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Introduction

Let R be a commutative ring, and let V be a finitelygenerated freei?-module.

Let R[V] be a polynomial ring over R associated with V. Then a finitesubgroup

G of GL(V) acts naturally on R[V]. We denote by R[V]G the ring of invariants

of R[V] under the action of G.

Let R=k be a fieldand suppose that ＼G＼is a unit of k. It is known ([4],[9],

[3],[8]) that k[V]G is a polynomial ring if and only if G is generated by pseudo-

reflectionsin GL{V).

But, in the case where ＼G＼=0 mod char{k), there are only the following results:

(1) L. E. Dickson [5]; FqlTu ･･･,rB]O£cn.9)an(jFq[Tu ■-,TnfLin^ are polynomial

rings, where Fq is the finitefieldof q elements.

(2) M.-J. Bertin [1]; Fq[Tu ■･-,Tnfnipin-^ is a polynomial ring, where

Unip(n,q) ― o£GL(n, q): a

"1

*

0]

1

(3) J.-P. Serre [8]; (i)If k[V]G is a polynomial ring, then G is generated by

pseudo-reflections in GL(V). (ii) Fq[Tu T2,T3, T^t^^ is not a polynomial ring,

where Ot{Fq) is the orthogonal group and char{Fq)^2.

The purpose of this paper is to determine finiteirreducible subgroups G of

GL{V) such that k[V]G are polynomial rings in the case where |G|=0 mod char(k).

Let V be an w-dimensional vector space over a finitefieldk of characteristicp and

let G be a subgroup of GL(V). Then our results are the following

[ I ] If G is a transitiveimprimitive group generated by pseudo-reflections,then

k[V]G is a polynomial ring.

[II] Suppose that p^2, n^3 and G is an irreduciblegroup generated by trans-

vections. Then k[V]° is a polynomial ring if and only if G is conjugate in GL(V)
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to SL(n,g).

[III] Suppose that p
~V
2 and V is a faithfullinear representationof least degree

of the symmetric group Sm of degree ni with m>:l. Then k[V]s>≫-is a polynomial

ring if and only if (m,p) = l and all transpositionsof Sm are represented by reflec-

tions in GL(V).

[IV] Let.F be a subfield of k and let On(F) be the orthogonal group of dimen-

sion n over F. Suppose that G is a subgroup of On(F) which contains the commutator

subgroup 0R(F) of On(F). If w^4, then k＼Vf is not a polynomial ring.

Let GQGL(V) be an irreducible primitive group and letp^2. If G is generated

by transvections,G is calleda transvection group. Transvection groups are classified

by A. E. Zalesskii and V. N. Serezkin [11]. This result will be used in the proof

of [II]. On the other hand G is called a reflectiongroup if G is a group generated

by reflectionswhich contains no transvections. By using the classificationstated

in V. N. Serezkin [7], we can determine all reflection groups G such that k[ VJ;

are polynomial rings under the assumption of n^i, p>7. For convenience we will

describe their results in §1.

§1. Preliminaries

Let V be a vector space over a fieldk. According to[2],an element ozGL{V)

is called a pseudo-reflectionin V if dimVa^l where Va=(l―a)V.

On the other hand an automorphism a of an integral domain R is called a

generalized reflectionin R if (a―l)RQp for some prime ideal p of R of height 1.

For a subgroup G of Aut(R) and a prime ideal p of i?, we put Dg(P) = {g G: #(p)=

p} (resp. /g(p)= {<tgG: (a―l)RQp}) which is called the decomposition group of G at

p (resp. the inertia group of G at p).

Let i?=0i?i be a graded algebra over i?o with a graduation {Ri}. We define

i=0that

Autgr(R) = {vGAut(R): a preserves the graduation of R},

AutR(i-()r{R):={c^-Autqr{R):a acts triviallyon Ro),

R+=RRi.

Theorem 1.1.([8]) Let R be a regular local ring with the residue classfieldk.

Let G be a finitesubgroup of Aut(R) such that ＼G＼-1r£U{R)and kG-k, where U(R)

denotes the unit group of R. Then RG is a regular local ring if and only if G is

generated by generalized reflections.

The following lemma is well known.
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Lemma 1.2. Let R be a noetherian graded algebra over a field k. Then the

following conditions are equivalent:

(1) R is a graded polynomial algebra over k.

(2) Rr, is a regular local ring.

For an element a of Aut(R) and a a-stable prime ideal p,a induces an element

of Aut(Rj) which is denoted by the same symbol a. Let R― cft be a noetherian
i=0

graded polynomial algebra over a fieldR0 = k. Then, for a£Autk-gr(R),o is a gen-

eralized reflectionin R if and only if a is so in RR+. Therefore, from (1.1), we

obtain

Corollary 1.3. Let R―@Ri be a noetherian graded polynomial algebra over

1=0
a field R0 ―k, and let G be a finite subgroup of Autk-gr(R) such that ＼G＼-l^e U{k).

Then Ra is a graded polynomial algebra over k if and only if G is generated by

generalized reflections.

Lemma 1.4.(e.g.[2]) Suppose that R = k[Tly･･･,Tn] is a polynomial ring over an

algebraicallyclosed field k and that G is a finite subgroup of GLn(k). If RG is a

polynomial ring, then i?Dc(m)is a polynomial ring for any maximal ideal nt of R and

Dg(vx) is generated by pseudo-reflections.

Proof. dim{RmDoCmi) = dim((Ra)mnRa) and RmDa<-m>is unramified over (R'%nRa.

Hence RmDG(-m)is a regular local ring. Since m is A?(tn)-stable,

flm*G<≪>=(£≫G<m>)mnflDo<m).

On the other hand there existelements a^k (Ig.i^n) such that m = (T1 ―au ■･･,Tn ―

an)- Put Xi ―Ti―tti(l^i^n) and regard R = k[Xlt ■･-,Xn] as a graded algebra by

degXt = l. Then Da(m)QAutk-gr(R) and R+=m. Therefore S=RDa<*> is a graded

subalgebra of R and S+^ttni?2^"0. Since Ss+ is a regular local ring, S is a

polynomial ring over k by (1.2). Hence DG(m) is generated by pseudo-reflections.

From here to the end of this section, we assume that V is an ^-dimensional

vector space over a finite field k of characteristic p^2. A pseudo-reflection a^l is

called a transvection if a＼Va ―l and a reflection if a＼Va = ―1. Let G be a subgroup

of GL(V). Then we use the following notation:

P(G) = {a G : a is a pseudo-reflection} ,

T(G)=^{aeG: a is a transvection} ,

R(G) = {oeG: a is a reflection} .
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A. E. Zalesskii and V. N. Serezkin obtained the following result which gives

the classificationof transvection groups.

Theorem 1.6.([11]) Suppose thatGQGL(V) (n^'2)isa tmnsvectiongroup. Then

G is conjugatein GL(V) to one of the groups SL(n,q),Sp(n,q) or SU(n,q), except

for the case where G = SL(2,5),GQSL(2/dr).

Recently V. N. Serezkin obtainedthe following

Theorem 1.7.([6],[7]) Suppose n>3, p>5. L<?/GQGL{ V) be a reflectiongroup.

Then G is conjugate in GL{ V) to one of the groups in the following list:

(1) The orthogonal groups Ozm+i(F), Ofm(F), where F is a subfield of k and

n=2m + l, 2m respectively,or the groups x-Q, where x£R(On{F)) and Q is the com-

mutator subgroup of the orthogonal group On{F).

(2) The symmetric groups S,l+1where w-fl^O mod p, and Sn^ where w+2=0

mod p.

(3 ) The nine exceptionalgroups, namely,

W{Fi＼ W(N4), EW(N4), W(H4) where ≪= 4; W{K6) where n = <5;

W(K6), W{E() where n=6; W(E7) where n=7; W(E8) where n=S.

However the complete proof of this result has not been published yet.

For a fieldk of characteristicp>7, the orders of the groups in part(3) of (1.7)

are units in k.

§2. Monomial groups

Let V be a finitelygenerated free module over a commutative ring R. A

subgroup G of GL(V) is said to be monomial if G has a monomial form on some

i?-basisof F([12],§43). For a fieldk, if G^GLn{k) is a finitetransitiveimprimitive

group generated by pseudo-reflections,then G is a monomial group.

In this section,we use the following notation.

Notation 2.1. Let R be an integral domain and k he the quotient field of R.

Put

nn(R)=z{o£GLn(R) '･o is a permutation matrix) ,

Dn{R)~{o£GLn{R) '■a is diagonal).

For a finite subgroup G of GLn{R) of monomial form, the sequence 1^>-D{G)―>G-^

Un{R) is exact, where J: G^>I/n(R) is the canonical homomorphism and D(G) =

Dn{R) n G. Let
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P(G) = {ogG: a is a pseudo-reflectionin GLn(k)}.

We identify Sn with IJJR).
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Lemma 2.2. Let GQGLn(R) be a finitesubgroup of monomial form generated

by pseudo-reflectionsin GLn{k). Assume that the following conditions are satisfied:

(1) The sequence 1-≫Z)(G)―>-G―i7w(i?)―>1is exact and IIn(R) is contained in

G.

(2) PWQ)) = {En}.

Then R[TU ･･-,Tn~＼Gis a polynomial ring.

Proof. For r£p(G)-{En}, there exists rr /7n(i?) such that rr~M(r)rrr#=

diag[D2(R),ln-2] where diag[D2(R), ln_2] = {diag＼_a,ln_2]: aeD2(R)}. For matrices

A,B,C,---,diag[A,B,C,---] means the block diagonal matrix defined canonically.

Put L = {rr~M(r)rrr:reP{G)-{En}} U {En}. Then L is a subgroup of H and there is

a monomorphism from L into U(R). Hence L is generated by ax=diag[a, a~＼ln_2].

Let ai=diag[a,l,a~1,ln-s],'--,0n-i=diag[a,ln-2,a~1]and put m=|<flr>|. It is easy to

show that D(G) = (<Ji,o2,■･■,an-i).Since any monomial of i?[Ti,･･･,T≪] is a semi-

invariant of D(G), we have i?[r1;･･･,Tn]mG' = i?[Tr, ･･･,rBm,
ft
^J- Let S =

^[T1:,･･･,Tn＼D'G＼S=R[T1m, ■･-,Tnm＼ U= [1 Tit Xi=Tim(l^i^n). Then S=SRSUR

･･･cSf/ "1 and GILKG) acts on S as permutations of {Zi, ･･･,X≫}. Let Ut (l^i^n-l)

be the fundamental symmetric polynomial of degree i in R[Xi, ･･-,Xn]. Then we

must have R[TU-, Tnf = R[Uu ･･･,C/≫_i,U＼

Lemma 2.3. Let V= 0i?Fj be a free R-module and let G be a finitesubgroup
i=i ^

of GL( V) generatedby the set P(G) such that G has a monomial form on the basis

{Yu ･■-,Yn}. Then thereis an R-basis {Xi,---,Xn}of V such that the following

conditionsare satisfied:

(1) G has a monomial form on the basis{Xx,■･■,!≪)■

We regard G as a subgroup of GLn{R) affordedby {Xu---,Xn}. Let J: G-^Hn{R)

be the canonicalhomomorphism.

(2) There existsa canonicalisomorphism H=llMl(i?)X---XIIns{R),where H―
s

Im(J) and 2 n%=n.

(3 ) // is containedin G.

Proof. We identify G with the image of the matrix representation of G afforded

by the i?-basis{Yu ■■･,Yn). Let H' be the image of the canonical homomorphism

A': G^nn{R). Since G is generated by the set P(G), we may assume that H' =

HxX'-'XHs where
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H^diagUTn/M 1B-Ml], H% = diatflnv Hn%{R), ＼n-nx-n ,̂

-,H,=diag[ln-n,,IInt(R)].

Since Af-＼{i,i + l))nP(G)^-<fi (l^i^n ―1), we can choose the following elements

J'-1((l,2))n/~(G)3a{I),-,J'-1((l,≪1))n/;(G)3<-1,

A'-＼(n,+1, ≪x+ ≪2))D P(G)=>a%U ,

Put

A'~4

A'-4

(Z
nt+l, Z nt+2)) flP(G)3o＼s＼- ,

C^

lni
+ l,n＼＼f]P(G)Ba^i.

X1=Y1,Xz=Y1l ,-,Xni=Yr^,

v ― v y ― v i y ― v 1*2-

(S)
y ― v y ― v *≫"'
-A-s-i ― -*■s-i > >^i-ra―■*s-i

Then {Xi, ■■･,Xn}is the i?-basis of V such that the conditions stated in this lemma

are satisfied.

Theorem 2.4. Let G be a finite monomial subgroup of GLn(R) generated by

pseudo-reflectionsin GLn{k). Then R[Tlt ■■-,Tn]G is a polynomial ring over R.

Proof. By (2.3),we may assume that G is indecomposable in GLn{R). Hence

G contains the group Un(R)- Since H=(P(D(G))} is a normal subgroup of G, there

is an integer m such that R[Th---, Tn]H = RlTJm, ･■･,TV]. GjH acts iMinealy on

nT>RXi and GjH has a monomial form on the basis {Xu ■･･,Xr,},where Xi=Tim (1^
i=l
i^n). If we regard G as a subgroup of GLn(R), then the sequence l->£>(G///)-≫

GIH-+nn(R)-+l is exact and /7≫(J?)is contained in G///. If P(LKGIH))*{En}, we

continue this procedure. So we may assume that P(D(GIH)) = {En}. In this case,

by (2.2),R[XU ■■■,Xnf/His a polynomial ring over i?.

§3. Unipotent abelian.groups

We will consider about invariants of subgroups of the group:
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A{m,n:q)^＼^ J?J: MeMaWF,)}

We preserve the following notation in this section.

Notation 3.1. Let k―Fu where q―pJ and p is a prime. Let

a =
＼j4

En]'
M=fo"'t^

1.15

where p% (l^i^m) are column vectors. If a^l, we put (p{o)=pii0where io―min{i:

/ii^O}. And if a = l, put (p(a)―O. For a subgroup G of the group A(m,n:q), set

d{G) ―dimk((p(P(G))yk,where (<p(P(G)))kis the subsPace of the column vector space

kn spanned by the set <p(P(G)). The group A{m, n :q) acts linearlyon the polynomial

ring S―k[Xu ･■･,Xm, Yu ■･-,Yn] in the form that for a ―[aij]eA(m, n :q)

{l[Xu-,Xm, Yu-, Yn]r=lanJ[Xu-',Xm, Yu-, Yn].

Lemma 3.2. Let G be a subgroup of A(m, n : q) generated by pseudo-reflections.

Then there exists an element deGL(n,q) such that Zi Sa {d{G)<iSn) where

l[Zu-,Zn＼=8t＼Yl,-,Yn＼.

Proof. Put d―d(G). We can choose elements Gi£P{G) (l^i^d) such that

<<p(P(G))>*=0 %>(>*)･ Hence, for some 8eGL(n,q), we have (p^ad'-^ekei (l^i^d),
i=i

where d'=diag[lm,d] and {eu---,en} is the standard basis of kn. Since G ―{P{G)}

d
and (<p(P(G))}ic―R kip(ai),thislemma is obvious.

Proposition 3.3.

by pseudo-reflections.

Let G be a subgroup of A(m, n:q) of order pda!>generated

Then Sa is a polynomialring.

Proof. Put d=d(G) and choose elements at&P{G) (l^i^d) such that(<p(P(G))}k

= c k<p(<H).By (3.2) there exists W'=diag[lm, ＼]£GL(m+n, q) such that ipiV'oiV'-1^

ket (l^i^d) and Zi£SG (d<i^n), where {eu---,en}is the standard basis of kn and

iiZu-*,Zn＼= 'FiYu-, Yv]. Set

LWii―Wim En A

Then we have iva―Wijei (l^i^dil^j^m) for some wa£k. Let

Sa is integral over tf_Xi,-~,Xm,Wi,―,Wd,Zd.,i,―,Zn]. Since the rings have the
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common quotient field,we obtain

SG=k[Xu -,Xm> Wlt ･･-,Wd,Zd+1, -,Zn-＼

Proposition 3.4. Let G be a subgroup of A(l,n:q). Then k[X, Yu ･･■,Ynf is

a polynomial ring and we can construct a system of fundamental invariants of G.

Proof. Assume that ＼G＼> pdc-G＼ Choose elements a[l＼'･･,oi(i＼G)G such that

<<p(P(G))>k=dR k<p(oV). Put Gi = <*ia),-,<W≫ and take a suitable element F' =

diagll, W]QGL(n + l, q) as we did in the proof of (3.3). Let l[Zh ･■-,ZB] = ?rt[Yu ■■>,Yn]

and let Wi=Zip-(wiX)p~1Zt (l^i^d(G)), where the elements iv^k (l^i^d(G)) are

determined by W. Then we have k[X, Yu ■■■,Y^G^k[X, Wu ■■-,WdcG>, Zdm+u ･･-,Zn]

and Zi k[X, Yu ･･-, FTO]G (d(G)<i^n). For aeGw=GIGu there exist elements a^zk

(l^i^d(G)) which satisfy Wie=Wi+a Xp. Let X=XP and set

V = kXRkW1@-@kWawRkZaw +ic-@kZn.

Then Gw acts linearly and faithfully on the &-space V and we can identify the

group G(1) with the image of the canonical homomorphism from GC1) to the group

A(l,d(G):q) which is defined on the basis {X, Wx,-, WdcG,}. If d(Gw)^0, then

we can construct a subgroup G2 of Gw such that ＼Gi＼=pdWim=pdiG^. By (3.3),

&[X, Wi, ■･･,WdiG^f2 is a polynomial ring. Hence (k[X, Yh ■･･,Yn]Gl)G2is a polynomial

ring. Put Gm=GwjG2. If rf(G(2))^0, then we continue this procedure. Since G

is finite, there is an integer ;>0 such that d(G(j))=0. d(G(Jy)=Q implies Gtji = {l},

and so this proposition is proved.

Proposition 3.5. Let G be a subgroup of A(m,l:q). Then k[XU"-,Xm, Y]G

is a polynomial ring.

t
Proof. First we suppose that G is contained in A(m,l:p) and G=X<:■*>. In

i=l
this case we may assume that YH―Y+aiXi (l^i^t) for some elements a^k. Put

V1(T) = Tp-(a1X1)p-1T and define Vi+i{T)=Vi(T)p-Vi(aiXi)p-1Vi(T) (l^i<t) in-

ductively. Then we must have k[Xu---,Xm, Y]a = k[Xu―,Xm, Vt(Y)]. Using this

result we can prove the general case. The canonical isomorphism k=^Fpl@Fpw2R

･■■RFpWfBa＼―>(ff°＼･･･,<7(/))F£ as i^p-spaces induces a group homomorphism -q:

Aim, 1: q)-+A(mf, 1: p) defined by

r Em

Vbi,
■･-,bm

11
Emf

U＼ , " , U＼J , ･ , Um , ･, Um

!]

Let R = k[X[1＼ ■･-,X[f＼ -, X%＼ ■■■,Xii＼ Y] be a polynomial ring of mf + 1 variables

with the canonical action of r/(G). Define a ring homoraorphism p from R to S―
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k[Xu-,Xm, Y] by P(Y)=Y, p(Xn=X1>

=Xm,---, p(X^) = wfXm. There exists a
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polynomial V(Y)eR such that

fl'≪"= fc[*≫＼-,X[f＼ -,X≪＼ -,Xti＼ V(Y)].

Then we obtain SP=k[Xx,-,Xm,p(V(Y))l

Theorem 3.6. Let G be a subgroup of GLn(k) and let R=k[T1, ■■-,Tn]. Then

for any minimal prime ideal p of R, RzgW is a polynomial ring and can be determined

effectively.

Proof. We may assume that [AT|=O mod p where N=Ia(p). There exists a

normal /^-subgroup H of N such that ([N:H],p) ―t. Since the action of H on R

preserves the natural graduation of R, p is generated by a homogeneous polynomial

of degree 1. Exchanging the basis of c kTu we can regard H as a subgroup of

A(＼,n―l＼q). By (3.4),RH is a polynomial ring. NjH is generated by generalized

reflectionsin RH, therefore RN ―(RH)N/H is a polynomial ring.

Theorem 3.7. Preserve the notation of (3.6) and let /*(p) = H>i/]: o = [oij]eIa(p)}

for any minimal prime ideal to of R. Then i^cO) is a polynomial ring.

Proof. This theorem is reduced to (3.5).

Remark 3.8. Let V be an n-dimensional k-space and let G be an abelian sub-

group of GL{V) generated by pseudo-reflections. If n^3, then k[V]G is a polynomial

ring. Suppose that w―4 and that G=Sp(4,p)C＼A(2,2:p). Then G is an abelian

group generated by transvections,but k＼V]G is not a polynomial ring.

§4. Symmetric groups

First we will give a remark.

Proposition 4.1. Let k be a field and let G be a finite group. Let V and

W be finite dimensional G-faithful kG-modules. Suppose that there exists a kG-

epimorphism <p:V-> W. If k[ V]G is a polynomial ring, then k[ W]° is a polynomial

ring.

Proof. Put g = ＼G＼.Then k[V] =
t k[V]Gfi for

some feklVJ (l^i^g). It
a z=i

follows that k＼_W~＼= Ti k[W]G(p{fi),where the homomorphism <p: k[V]->k[W] is the
i=i

epirnorphism induced by <p. Since G acts faithfully on W, k[W] is a free k[W]°-

module. Hence k[W]G is a polynomial ring.
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We preserve the following notation from here to (4.4)

Notation 4.2. Suppose that k is a finite field of characteristic p^2 and that

,v fl+1 71+ 1
n is an integer with w+2 = 0 mod p, ≪^3. Let V― c keit V― c^(^ ―e0) and V―

n+l *=0 i=l

VfjkX,ei be vector spaces with natural kSn+2-module structure, where Snn is the

symmetric group of degree n+2. Let F : Srat2-*GLn+2(&) (resp. F': Sn+2-+GLn+＼(k))

be the matrix representation of Sn+z on the basis {e≫,eu ･･･,en±＼}{resp. [ei ― e0, ･･･,en+i ―

e0}) and put G = Im(P) {resp. G' = Im{Ft)). Let

" 1

-1 1

w= :

: 0

0

' 1

G-vuGw-1, G" = zG'z-K

We denote by G the subgroup of GLJk)

1

1

1

1

H≪*>:C 1}°"}

Let 0: G-+Gf (resp. ＼: G'->G) be the canonical isomorphism G-^-G―>G' (resp. G'->

G"-+G). Then the two maps P(G)3o i―>R(p)£P(G'), P(G')de > >W(a)eP(G) are

bijective.

Lemma 4.3. k[V']Sn+i and k[V]Sn+2 are not polynomial rings.

Proof. G' (resp. G) acts naturally on the column vector space knil (resp.kn).

(A) Let G'(a') be the stabilizerof G' at a', where a'=＼＼,2,―,p~l, 0,1, ―,p-

1,■･･,0,1,･･',p―l]£kn+1.We identify Sre+2with the group of permutation matrices

in GLn+2(k). For 8eG'(a'), there is an element d of Fp such that

0 " oi r a'

a' J d

Since 0-＼d)eP(G) for deP(G'(a')),we have d=0.

iQ=jomodp,io3?jo}＼J{En+2}. On the other hand

-1 1

1

1

1

0

Therefore R~＼P(G'(a')))= {(?,,j0)
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but a' is not contained in <P(G'(<z'))>.Since G'(af)is the decomposition group of G'

at some maximal ideal of k[ V], we have shown that k[ V']Sn+z is not a polynomial

ring by (1.4).

(B) For some a£kn, za'―
,0-

Let G(a) be the stabilizer of G at a. Then

W(G'(a'))= G(a). Since (P(Q'{a')y>*G＼ar) and P(G')3r*― ?/(r)eP(G) is bijective,

we obtain <P(G(≪))>^G(≪). Hence ^[F]Swt2 is not a polynomial ring by (1.4).

Remark 4.4. Suppose that V* is the dual space of V. Then k[V'*fn^ is a

polynomialring over k by (4.1).

Theorem 4,5. Let k be a finite field of characteristicp^2 and let V be a

faithful linear representation of least degree of Sn with n^7. Then the following

conditions are equivalent:

(1) k[ V]Sn is a polynomial ring.

(2) (n,/>)= 1 and all transpositions of Sn are represented by reflections in

GL{V).

And if V satisfiesthese conditions,then we have dim(V) = n ―l.

Proof. According to [10] and (4.3),it is sufficientto show that(2)implies (1).

We can obtain the &SVmodule V as in (2) as follows. Let V be a canonical

representation of Sn of degree n: Since (n,p) = l, the sequence Q-+Vsn-≫V-+Coker(i)-+0
i

is a split exact sequence of &Sn-modules and Cokerii) is &S≫-isomorphic to V.

Therefore, by (4.1),k＼_V]Snis a polynomial ring over k.

§5. Classical groups

In this section k is a finite field of characteristic />#2.

Theorem 5.1. Let G be a subgroup of GL2(k). Suppose that T(G) = 0 in the

case of p~3. Then k[T1}T2]G is a polynomial ring if and only if G is generated by

pseudo-reflections.

Proof. We have only to show the if part. Assume that G is generated by

pseudo-reflections. Since T(G) = <fiimplies (＼G＼,p)―l, k[TlfTi＼a is a polynomial ring

in the case of T＼G) = <j>. Suppose that T(G)*<p and let H=(T{G)}. Then we have

{＼GjH＼,p)―l. If G is reducible, we may assume that H is contained in A(l,l:q).

Since k[Tx, T2]H is a polynomial ring, k[l＼,THG=(klTlt T2]H)a/H is regular by (1.3).

Hence, by (2.4),we can suppose that G is irreducible primitive. By Clifford's theorem

([12],§ 49), H is irreducible and H is conjugate in GLz(k) to SL(2, q). It is known
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that k[Tlt TZ＼H is a polynomial ring. By (1.3), k[Tu T2]G is regular. Thus the proof

is coniDleted.

Theorem 5.2. For a transvection group GQGLn(k) (w^3), the following con-

ditionsare equivalent:

(1) k[Ti,･■･,Tn＼Gis a polynomial ring over k.

(2 ) G is conjugate in GLJk) to SL(n, a).

Proof. According to (1.6),it sufficesto prove that k[Tu---,Tn~＼Gis not a poly-

nomial ring for G=Sp{n,q) or SU(n,q2). Put S=k[Tu ･･■,Tn].

(A) First we suppose that n=A and G=Sp(4,q). Let {Tu T2, Ts, T4} be the

canonical basis on which G can be expressed in the form {a£SL(4,q): fa0a = 0}

where

oj

Take maximal ideals mx = (7'1-l, T8, T,, Tt), m2=(711> T2-l, Ts, TJ, m, = (Tu Tit T,-

1. TA vu = (Tu T2, T3, 7＼-l) of S and put ff=
Az)0(mt),

iV= (^(nta), Z>7/(nt4)>.Then

i=＼
there exist homogeneous polynomials Xh X2 of degree q such that SN = k[Th T2, Xu X2].

We regard S*= 0 (SN)i and Sa= c (SB)i as graded subalgebras of S. Assume that

SH is a polynomial ring. Since dimk(SH)x = 2, there are homogeneous polynomials

f＼,f%,which satisfy SH=k[Tu !T2,/i,/2]. SN is integral over SH and so the set

{TltTa,fltfa} is a system of parameters of SN at origin. Let <p:Sir-+k[Xi,Xa]QS

be a ring homomorphism defined by <p(T1)= <p(Tz)= 0 and y>(Xi)=-Xi (2= 1,2). From

<p(fi)^0, we obtain deg(fi)= deg(<p(fi))in S (z= l, 2). Hence deg(fi) is a power of

^. But ＼H＼=qs=
f[deg(ft)

and ^((S^)9)= ^((S^)ff/^)=0, which is a contradiction.
i=l

Therefore S6 is not a polynomial ring by (1.4). The genera! case is reduced to

the case of S/>(4,q) with aids of (1.2) and (1.4).

(B) We consider the case of G = SU(n, q2). It is sufficientto prove the assertion

for n=3. Let A*-―>1 be an involutory automorphism of the fieldFQ2, and let e

F%. be an element such that 7Y(e)=0. We denote

Hq2) = {aeSL(3, q2): %Wo=W}

where

0

0

£
0"

0 0

0 1.

Suppose that // is the stabilizer of f(q2) at '[1,0,0] under the natural action of F(q2)
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on the column vector space F& over Fqt. It is easy to show that // is not generated

by pseudo-reflectionsin GL(3, q2). Since G is conjugate to F(q2),SG is not a poly-

nomial ring by (1.4).

We give the following remark which is a generalization of the preceding result

without its proof.

Remark 5.3. Let G be an irreducible subgroup of GLn(k) which contains a

transvection and suppose n^A. Then k[Th ･･･,Tn]G is a polynomial ring if and only

if G is generated by pseudo-reflections and the normal subgroup <T(G)> is conjugate

to SLin.q) in GLJk).

Theorem 5.4. Let F be a subfieldof k and let Q be the orthogonalgroup of

a non-singularquadraticform Q of dimension n over F. Suppose thatG is a sub-

group of O which contains the commutator subgroup Q of Q. If n'^4, then

k[Ti,･･-,Tnf is not a polynomialring over k.

Proof. Let v be the index of Q and let V be the w-dimensional F-space with

the quadratic form Q. For a subgroup N of O, we denote by N(x) the stabilizer

of N at x£V under the natural action of N on V. Let W be a suitable maximal

totallyisotropic subspace of V. If n ―2v, then we have H― (~＼OW=F"(""1)/2. In
xew

general V can be expressed as an orthogonal direct sum of hyperbolic planes Mi

(l^zi^v) and a quadratic space L of index 0. Hence, if v^2, we obtain H'= C＼Q'(x)
xew

^.p"^-D/2 where Q' ―(~＼Q(x). Suppose that y^2. Consequently we can take
XZL

maximal ideals va.i(l^i^v+2) of k[Tx,･･-,Tn] such that

where

i=l 1=1

so=SLn(k)no.

Since S0/£^F*/F*2 = Z/2Z/n^(ttk)^{l} follows. On the other hand we have

i=i
/v+2 ＼ v+ 2
P[r＼ D0(rtti))= {l}. Hence C＼DG{vHi) is not generated by pseudo-reflections. Next we

assume that v―1. Then it follows that n=4 and Q=Oi(F). Take an isotropic

point and a non-isotropic point of V appropriately. Then we can choose maximal

ideals nlfn2 of k[Tu T2, T3, Tt] such that
(p(f＼
DozifM)) = 2 and

^DsotifM

^F where SO4-(F) = SL4(^)nO4-(F). Since |SO4-(F)/0|=2,
A
i>o(nO is not generated

i=l
by pseudo-retlections. In both cases k[Tu ■■･,Tn~＼Gis not a polynomial ring by (1.4).

Remark 5.5. Let GQGLn(k) he a reflection group and let n>3, p>7. Then
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k[l＼,■■･,Tnf is a polynomial ring over k if and only if G is conjugate in GLn(k)

to one of the groups in the following list:

(i) The symmetric group Sn+i where n + l^Omodp.

(ii) The groups in part (3) of (1.7).

This follows from (1.3),(1.7),(4.3),(4.4) and (5.4).

References

[ 1 ] Bertin, M.-J., Sous-anneaux d'invariants d'anneaux de polynomes, C. R. Acacl. Sci. Paris.

260 (1965), 5655-5658.

[ 2 ] Bourbaki, N., Groupes et algebres de Lie, Chapitre 5, Groupes engendres par des

reflexions, Hermann, Paris, 1968.

[ 3 ] Chevalley, C, Invariants of finite groups generated by reflections, Amer. J. Math. 77

(1955), 778-782.

[ 4 ] Coxeter, H. S. M., The product of generators of a finite group generated by reflections,

Duke Math. J. 18 (1951), 765-782.

[ 5 ] Dickson, L. E., A fundamental system of invariants of the general modular linear group

with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), 75-

98.

[6] Serezkin, V. N., Groups of reflections over finite fields of characteristic/>>5, Preprint,

Inst. Mat. Akad. Nauk BSSR, Minsk, 1976.

[7] , Reflection groups over finite fields of characteristic />>5, Dokl. Akad. Nauk

SSSR 227 (1976), 574-575. = Soviet Math. Dokl. 17 (1976), 478-480.

[ 8 ] Serre, J.-P-, Groupes finis d'automorphism.es d'anneaux locaux reguliers, Colloq. d'Alg.

E.N.S., 1967.

[ 9 ] Shephard, G. C. and Todd, J. A., Finite unitary reflection groups, Canad. J. Math. 6

(1954), 274-304.

[10] Wagner, A., The faithful linear representation of least degree of Sn and An of odd

characteristic, Math. Z. 154 (1977), 103-114.

[11] Zalesskii, A. E. and Serezkin, V. N., Linear groups generated by transvections, Izv.

Akad. Nauk SSSR Ser. Mat. 40 (1976), 26-49.=Math. USSR Izvestija 10 (1976),

25-46.

[12] Curtis, C.W. and Reiner, I., Representation theory of finite groups and associative

algebras, Interscience, New York, 1962.

Department of Mathematics
Faculty of Technology

Keio University
Hiyoshi,Yokohama-shi 223

Japan




