for g = [k/2]. Therefore the homomorphism

(P-C-y), H, (4'(8) - H, (Q(S5)

is surjective for ¢ = [k/2]. Thus we have proved the theorem.

REMARK. By making use of a diffeomorphism

R*xS'3(x,9,2,6) = (x,y,e° cosB,e*sin@) e R* - R* = §* - §2,

we obtain a compactification of the space up to diffeomorphism. But I do not
know a conformal compactification without singularities ([4]).

APPENDIX. Proof of the proposition in the section one.
Firstly I should remark that the manifold M =S'x R’ has been considered as an
end-periodic manifold

M’ = 5" x D*,Y(8" x §2 x(1,3)V(S' x §* x (2,4))V..... 2.[1D

The space §' x 5% X[l,c0) admits the pull-back metric via T of the product metric
on the space S' x§*x §'. By making use of the cut off function f in the section 2,
we connect the natural metric g, in the space S'x D%3» with the metric g, on the
EndM, and we obtain a metric on the manifold M’

g=f(r)g,+(1-f(r)g,.

Then the restriction of the metric g over EndM is induced from the conformally
flat metric g, on the manifold Y. Thus we obtain an end-periodic metric on the
manifold M’.
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