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1. Introduction.

Let (Q, 2",P) be a probability space. For any two a-fieldsJ. and @ define

the mixing coefficients<p and a and the maximal correlation coefficientp by

<j>Ul,$)=$up＼ P(B＼A)-P(B)＼ A^JL, B^B, P(A)>0;

a(Jl, <£)=sup＼P(AnB)-P(A)P(B)＼ AzlJI, B^B;

p{JL, -R)=sup|Corr(£, rj)＼ feL8U), ^eI2(J).

Let {Xji ―oo<y<oo} be a strictlystationary sequence of random variables

on (Q, 3, P). For integers n let £Pnbe the cr-fieldgenerated by {Xji j^n} and

3n the tr-fieldgenerated by {Xji j^n). The sequence {X}) is said to be

^-mixing (or uniformly mixing) if

0(n) = 0(£po,2rn)-^0 as n-^oo

(see Ibragimov [93), strongly mixing if

a(n)=a(£P0,2r≫)-^0 as n―>oo

(see Rosenblatt [15]) and completely regular if

p{ri)= p{&0, 2rn)->0 as n->oo

(see Kolmogorov-Rozanov [13]).

Among these coefficients,the following inequalitiesalways hold:

4a(n)^p(n)S201/2(n).

The left-hand inequality is an easy consequence of the definitions of the coeffi-

cients a(n) and p(n), and the right-hand inequality is a consequence of the

Ibragimov fundamental inequality for 0-mixing sequences (see [11, Theorem

17.2.3,p. 309]). Thus a cJ-mixing sequence is completely regular (the converse
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is false; see [11, pp. 310-314]), and a completely regular sequence is strongly

mixing (the converse is false; see [16, pp. 206-209], but for Gaussian sequences

complete regularity is equivalent to strong mixing; see [13]). Formulations of

various mixing conditions are given by Ibragimov-Rozanov [12] for stationary

Gaussian sequences in terms of the spectral density, and by Rosenblatt [16] for

stationary Markov sequences in terms of the transition operator.

Let {Xj＼ be a strictlystationary sequence with EXj=0 and EX)<co. Set

n-spY .t-2 17C2
n Z-iS＼ji "n "Jji･

.7=1

In numerous papers conditions are investigated which guarantee asymptotic

normality of the distribution of the normed sum a^Sn (see, for example, [2,

Chap. 4], [9], [10] and [11, Chap. 18]).

We are interested in knowing when the rth absolute moment of a'^Sn (r>2)

converges to that of the normal distribution. When Xj are independent (but not

necessarily identically distributed) random variables, Bernstein [1] presented a

necessary and sufficientcondition (the rth Lindeberg condition) for the conver-

gence of absolute moments in the centrallimit theorem. Brown [4, 5] gave an

alternative proof of Bernstein's result. Hall [8] extended Bernstein's theorem in

both the independence and the martingale cases. For stationary ^-mixing and

strongly mixing sequences the author [17, 18] obtained some results on the con-

vergence of moments. Recently, in the ^-mixing case, the following much

broader result was proved; the proof is completely different from those in [17]

and [18].

Theorem A ([19]). Let {Xj＼ be a strictlystationary sequence with EXj―0

and E＼Xj＼r<oo for some r>2. // <£(n)-≫0and o＼-+oo as n^ooy then

lim E|Sn/Gn|r

71―oo

=
("

(27r)-1/2＼u＼rexp(-u2/2)du

In Theorem A it is not assumed that 0(n)->O at a specific rate, while the

series-type conditions on the mixing coefficientswere imposed in all the theorems

of [18] (cf. [9, Theorem 1.4]). The purpose of this paper is to generalize the

above ^-mixing result to the complete regularity case. The basic idea, which

was used in [19], is a martingale representation of the sum Sn, and the proof

is based on Ibragimov's moment inequality (Lemma 2 below) and a martingale

result of Hall [8].



The convergence of moments in the central limit theorem 149

2. Statement of a result.

First we state a result of Ibragimov [10, Theorem 2.1], which generalizes

an earlierresult of his own [9, Theorem 1.41.

Theorem B (Ibragimov). Let {Xj} be a strictly stationary sequence with

EXj―0 and EX2j<oo. (i) // lim o(n)=0 and lim supcrfj= oo, then a2n= nh(n),

where h(n) is a slowly varying function in the sense of Karamata. (ii) // in

addition E＼XAT<oo for some r>2, then

llmP{Sn/an<x}

K-≫oo
=J X (2n)-ll2exp(-u2/2)du

Remarks. Theorem B (ii)failsifits hypothesis £|X,-|r<oo (r>2) is omitted;

a counterexample is constructed by Bradley [3]. Lifshits [14] proved some

centrallimit theorems on Markov chains under
Jo(n)^0

and other slightlyweaker

conditions.

In this article the conditions of Theorem B, without any additional conditions,

will be shown to imply the convergence of the rth absolute moments in the

centrallimit theorem. More precisely,we shall prove

Theorem C. Let {Xj} be a strictlystationary sequence with EXj=0 and

E＼Xj＼r<oo for some r>2. If p{n)―>0and o%-*co as n->oo, then

(1) lim E＼Sn/an＼

n->oo

=
r

(27t)-U2＼u＼rexp(-ii2/2)du

J -CO

As we have remarked in Sect. 1, the ^-mixing conditionimplies the complete

regularity condition,thus Theorem C contains Theorem A as a special case. For

strongly mixing sequences the relation (1) holds under the conditions EXj=0,

E＼XAr+8<ooforsomer>2and8>0,EX＼+2f:E(X1Xj)>0and ijn^-^n))5"^
j=2 n=i

<oo (see [18]).

3. The proof.

In the proof, limits will be taken as n->oo. The symbol K denotes a generic

constant, not necessarily the same at each appearance. J3r denotes the rth

absolute moment of the standard normal distribution.I(A) denotes the indicator

function of the event A.

For the proof of Theorem C we need a few well-known inequalities.
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Lemma 1. Suppose that the random variables£ and rj,respectively,are meas-

urable with respect to 9?k and ?&+,;

1) // £|2<cx5 and Erjz<^) then

(2) ＼E^V)-F4-Erj＼^(E^y'%EVy'zp(n);

2) if ＼$＼SB a.s. and E＼yj＼s<oofor some s>l, then

{ 3) |E^v)-Ei'Erj ＼̂6B(E |v ＼'Y^Wn))1'1'*.

The inequality (2) is an immediate consequence of the definition of the

coefficient p{n). The inequality (3) is due to Davydov [7]. The following

inequality, due to Ibragirnov [10], is fundamental to our proof.

LEMMA 2. Under the assumptions of Theorem C, there exists a constant C

such that

(4) E＼Sn＼rSCorn for all n^l.

We shall divide the sum Sn into three parts:

Sn=S'n+S'^onTn+GnT'n+S';,

and show that a^S'l and T'n are asymptotically negligible,while the rth absolute

moment of Tn converges to /5r>where the variable Tn will be chosen to be a

martingale.

The firststep is to represent the sum Sn in the form

where

jp+(j-l)q

i=O"-l)(p+≪)+l

Zj
jlp+q)

s xt

i=jp +(j-l)q+l

Zk + l ―

i=k(p+q) +l

l^j^k;

p ―p{n) and q=q{ri)^{l, 2, ■･･,n} and satisfy the following conditions:

(5) a) p―>oo) <7-*oo, w-i£_>o, p~1q->0,

b) w1+V~^/≫"8-^0 for some
i8>0,

c) np-ipV'iq^O,

and &=&(n) = [n/(/>+<7)]. Here [fl] denotes the greatest integer S.a. Such

systems of p and <7 actually exist. In fact, if we set
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X(n)=max{P1'r(lnll*D, (log n)'1},

/)=max{[nios/'-([n1/4])U(n))-1],[n^U(n))-1]},

then all the conditions in (5) are satisfied;

a) p―>co} q―>co} n~1p-*0, p~1q―>§,

b) n1+V~fy~2^M~(1~8/J)/4^(≪M),if jS^l/3,

c) nr>2/r(?)^i(nH0.

Now we break the sum S'n into two parts. We denote by Xnj the a-fields

3>jP+a-1)q,and define the random variables

Ynj=ynJ-E{ynJ＼Xn.j-1}, l^jSk,

where ynj―yjlon- Then {Ynj, Xnj＼ 1^;^^} is triviallya martingale difference

sequence for each n^l. Let

j=l .7=1

Then SB=aBTB+ffBT;+S^.

The theorem will be proved in three stages:

(i) E＼SZ/on＼r-*0,

(ii) E＼T'n＼r-+0,

(iii) E＼Tn＼T~+Pr.

In view of (i),(ii),(iii)and the inequality:

＼{E＼SJanVy'r-{E＼TnVY'rVS2^(E＼T'nV+E＼S'i/anV),

the assertion of the theorem follows.

Proof of (i). Since a＼―nh{n), where h(n) is a slowly varying function

(Theorem B), using Lemma 2, Minkowski's inequality and stationarity,and arguing

as in [11, p. 337], we obtain

EiS'UonV^o-n^kiEU.vyr+tEU^yy'ry

^kK(koalonJrOn./ony

= Kf(k2qh{q)
VV nh(n) ) ' V nh(n)

)l/2＼r

where q'= n ―k(p-rq) is the number of terms In zk+i, and (i) Is proved.

Before proving (ii)and (iii),we note that under the requirements imposed on

p, q and k,
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(6)

In fact,

E(S'J<Tn)2 =

RyOZO YOKOYAMA

ka%/a＼ = 1+0(1)

ka%/al+2
itz(k~j-rl)E(ynlynj)

by stationarity. Since ynl is measurable with respect to £BV and ynj, 2S.jSk,

are measurable with respect to %v+0, applying the inequality (2),

S (k-j+1) IE(ynlynj)| ^(kap/anYp(q)
j=2

Moreover, by condition (5),

kp(q)^np-1p(q)Snp-1p2/r(q)^O .

Hence

(7)

On the other hand,

(8)

E{S'Janf={ka%/ol){U-o{l)).

E(S'n/any=E(Sn/ony+E(SZ/ony-2E(SnSZ/al)

= l+o(l)

by (i). The equality (6) now follows from (7) and (8).

Proof of (ii). For simplicity we put

wnJ=E{ynj＼Xn,J-1}, l^jSk,

and because of the stationarity,we put

an = E＼ynJ＼r, l^jSk.

By Holder's inequality,

E |wnj |r=E(wnjwnj |wni |r'2)

= E(E{ynjWnj＼wnj＼r-*＼-Cn,j-l})

= E(ynjwnj＼wnj＼r-*)

^(E＼ynjwnj＼r<2y'r(E＼wnj＼ry-2lr,

so that we have

E＼wnj＼r^E＼ynjwnj＼rl＼

Since wnj is measurable with respect to S>u-Vp+U-2)(1and ynj is measurable with

respect to %u-1)lp+q) for each l^j^k, using (2) and Jensen's inequality,

E＼ynjwniV'iSiE＼ynJVf'KE＼wnJV)^p{q) + E＼ynj＼r^E＼wnJV^

^anp(q)+aTE＼wnj＼rl＼
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Using (2) and Jensen's inequality again,

E＼wnj＼r/z=E(ynjwnj＼wnj＼rl2-H(＼wnj＼>0))

^{Eyi3yi＼E＼wnJV-*y>*p(.q)

Combining the estimates above, we find that

(9) E＼wnj＼r^2anP(q).

We obtain from Minkowski's inequality, (4)-(6) and (9) that

£ir;r^(2(£|w^r)i/r)r

^2kranp(q)

^K(kai/(j2ny'2kr/2p(q)^Q,

and hence (ii)is proved.
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Proof of (iii). Define wnj and an as before. For simplicityof notation we

also define

Unj^ylj-Eylj, ISjSk,

and (because of the stationarity)

bn = E＼unJ＼≪＼ l^j^k.

Now by stationarity,

and using (2)

S EYlj=ka%/asn- 2 E(ynjwnj),

Thus, taking account of (6), we see that

S£r≪B,=i+0(i).

Therefore, according to Hall's

we can show that

(10)

(11)

and

[8] theorem, the proof of (iii)will be complete if

maxE{Ylj＼XnJ-1}-+0
jsk

2£|rBJr-o

3 = 1

in probability,
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(12) E

Ryozo Yokoyama

jtEiYljlXn.j-J-l rlZ

-*0

However, (11) immediately implies the conditional Lindeberg condition:

for all £>0,
i}E{Y2nJI(＼YnJ＼>e)＼XnJ-1}-^0

in probability.

7=1

Hence (10) is a consequence of (11) combined with (12) (see Brown [6, Theorem.

1 and Lemma 1]). We have from Jensen's inequality,(4) and (6) that

Y,E＼YnJVS2^J:{FAyni＼r+E＼wnJV)
.7=1 .7=1

<,2rkan

and thus (11) holds.

Our goal is to show that (12) holds. Now,

E
t
tE{Y2nj＼Xn,}-1}-＼

rn

= E
£E{ylj＼Xn,j-1}-£wlj-l r/2

1.7 ―1 ＼J―1/J

Making use of the inequality (9),and arguing just as in the proof of (ii),we get

E( S wlX'2^2krlianp(q)

SK(ko%/olY'zp{q)^0.

Moreover, we have from (6) and Minkowski's inequality that

E jtEiyljlXn,^}-!

~E

E

k
s

772

EiyljlXn.j-J-kol/ol

k t/Z

/ k ＼r/2^(2(E|iMlr/i)1/r)

Consequently, to prove (12) it is sufficientto show that

(13) 2(£i^r/2)2/r-*o

77 2



The convergence of moments In the central limit theorem 155

We shall separate the proof of (13) in three cases; r>4, r―4 and 2<r<4.

Suppose firstthat r>4. By replacing ynj, wnj, an and r in the proof of (9)

by unj, vnj, bn and r/2 respectively, we deduce that

E＼vnjr2£2bnp(q).

Since

bn£2≪*-i{E＼ynj＼r+(EylJrt}£2r≫an,

then, by virtue of (4) and (6),we see that

(14) -h{E＼vnJV'rir^k{2bnp{q)rr
j―1

^k{2rlManp{q)flr

£K(kol/ai)p*>r(q)->0,

and thus (13) is proved for the case r>4.

When r=4, using (2) and Jensen's inequality, we get

E＼vnJ＼r/*=E(unjvnj)

^(Eu2nJY'%Evljyi2p(q)

^Eu2njp{q) .

Hence (13) also holds for r―A.

Finally, we assume that 2<r<4. By Holder's inequality,

(15) E＼vnj＼r>2--=E(unjvnj＼vnj＼rl2-*I(＼vnj＼>0))

SE{＼unj＼*-rl*＼unjvnJV'^)

<^l)4/r-l(p.. .. lr/4＼2-4/r

Using (2) and Jensen's inequality, and noting that r/4<l,

(16) E＼unjvnJriS(E＼unJrr'"(E＼vnJ＼^y'2p(g)+E＼unJriE＼vnJri

^bnp(Q)+bi/z(E＼vnj＼)rli.

Since a(n)^p(n), applying the inequality (3) with $―vnj＼vnj＼ lI{＼vnj＼>0), r]―unj

and <i= r/9.

(17) E＼vnj＼=E(unjVnJ＼vnJ＼ mivnjl >0))

Inserting the inequalities(16) and (17) into (15), we have

SKbMq)Y^^＼
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Just as in (14), we obtain that for 2<r<4,

1=1

and hence (13) followsas desired.

The proof of Theorem C is now complete.
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