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INVARIANTS OF FINITE GROUPS GENERATED
BY PSEUDO-REFLECTIONS IN
POSITIVE CHARACTERISTIC

By
Haruhisa Nakajima

Introduction

Let R be a commutative ring, and let V be a finitely generated free R-module.
Let R[V] be a polynomial ring over R associated with V. Then a finite subgroup
G of GL(V) acts naturally on R[V]. We denote by R[V']¢ the ring of invariants
of R[V] under the action of G.

Let R=Fk be a field and suppose that |G| is a unit of k. It is known ([4],[9],
[31,78]) that A[V]° is a polynomial ring if and only if G is generated by pseudo-
reflections in GL(V'). .

But, in the case where |G|=0 mod char(k), there are only the following results:

(1) L.E.Dickson [5]; F [Ty, -, TulfL™® and F[ Ty, -+, Tn]S*™? are polynomial
rings, where F, is the finite field of ¢ elements.

(2) M.-J. Bertin [1]; FJ[T\, -, TRV"»"@ is a polynomial ring, where

1 0
Unip(n, @)=10eGL(n,q): o=|
* ' 1

(3) J.-P. Serre [8]; (i) If K[V']% is a polynomial ring, then G is generated by
pseudo-reflections in GL(V). (iI) F[Ti, Ty, Ty, T, F2 is not a polynomial ring,
where O;(F,) is the orthogonal group and chav(F,)=2.

The purpose of this paper is to determine finite irreducible subgroups G of
GL(V) such that k[ V']¢ are polynomial rings in the case where |G|=0 mod char(k).
Let V be an n-dimensional vector space over a finite field & of characteristic p and
let G be a subgroup of GL(V). Then our results are the following

L11 If G is a transitive imprimitive group generated by pseudo-reflections, then
KV is a polynomial ring.

[11] Suppose that px2, n=3 and G is an irreducible group generated by trans-
vections. Then kKLV Y is a polynomial ring if and only if G is conjugate in GL(V)
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to SL(n, g).

(] Suppose that p=2 and V is a faithful lincar vepresentation of least degree
of the symmetric group Sp of degree m with m=7. Then kK VI is a polynomial
ring if end only if (m,p)=1 and all transpositions of S, are vepresented by reflec-
tions in GL{V).

[IV] Let F be a subfield of k and let O.(F) be the orthogonal group of dimen-
sion n over F. Suppose that G is a subgroup of O (F) which contains the conunutator
subgroup Q.(F) of O (F). If n=4, then RV is not a polynomial ring.

Let GESGL(V) be an irreducible primitive group and let px2. If G is generated
by transvections, G is called a transvection group. Transvection groups are classified
by A.E. Zalesskii and V.N. Serezkin [11]. This result will be used in the proof
of [II]. On the other hand G is called a reflection group if G is a group generated
by reflections which contains no transvections. By using the classification stated
in V.N. Serezkin [7], we can determine all reflection groups G such that k[ V¢
are polynomial rings under the assumption of #=4, p>>7. For convenience we will
describe their results in §1.

§1. Preliminaries

Let V be a vector space over a field 2 According to [2], an element seGL(V)
is called a pseudo-reflection in V if dimV,=<1 where V,=(1—o)V.

On the other hand an automorphism ¢ of an integral domain R is called a
generalized reflection in R if (6—1)RSp for some prime ideal p of R of height 1.
For a subgroup G of Aut(R) and a prime ideal p of R, we put Dg(p)={ceG: o(p)=
p} (resp. le(p)={oeG: (¢—1)RSp}) which is called the decomposition group of G at
p (resp. the inertia group of G at p).

Let R:iéo R; be a graded algebra over R, with a graduation {R;}. We define
that

Auty(R)={oc Aut(R): ¢ preserves the graduation of R},
Autry-g(R)={oeAut,,(R): o acts trivially on R},

R4 - @ I(‘z .
>0
TueoreEM L.1. (I8]) Let R be a regular local ring with the residue class field k.
Let G be a finite subgroup of Aut(R) such that |G|-1pe U(R) and k¢=k, where U(R)
denotes the unit group of R. Then RC is a regular local ring if and only if G is

generated by gemeralized reflections.

The following lemma is well known.
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Lemma 1.2. Let R be a noetherian graded algebra over a field k. Then the
Jfollowing conditions are equivalent :

(1) R is a graded polynomial algebra over k.

(2) Rz, is a regular local rving.

For an element o of Au#(R) and a ¢-stable prime ideal p, ¢ induces an element
of Aut(R)) which is denoted by the same symbol ¢. Let R= éol—)RZ be a noetherian
graded polynomial algebra over a field Ry=*k. Then, for oe/i;otk_yr(R), ¢ is a gen-
eralized reflection in R if and only if ¢ is so in Rg,. Therefore, from (1.1), we
obtain

CoroLLARY 13. Let R= éRi be a noetherian graded polynomial algebra over

i=0
a field Ro=Ek, and let G be a finite subgroup of Aute_g(R) such that |G|-1ge Ulk).
Then RE is a graded polynomial algebra over k if and only if G is generated by

generalized reflections.

LemMA 1.4. (e.g. [2]) Suppose that R=KT;, ---, Tu] is a polynomial ring over an
algebraically closed field k and that G is a finite subgroup of GLy (k). If R is a
polynomial ring, then RP¢™ s a polynomial ring for any maximal ideal m of R and
De(m) is generated by pseudo-reflections.

Proor. dim(R2e™)=dim((R)nare) and R,Pe is unramified over (R%)wqgc.

Hence R,P6™ is a regular local ring. Since m is Deg(m)-stable,
le)g(m) :(Rl)(;(m))nmRDG(H‘) .

On the other hand there exist elements a;€k (1 £i=#) such that m=(T\—ay, -+, Th—
). Put X;=T,—a; (1=i=n) and regard R=k[X,, -+, Xi,] as a graded algebra by
degX;=1. Then De¢(m)C Auti-,,(R) and R,=m. Therefore S=RPc™ is a graded
subalgebra of R and S,=mnNRPs“, Since Sg, is a regular local ring, S is a
polynomial ring over & by (1.2). Hence Dg(m) is generated by pseudo-reflections.

From here to the end of this section, we assume that V is an n-dimensional
vector space over a finite field 2 of characteristic p=2. A pseudo-reflection a1 is
called a transvection if ¢|V,=1 and a reflection if ¢|V,=—1. Let G be a subgroup
of GL(V). Then we use the following notation :

P(G)={oeG: ¢ is a pseudo-reflection},
T(G)=1{oeG : ¢ is a transvection},

R(G)={oeG : ¢ is a reflection} .
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A.E. Zalesskii and V.N. Serezkin obtained the following result which gives
the classification of transvection groups.

TueOREM 1.6. ([11]) Suppose that GEGL(V) (n=2) is ¢ transvection group. Then
G is conjugate in GL{V) lo one of the groups SL(n,q), Sp(n,q) or SU(n,q), except
Jor the case where G=SI(2,5), GESL(2, 3%).

Recently V.N. Serezkin obtained the following

THeorEM L1.7. ((6],[7]) Suppose n>3, p>5. Let GSGL(V) be a reflection group.
Then G is conjugate in GL(V') to one of the groups in the following list:

(1) The orthogonal groups Oum (F), Ol F), where F is a subfield of k and
n=2m+1, 2m respectively, or the groups x-8, wheve xe R(O(F)) and 2 is the com-
mutator subgroup of the orthogonal group On(F).

(2) The symmetric groups S,,1 where n+1x0 mod p, and S,.. where n+2=0
mod p.

(3) The nine exceptional groups, namely,

W(Fy), W(N,), EW(N,), W(H,) where n=4; W(K;) where n=5;
W(Ks), W(E) where n=6; W(E:) where n="T; W(Es;) where n=8.

However the complete proof of this result has not been published yet.
For a field & of characteristic p>7, the orders of the groups in part (3) of (1.7)

are units in k.

§2. Monomial groups

Let V be a finitely generated free module over a commutative ring R. A
subgroup G of GL(V) is said to be monomial if G has a monomial form on some
R-basis of V' ([12], §43). For a field %, if GESGL,(k) is a finite transitive imprimitive
group generated by pseudo-reflections, then G is a monomial group.

In this section, we use the following notation.

NoraTioN 2.1. Let R be an integral domain and k be the quotient field of R.
Put
H(R)={6eGLy(R): ¢ is a permulation matrix},
D R)={oeGLW(R): o is diagonal} .

For a finite subgroup G of GL.(R) of monomial form, the sequence 17>D(G)—>G'7
I[(R) is exact, where 4: G-1lI.(R) is the canonical homomorphism and D(G)=
Dn(R)nG Lel
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B(G)={6eG: o is a pseudo-reflection in GL(R)}.
We identify S, with II.(R).

LeMmMmA 22. Let GEGLA(R) be a finite subgroup of monomial form generated
by pseudo-reflections in GL,(k). Assume that the following conditions are satisfied:

(1) The sequence 1—D(G)>G—II,(R)—1 is exact and II.(R) is contained in
G.

(2) P(DG)=IE.).
Then R[T, -, Tu)¢ is a polynomial ring.

Proor. For re ﬁ(G)—{En}, there exists r,e/l,(R) such that ¢ *4(r)rr,eH=
diag[Dy(R), 1u-y] where diag[Dy(R), 1,-,] = {diaglo, 1,_2]: c€Dy(R)}. For matrices
A, B,C, -, diaglA, B,C, ---] means the block diagonal matrix defined canonically.
Put L={c,"'d(r)re,: re B(G)—{E}}U{E,). Then L is a subgroup of H and there is
a monomorphism from L into U(R). Hence L is generated by o, =diag(a, a=?, L._.].
Let os=diagla, 1, a !, 14,_3], -+, 6u-1=diagla, 1,_», a~*] and put m=|<{ad|. It is easy to
show that D(G)={s,, 02, -, 6n-1). Since any monomial of R[T\, -, T»] is a semi-
invariant of D(G), we have R[Ti,:--, Tw]P¢®> = R[T\™, ---, T, H 7. Let S=
R[T,, -, T JP@, §=R[T\™, -, T,"], U= n T, Xi=T™1<i=n). Then S= SeSve
~-~®§U"‘“ and G/D(G) acts on S as permutatlons of {Xi, -, Xp}. Let Uz (1=i=n-1)
be the fundamental symmetric polynomial of degree i in R[ X, -, X»]. Then we
must have R[T}, -, Tolf=R[U,, -+, Up-s, U]

LemmA 23. Lel V= _@R Y: be a free R-module and let G be a finite subgroup
of GL(V') generated by the set P(G) such that G has a monomial form on the basis
{Yy, -, Yol Then there is an R-basis (X, -+, Xa} of V such that the following
conditions are satisfied :

(1) G has a monomial form on the basis {Xi, -+, Xn}.

We regard G as a subgroup of GLi(R) afforded by {Xi, -+, Xa}. Let 4: G—II(R)
be the canonical homomorphism.

(2) There exists a canonical isomorphism H=[l, (R)X - Xl (R), where H=
Im(d) and }l’_, ni=n.

(3) [[Fils contained in G.

Proor. We identify G with the image of the matrix representation of G afforded
by the R-basis {Yi, -, Ya}. Let H” be the image of the canonical homomorphism
4" G—II(R). Since G is generated by the set P(G), we may assume that H'=
H, %+ X H; where
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Hy=diagl 1, (R), 1a-n,], Ho=diag(ln, IIn(R), Tn-n,-n,],
-, Hy=diag{1nn, ITn(R)].

Since 4’-Y((i, z+1))ﬂP((“)t¢ (1=zi=n—1), we can choose the following elements:
21,200 BGYa0®, oy 711, m)) N P(GY308) s,
A Yy +1, 1,4+ 2)) ﬂP(G)aa?), o

A=Y+ 1, n1+n2))nP(G)3a,,2_l,

1<@ 4L 5; - +9>> N P(GYaa®, -,

A’—l((Z\j i+1, n>> nB(G)3s8), .

Put

e

g()
Y},Xz Yl s "%y — Y! 7=t )

@

Xoyi1= Yo 11, Xnja= Yn1+1: ooy Xogany = Ynln-% 7

($)

s
— — VY Ps—!
Xooy =Y, o, Xa=Y,§ .
3 ngtl = nitl S mgtl
i=1 i=1 i=1

Then {X,, --+, X»} is the R-basis of V such that the conditions stated in this lemma
are satisfied.

TuroREM 24. Let G be a finite monomial subgroup of GLn(R) generated by
pseudo-reflections in GLn(k). Then R[Ty, -, Tw)¢ is a polynomial ving over R.

Proor. By (2.3), we may assume that G is indecomposable in GL.(R). Hence
G contains the group /T.(R). Since H=(P(D(G))> is a normal subgroup of G, there
is an integer m such that R[Ti, -, To]#=R[T\", -+, Tx™]. G|H acts R-linealy on
f} RX; and G/H has a monomial form on the basis {X|, --+, Xa}, where X;=T\" (1=
;'l;\ln). If we regard G as a subgroup of GL.(R), then the sequence 1—IXG/H)—
GJH—II(R)—1 is exact and I1,(R) is contained in G/H. If ﬁ(D(G/H))ﬂF{En}, we
continue this procedure. So we may assume that P(D(G/H)) {E.). In this case,
by (2.2), R[ X, -, X,)¢/# is a polynomial ring over R.

§3. Unipotent abelian groups

We will consider about invariants of subgroups of the group:
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A(m,n:q)::{[z" l;‘),]: M'eMatnxm(Fq)}.

We preserve the following notation in this section.

NorarioN 3.1. Let k=F, where g=p' and p is « prime. Let

“Fn 0 -
""Lw L] M={ppreeepind]

where p; (1=i=m) are column vectors. If a=1, we put ¢(o)= 1, where ty=min{i:
rix0t. And if o=1, put ¢(6)=0. For a subgroup G of the group A(m,n:q), set
d(G)=dimlp(P(G)) >, where {o(P(G))>i is the subspace of the column vector space
k" spanned by the set o(P(G)). The group Alm,n:q) acts linearly on the polynomial
ring S=R X, -, X, Yy, -+, Yal in the form that for o=[vi;]e Alm, n:q)

(L[Xh AP X’m,, Yl: Tty Yn])az[gi.i][[Xh ) Xm’ Yl; Tty Yﬂ] .

Limma 3.2, Let G be a subgroup of A(m,n:q) generated by pseudo-reflections.
Then there exists an element 6€GL(n,q) such that Z,eS¢ (d(G)<i=<n) where

l[Zly ) Zn:lzij[[yly Y Yﬂ] .

Proor. Put d=d(G). We can choose elements ¢;€ P(G) (1=i<d) such that
(o P(G))e= ékgo(ai). Hence, for some 6eGL(n, q), we have o(00:0’V)eke; (1=i=d),
where 5’=dzf(;gl][1,,s, 0] and {ey, -+, en} is the standard basis of £*. Since G=<(P(G)>
and <¢(P(G))>k=§al ky(o;), this lemma is obvious.

PROPOSITION 3.3. Let G be a subgroup of AGm,n:q) of order p*¢’ generated
by pseudo-reflections. Then S¢ is a polynomial ring.

Proor. Put d=d(G) and choose elements o;€ P(G) (1=i=d) such that (PG
d
= P kelo:). By (3.2) there exists ¥’ =diag[1,, ¥]eGL(m+n, q) such that o(¥e ¥’ )¢
i=1
ke; (1=i=d) and Z;eS¢ (d<i=mn), where {e,, ---, es} is the standard basis of %" and
L[Zl) ) anzll/[[ Yla ttty Yn]- Set
Q/"ui’lf""‘::[ w0 J (l=i=d).

wil“‘wim En

Then we have Wi;=wie; (1=i=d;1=j=m) for some wek. Let
m -1
LVizZip_(Z winj> Z; (1=i=d).
=1

SY is integral over A[X), -, X, Wy, -, W, Z4. v, -+, Zu).  Since the rings have the
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common quotient field, we obtain

SC=k[Xy, -, X, Way oo, Way Zasa, -+, Za]

ProposITION 3.4. Let G be a subgroup of AQl,n:q). Then kX, Yy, -, Y,1% is

a polynomial ving and we can construct a system of fundamental invariants of G.

Proor. Assume that |G| > p*@. Choose elements ¢, -, 68 €G such that
<¢(P(G))>k=(§)k¢(o§"). Put G,={®, -+, 68>, and take a suitable element ¥/=
diag[1, W](-:G}:(;H—l, q) as we did in the proof of (3.3). Let {Z;, -+, Zn]=V[Y}, -+, Y]
and let W;=Z"—(uw;X)?'Z; (1=i=d(G)), where the elements w;ek (1=i=d(G)) are
determined by ¥’. Then we have A[X, V3, -, Y, =k[ X, W, -, Wacey, Zacw+1, =*» Zan]
and Ziek[X, Yy, -, Yo )¢ (d(G)<i=n). For 6eGP=G/G,, there exist elements a;”¢ek
(1=i=d(G)) which satisfy W;"'=W;+a®X?. Let X=X7 and set

V=kXPEW,:® - DEWao, Db Zsey 1D Bk Zn .

Then G® acts linearly and faithfully on the k-space ¥V and we can identify the
group G with the image of the canonical homomorphism from G to the group
A, d(G): q) which is defined on the basis {)?, Wi, -, War}. If d(GP)x0, then
we can construct a subgroup G. of G such that |G,|=p* @ =pi> By (3.3),
X, W, -+, Waw, )% is a polynomial ring. Hence (k[ X, Y7, ---, Yu]®)% is a polynomial
ring. Put G®=GV[G,. If d(G®)=x0, then we continue this procedure. Since G
is finite, there is an integer j>0 such that d(GV)=0. (G)=0 implies GV ={1},
and so this proposition is proved.

ProrOSITION 3.5. Let G be a subgroup of Am,1:q). Then kX, -, Xu, Y]¢
is a polynomial ring.

Proor. First we suppose that G is contained in A(m,1:p) and G:»‘>z< {r;p. In
this case we may assume that Y i=Y+a;X; (1=<i=<¢) for some elements ;:ek. Put
ViT)=T?—(a,X))*'T and define V;i(T)=Vi(T)?— Vi(a: Xo)P 7 Vi(T) (1=i<¥) in-
ductively. Then we must have A[Xj, -, Xn, YIO=K[X, -+, X, Vi(Y)]. Using this
result we can prove the general case. The canonical isomorphism k= F,1®Fw.D
e @F w30 —> (6D, -+, 6)e F} as Fp-spaces induces a group homomorphism »:
A(m,1:q)—A@mf,1:p) defined by

E. 0 Eny 0
by, ey b 1 — B, wee B e B, e B 1

Let R=E[X®, o, X, o) X, oo, X2, Y] be a polynomial ring of mf+1 variables
with the canonical action of »(G). Define a ring homomorphism p from R to S=
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KXy, oy X, YT by o(Y)=Y, p(X[V)=X,, o(XP)=w:Xy, -, o(X{P)=w, X, -, o(X3)
=Xu, -, o(X§)=w;X,. There exists a polynomial V(Y )eR such that

RIO=XD, oo, XD, oo, X9, -, XP, VIV

Then we obtain S¢=A[X,, -+, Xum, o( V(Y ))].

TureorREM 3.6. Let G be a subgroup of GLn(k) and let R=KT,, -, Tn]. Then
for any minimal prime ideal p of R, R'¢® is a polynomial ring and can be determined
effectively.

Proor. We may assume that [N|=0 mod p where N=I4p). There exists a
normal p-subgroup H of N such that (N:H],p)=1. Since the action of H on R
preserves the natural graduation of R, p is generated by a homogeneous polynomial
of degree 1. Exchanging the basis of ékTi, we can regard H as a subgroup of
Aldl,n—1:q9). By (34), R¥ is a polyno;r_lilal ring. N/H is generated by generalized
reflections in R#, therefore RY=(R¥)¥'¥ is a polynomial ring.

THEOREM 3.7. Preserve the notation of (3.6) and let Ii(p)={{0:;]: 0 =[0:;]€ Is(p)}
Sfor any minimal prime ideal p of R. Then R'G™Y is a polynomial ring.

Proor. This theorem is reduced to (3.5).

RemaARrk 3.8. Let V be an n-dimensional k-space and let G be an abelian sub-
group of GL(V') generated by pseudo-reflections. If n=3, then B[V 1% is a polynomial
ring. Suppose that n=4 and that G=Sp4,p)NAQ2,2:p). Then G is an abelian
group gemerated by transvections, but k[ V1% is not a polynomial ving.

§4. Symmeftric groups

First we will give a remark.

ProrosiTION 4.1. Let k be a field and let G be a finite group. Let V and
W be finite dimensional G-faithful kG-modules. Suppose thal there exists a kG-
epimorphism o V—->W. If R[V1® is a polynomial ring, then KW 1E is a polynomial
ing.

Proor. Put ¢g=|G|. Then k[V]zi‘ RVIef, for some fieklV] 1=i=g). It
follows that k[W]=£} LW 8a( f3), wherglthe homomorphism ¢: E[V]—k[ W] is the
epimorphism induceglby o. Since G acts faithfully on W,k[W] is a free K[W]°-
module. Hence A[W]¢ is a polynomial ring.
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We preserve the following notation from here to (4.4).

NoOTATION 4.2. Suppose that k is a finite field of r/zamrterisfz'c px2 and that
n is (m integer with n+2=0 mod p, n=3. Let V= @Iec,, V= Ok e;—e,) and V=
V'Ik E?i be vector spaces with natural kS,..- mr)dule structure, w/zme Snie is the
symmetrzc group of degree n+2. Let FF:S,,05GLyiao(k) (resp. IV : Spia—>GLy 1 (R))
be the matrix representation of Sp.. on the basis le,, ), -, ny) (resp. {,,——e(,, e Cpyy—
eo)) and put G=1Im(F) (resp. G'=Im(F’)). Let

1 11 1---1
-1 1 0 12 1---1
w=| = . €GLao(F), 2z=|1 1 2-.-1!eGLa\(R),
N S R RO J
-1 1 11 1---2

G=wGw™, G’"=2G"z"!

We denote by G the subgroup of GL(k)

{geGL,,,(k): B g—le }”}.
Ya o

Let @:G—G’ (resp. U :G'—G) be the canonical isomorphism GGG (resp. G'—~
G'"—G). Then the two maps P(G)30 — ®(0)eP(G’), P(G')30+— ¥ (s)e P(G) are
bijective.

LEMMA 4.3. E[V'Pr+2 and k[ V 3n+2 are not polynomial rings.

Proor. G’ (resp. ) acts naturally on the column vector space &£"*! (resp. &").

(A) Let G'(@’) be the stabilizer of G’ at @/, where a’=1, 2, ---,p—1,0,1, .-, p—
1,:,0,1, -, p—1]ek". We identify Sp.. with the group of permutation matrices
in GLy. (k). For 6eG’(a’), there is an element d of F, such that

M MH

Since @’"‘((S)GP(é) for 8e P(G’(@’)), we have d=0. Therefore @-(P(G'(a)))={(ls, jo):
to=Jo mod p, iojo} U{En+2}. On the other hand
-1 1
-1 1
o= " eG'(@),

-1
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but ¢’ is not contained in (P(G’(a’))>. Since G’(a’) is the decomposition group of G’
at some maximal ideal of E[V’], we have shown that & V’]°**% is not a polynomial
ring by (1.4).

(B) For some aek™, za’=l 2] Let G(a) be the stabilizer of G at @. Then
U(G(@)=G@). Since (PG(@)>xG'(a') and P(G')3z— U(2)eP(G) is bijective,
we obtain (P(G(a))>>=G(a). Hence A V1°*'? is not a polynomial ring by (1.4).

REMARK 44. Swuppose that V'* is the dual space of V'. Then E[V'*15"2 is q
polynomial ring over k by (4.1).

TuroreM 4.5. Let k be a finite field of characteristic px2 and let 'V be a
faithful linear rvepresentation of least degree of S, with n=7. Then the following
conditions are equivalent:

(1) E[VIS» is a polynomial ring.

(2) (n,p)y=1 and all transpositions of S, are represented by reflections in
GL(V).

And if 'V satisfies these conditions, then we have dim(V)=n-—-1.

Proor. According to [10] and (4.3), it is sufficient to show that (2) implies (1).
We can obtain the kS,-module V as in (2) as follows. Let ¥ be a canonical
representation of S, of degree #n. Since (n, p)=1, the sequence ()~+I7Sn—_+17—+C0ker(i)—>0
is a split exact sequence of AS,-modules and Coker(i) is kSn-IS(;morphic to V.
Therefore, by (4.1), B[V 15 is a polynomial ring over k.

§ 5. Classical groups

In this section % is a finite field of characteristic p2.

THEOREM 5.1. Let G be a subgroup of GLy(k). Suppose that T(G)=¢ in the
case of p=3. Then R[T:, T,)¢ is a polynomial ving if and only if G is generated by
pseudo-reflections.

Proor. We have only to show the if part. Assume that G is generated by
pseudo-reflections. Since T(G)=¢ implies (|G|, p)=1, £[ Ty, T:]° is a polynomial ring
in the case of T(G)=¢. Suppose that T(G)x¢ and let H=<T(G)>. Then we have
(IG/H|, p)=1. If G is reducible, we may assume that H is contained in A(1,1:¢g).
Since AT, T:]¥ is a polynominal ring, &[Ty, T2]¢=(k[T}, T2]#)¥ % is regular by (1.3).
Hence, by (2.4), we can suppose that G is irreducible primitive. By Clifford’s theorem
([12], §49), H is irreducible and H is conjugate in GL.(k) to SL(2,q). It is known
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that &[T}, T2} is a polynomial ring. By (1.3), B[ T\, T%]? is regular. Thus the proof
is completed.

TrEOREM 5.2. For a transvection group GESGL.(E) (n=3), the following con-
ditions are equivalent :

(1) KTy, -, TR)¢ is a polynomial ving over k.

(2) G is conjugate in GL,(k) to SL(n, q).

Proor. According to (1.6), it suffices to prove that A[T, ---, )¢ is not a poly-
nomial ring for G=Sp(n, ¢) or SU(n,q?. Put S=Ek[Ty, -, Th)

(A) First we suppose that n=4 and G=Sp(4,q). Let {T\, T:, Ts, T:} be the
canonical basis on which G can be expressed in the form {¢eSL{4,q): 'c®s=0)

where
_ 0 E27
‘D”[—Ez 0 J :
Take maximal ideals w,=(T1—1, To, Ts, T4), ma=(Ty, To—1, Ts, Ty, ta=(T4, T, T5—
2
1, 7)), my=(Ty, T3, Ts, Ty—1) of S and put H= "\ Dg(m;), N={Dg(nis), Du(nty)y. Then
=1
there exist homogeneous polynomials X;, X; of degree g such that S¥=£[Ty, Ty, X1, X2).

o o

We regard S¥= @ (5¥); and S7= @ (S¥); as graded subalgebras of S. Assume that
SH is a polynomiléi) ring. Since dgi;;)k(SH)1=2, there are homogeneous polynomials
Jf1, /2, which satisfy S#=E[T, T, fi,fz]. SY¥ is integral over S¥ and so the set
{Ty, T, f1, f2} is a system of parameters of S¥ at origin. Let ¢:SY—k[X;, X,]CS
be a ring homomorphism defined by ¢(T1)=¢(7%)=0 and ¢(X;)=X; (i=1,2). From
o(f:)=0, we obtain deg(f;)=deg(¢(fs)) in S (i=1,2). Hence deg(f;) is a power of
g. But |H|=¢*= [Z] deg(fs) and o((SH))=((SY))#’¥)=0, which is a contradiction.
Therefore S¢ is lr;(;t a polynomial ring by (14). The general case is reduced to
the case of Sp(4, ¢) with aids of (1.2) and (1.4).

(B) We consider the case of G=SU(n, ¢*). It is sufficient to prove the assertion
for n=3. Let ir—— 1 be an involutory automorphism of the field Fgp, and let ce
F¥ be an element such that Tr(e)=0. We denote

I'(g")=1{0eSLES, ¢*) : 6¥o=}

where

0 ¢ 0
U=i—c 0 0].
001

Suppose that H is the stabilizer of I'(¢% at (1,0, 0] under the natural action of I'(¢?)
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on the column vector space Fhover Fp. It is easy to show that A is not generated
by pseudo-reflections in GL(3,¢%. Since G is conjugate to I'(¢?), S¢ is not a poly-
nomial ring by (1.4).

We give the following remark which is a generalization of the preceding result
without its proof.

REMARK 5.3. Let G be an irrveducible subgroup of GL.(E) which contains a
transvection and suppose n=4. Then k[T, -, Tyw]¢ is a polynomial ring if and only
if G is generated by pseudo-reflections and the normal subgroup {T(G)) is conjugate
to SL(n, q) in GLu(k).

TurorEM 5.4. Let F be a subfield of B and let O be the orthogonal group of
a non-singular quadratic form Q of dimension n over F. Suppose that G is a sub-
group of © which contains the commutator subgroup 2 of . If n=4, then
R Ty, -+, TW]¢ is not a polynomial ving over k.

Proor. Let v be the index of @ and let V be the n-dimensional F-space with
the quadratic form @. For a subgroup N of @, we denote by N(x) the stabilizer
of N at xeV under the natural action of N on V. Let W be a suitable maximal
totally isotropic subspace of V. If =2y, then we have H:JQV Ox)=F"¢-2 In

general V can be expressed as an orthogonal direct sum of hyperbolic planes M;
(1=i=y) and a quadratic space L of index 0. Hence, if v=2, we obtain /=" @'(x)
=F*¢-0% where @' =\ O(z). Suppose that v=2. Consequently we SQK take
maximal ideals m; (1§i§uL+2) of [Ty, -, Tx] such that

vz uie
Fv(v_l)Z/E m D@(mt): m Dso(u[i)
i=1 i=1
where
SO=SL.B)NO .
Since SO|Q=F*|F*2Z[2Z, [\ Damo)*(1} follows. On the other hand we have
i=1

P(ﬁDo(mi»:{l}. Hence E\fDa(mi) is not generated by pseudo-reflections. Next we
assume that »=1. Then it follows that =4 and @ =0;(F). Take an isotropic
point and a non-isotropic point of V appropriately. Then we can choose maximal
ideals m, s of BTy, Ty, Ts, T\] such that KP(Q Do;(p)(ni)»‘:z and éDSO;(F)(m)
=F where SO;(F)=SLi«k)NO;(F). Since |SO;(F)/Q|=2, (i\ Dg(n;) is not generated
by pseudo-retlections. In both cases &[T, ---, T%,]¢ is not aL;olynomial ring by (1.4).

REMARK 5.5. Let GEGLW(R) be a reflection group and let n>3, p>T7. Then
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ET,, -, Tult is a polynomial ving over k if and only if G is conjugate in GLn(k)

to one of the groups in the following list:

[1]
[2]
[3]
[4]

[5]

[61]

[8]

[91

[10]

(11]

112]

(i) The symmetric group Sni1 where n+1%0mod p.
(ii) The groups in part (3) of 1.7).

This follows from (1.3), (1.7), (4.3), (4.4) and (5.4).
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