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1. Introduction and statement of the result

Let M be a smooth 4-manifold which admits an open subset K with one end N

and an open submanifold Wo with two ends N_,N+. Wl,W2,--- denote copies of

Wo. The 4-manifold M will be called end-periodic if it admits a decomposition

M = KvNWouNWlV'--, where N a K is identified with the end N_ of WQ and

the end N+ of Wo is identified with the end N_ of Wl and so on. Let Y be the

compact oriented 4-manifold which is obtained from Wo by identifying the two

ends. The manifold Y has a Z-cover Y = ---NW_, uw Wo uw Wl■■■with projection

n : Y ^ Y. A geometric object on M, a vector bundle, a connection, a differential

operator, a Riemannian metric etc. will be called end-periodic ifits restriction on

EndM= Wo uN WJ ･･･is the pull back by K of an object on Y. By making choose a

smooth function s: Wo ―>[0,1] such that s＼N_=0 and 5|7V+=l, we obtain a

smooth step function t on M such that t(x)= n + s(x) if x e Wn.

Let P->M bean end-periodic principal S£/(2)-bundle, and Ao be an end-

periodic connection on P which is gauge equivalent over EndM to the product

connection on EndM x SU(2). Then by the lemma 7.1 in [7]

/= (l/8*2)f/r(F,AF,)

is an integer, where tr( ) is the trace on the adjoint representation of the group

SU(2). Let E ―> M be an end-periodic vector bundle which is associated to the

principal bundle P ―> M. Put L2 ioc(E)-{ section u;ue L2(E＼a) for every

measurable A aa M}, where we assume that the set A has a finite measure, and

II II ^denote by ||■H^ the norm by the covariant derivative V^ : C^(E) ―> C^(ERT M)

of compactly supported smooth sections, further V^' denotes the j-times iterated

derivative V^, ･･･V/4o.For <5>0,put

S3fk(S)= {AQ+a;aeL25,＼oc(adPR T*M) with norm ||a||A0<oo}≫
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where ||a||Ao= ＼e ZL> ll^>)flll2and define the small gauge group %'(6) = {h £

Z,26,iot(AutP);j|VAo^||a0<°°,and tends to the identity at infinity},where we have

used the adjoint representation ad: SU(2)/Z2 ―≫End(su(2)) and the embedding

r(Pxad SU(2)/Z2)-*C°°(Pxad End(su(2)).

Let s/k *(S)a s/k(8) denote the subset of irreducible connections, and g0 be

an end-periodic metric on the tangent bundle TM and W be the set of

asymptotically periodic metrics ((6.1) in [7]).Consider a ^, equivariant map

^:j<(5)x^3(A,0)^F_(^o)(0-1)*^GL24,,oc(ad/}RFA2r*M),

where P_ denotes the projection to the anti-self dual part. Let

n':jrk'=&>~l(0)/%'->& be the projection. Put J?(Q)'k =n'~＼(p).According to

the lemmas 5.3, 5.8 and 8.4 in [7],there exists a positive number ≪5*> 0 such that

for any 5,0 <8 <8*,Jfk'(<l))f)(s/*(S)/%'($)) is a smooth manifold. Q3* denotes

the 3-fold iteratedloop space of mappings of degree k. In thispaper we consider

the case of the manifold M = Si xR3 which has been considered as an end-

periodic manifold, M' = Sl x D33/2U(Sl xS2x (1,3))u(Sl xS2x (2,4))u ･･･(Proposi-

tion 1 in [1]).Now we have the following result which is proved in Appendix.

Proposition. The manifold M' admits an end-periodicmetric.

Then the main resultin thisarticleis

Theorem. There existsa map ^'(0) ―>Q.3k(S3)which induces a surjection

of homology groups

H.(^r/(0))->H,(Q3*(53)) for q^[kl2＼.

In the previous paper [1] we have discussed the moduli space of self-dual,

asymptotically periodic instantons. There we have used the gauge group

&k(S) = {heL26Aoc(AutP);＼＼VAoh＼＼Ao< °°}instead of the small gauge group %'(8).

Let n＼JKk =^-＼R)l&k{8)(＼{stf*{8))l&k )-≫^ be the projection and put

Jtk(<j))= W~l($). Then we have a principal SO(3)-bundle ^'(0)fl

K*(S))/^'(5))->.<(0).

We prove the main theorem in the sections 2 and 3. Our main tools are

periodic instantons due to Harrington-Shepard, Atiyah-Jones diagram and Taubes'

existence theorem ([3], [2],[8]).

I am grateful to Doctor Yamaguchi K. for his indication of the usefulness of

the proposition (A.I) in [6],and wish to thank the referee for his kind advices.
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2. Deformation of Harrington-Shepard's periodic Instamtons

We abbreviate hyperbolic functions as follows:

ch = cosh, and sh = sinh.

Let r be the distance from the source to a point in R3 and t e [0,lit].

Then Harrington-Shepard's periodic solutionis given by

0 = 1+ 1 **£ ([3]).
r chr ―cost
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Let t be the smooth step function in the selection 1, and / be a smooth cut off

function such that /1 K- N = 1 and {support /} <z K. We put

0(5) = ! + ^- shr
chr-cosr

1 1,1 sfar
0 = 1 + --―

r chr-cosT

e

fir)

tS
for S > 0

Then 0 is an end-periodic function and 0 = </>+ (0 - 0). We put Vx.

?= 1,2,3-By a direct calculation

V,.log0
_e_ £j

0 r2(chr-cosT)

(

-

= v, for

We denote by G the factor -= ' and by G* the factor
J ' r2(chr-cosT)

(
sfar 1-chrcosr

The

r

+

chr cost
-1 dshr By further calculations

Vrlog0 =

gauge potentialis given by

A

-h

1 sint" sfar

d r(chr-cosf)
2

e
tS

= ^f-＼.aijVj(log0), where cr = (1 /4V^T)[cf.,<r;]for /,j = 1,2,3 and oi4 =

, (c.f.[31 and Jackiw, R., Nohl, C, Rebbi, C, Conformal properties of

pseudo particle configurations, Phys. Review D 15, 8 (1977)). To get the

curvature we need the following formulas,

v,.v,# = ≪

*;

V7V,log0 = --^-e

5a 2xixj xixj shr

r2(chr-cosT) r4(chr-cosr) r3 (chr-cosr)2
G#

(l-chrcosT)sfar Xj fdxjShr Xjt'Schrl

(chr-cosT)2 r r r J '

XjShr XjChr shr cost Xj (1-chr costr)sfar Xj t"dx}

r2 r2 chr-cosi r (chr-cosr)2 r r

1
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vrv,.^ = e
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J -yinr
G

sinVsinr ＼

＼r (chr-cosT) (chr-cosr) )

V V log0 = V

VrVy0 e

'

(

x

)
=-?(Vi)2+iv^

ts shr chr cosr-sin2T-l
r (chr-cosT)2

Since 0 = 0 as r ^ 1, we obtain approximately the difference between our

potential and H-S's in [3]:

v? i 2 -td xfSshr

' hy r2(chr-cosr)

V .V,.log0 : e-2r5{2G,.G#G.(r<5shr) - G^it'Sabr)2} + e"s
^-

GiG* +
8x-(t"shr + t'chr)

r

G,.

Therefore A = A + (A - A) e sf(28) for any 8 such that 0 < 28 < 8^, where A and

A denote the connections derived from Q and 0.

Now we consider an electric field E: R ―>i?3|Jfoo} which is by definition

linear and the field of a single charge has the properties:

1) E ―≫0 at °°, 2) £―≫°o at the source, 3) E is spherically symmetric

(c.f.[21). Then we have

Lemma. The map (V. log0): C^R3) -≫Q3i(S3) gives an electricfield.

PROOF. As r-> ≪>,0-≫ 1,^ tS -^Q,t' is bounded. Then V. Iog0-≫O. As

r-≫0, shr/r-≫l, chr-≫l, e~'5 =1, t' = 0. Let T to be zero. Then

(-shr/r-l)-≫-2. By the fact (jc, /r2)2 +(x2 /r2)2 +(x3/r2)2 -> °° we have

||(V,.log0)||―>･<≫. Now clearly (V,. log0) is spherically symmetric in i?3. Thus,

we obtain the lemma.

Next we consider homotopic deformation,

{ ' r r(chrcosf)

Then (j>(8) is homotopic to 0(1)

e"s O^s^l.

1+1/r and so V log 6(8) is homotopic to

Vlog0(1), which is self-dualin R4. In the same way we can see that V log 0(5) is

homotopic to Vlog0 which is trivialon EndM. Now we consider &-instantons.

For thispurpose we consider the functions

*.(≪)= 1 + 2
i~―!!H―.e-

1=1 r chr.- cost
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1=1 r car ―cost
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where rt denotes the distance from a point to z-thbase point in R3,i = 1,2,-･-,k. A

set of ^-distinct base points can be regarded as an element of the configuration

space Ck(R3). We denote by A the connection which is obtained from (j>k.The

space R3 is deformable onto the unit open disc by a homotopy

2sTan~'llx II
(l-s)x + ―, , " "-x for O^s^l and jc*O,

＼＼x＼＼K

where the origin in R3 is fixed.Thus we can assume that ^-distinct points lies in

the unit open disc in R3. Then by the construction in Remark 2 in [1] we have a

1-form a such that A+a is self-dual where the connection A has a compact

support. Therefore the 1-form a also has a compact support. For ge&k'(S), by

making use of the homotopy g~1(A+ (l-s)a)g + g~xdg,Q^sSil, we can see that

the homotopy gives a homotopy in the space ^'(S) = s/k(8)/S?k'(5).Then the

class [A+a] is homotopic to the class [A]. Thus the gauge potential Vlog(^)

gives an element of J[k'{8).

3. Proof of Main theorem

We prove the theorem by making use of a modified Atiyah-Jones diagram [2].

We denote by Bk and Mk the moduli space of connections and self-dual

connections on an SU(2) bundle over R4 with topological charge k respectively.

By the consideration in Section, log0(<5) is homotopic to log0(1). Then by the

lemma (3, 6) in [2] we have a homotopy-commutative diagram

Q(i?3)

I

Ck(R4)

Vlog≪t),(5)

/

Bk

Q＼(S3)

Q4* (S4)

Mk

3

3*

s≫-

where Xk is the map (3.4) in [2].

We denote by Ql'2k(S3) the set of based maps from the space Sl x S2 to S3 of

degree k. For a map p: Sl x S2 ―≫S3 we define a map p: 51 x S2 -^ 53 by

≫(?,x) = p(r,xn)"'o(r,x) o(rn,x)"1
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where xo,to are base points in Sl,S2. Then the map p gives a map p:S3 ―≫S3.

Thus we have a map P :Ql'2k(S3) -> Q?k(S3). By making use of the natural

projection S'xS2-*^3 we have a map j: H3,t(S3)-> QU*(S3) such that P-j =

the identity map. By the proposition 2.3 in [2] we have a homotopy equivalence

Bk ―>Q?k(S3). By mimicking the proof of this proposition, we obtain a map

C: M?k'(8)->Q.U2k(Si) which is compatible with the homotopy equivalence

Bk -^O3*(53). Precisely the space ^k＼8) is deformable into the subspace

3§k＼8')aaof the classes of connections which are flat outside a compact set in

M ―Sl x R3 (this fact can be seen by making use of a cut off function and a

homotopy as in the consideration in the section 2). For any such connection A

there exists a flat section (X of the principal bundle P ―≫S1x i?3 with

a＼Knc = Knc xg0, where Knc denotes the complement of the subspace

Kn=KuNW0[JNWl{J-^NWn for a sufficientlylarge n. Pick any section ft of P

which agrees with (X on Slx£,£ is a line through the origin in /?3,(S'x/?3

retracts onto Slx£, therefore such fi exists). For a sufficientlylarge n and a

subspace S'xS2x(f) in Wn,a and (3 differ by a map g: S] x S2 x (?) -> 5f/(2)

with gCS1 x ^) = 1. Then by assigning g to A we get the required map

^'(5)-≫£21>2*(S3).

Thus we obtain the following homotopy-commutative diagram:

Vlog<L(8)

/

Ck(R4)

ck

Ck(S

(i?3)

'xi?3),

Mk

3 /

Q＼(S3)

･/ I"
Bk

h

Ql2k(S3)

Y

>■

where i and 7 denote theinclusion maps and h denotes the composite map of

P ･C and a homotopy inverse O3* ―≫Bk. The commutativity in the lower part

follows from the considerationin the section2. By the theorem due to GRSegal

([5])theinduced homomorphism

(Vlog04(a))+:H/Ct(tf3))^H,(Q3t(.S3))

is an isomorphism for k≫ q. The homotopy type of Q3k(S3) is independent of k
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Then by the proposition (A.I) in [6], H9(Q(/?3))-≫H9(Q3*(S3)) is an

isomorphism for q^[k/2]. Therefore the homomorphism

(P ■C ■y^ : Ug (Jtk '(8)) -* Hg ((Q＼ (S3))

is surjective for q^[k/2]. Thus we have proved the theorem.

Remark. By making use of a diffeomorphism

R3 x Sl 3 (x,y,z,0) -≫(x,y,ez cose,ez sin0) e R4 - R2 = S4 - S2,

we obtain a compactification of the space up to diffeomorphism. But I do not

know a conformal compactification without singularities ([4]).

Appendix. Proof of the proposition in the section one.

Firstly I should remark that the manifold M = Sl xR3 has been considered as an

end-periodic manifold

M' = Sl xDW xS2 x(l,3))u(5' xS2 x(2,4))u.... (2.[1])

The space Sl xS2 x[l,°°) admits the pull-back metric via 71 of the product metric

on the space Sx x S2 x Sl. By making use of the cut off function / in the section 2,

we connect the natural metric gQ in the space Sl x D23/2 with the metric g, on the

EndAf, and we obtain a metric on the manifold AT

g = f(r)g0Hl-f(r))gl.

Then the restriction of the metric g over EndM is induced from the conformally

flat metric g{ on the manifold Y. Thus we obtain an end-periodic metric on the

manifold AT.
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