INVARIANTS OF FINITE GROUPS GENERATED BY PSEUDO-REFLECTIONS IN POSITIVE CHARACIERISTIC

By
Haruhisa Nakajıma

Introduction

Let R be a commutative ring, and let V be a finitely generated free R-module. Let $R[V]$ be a polynomial ring over R associated with V. Then a finite subgroup G of $G L(V)$ acts naturally on $R[V]$. We denote by $R[V]^{G}$ the ring of invariants of $R[V]$ under the action of G.

Let $R=k$ be a field and suppose that $|G|$ is a unit of k. It is known ([4], [9], [3], [8]) that $k[V]^{G}$ is a polynomial ring if and only if G is generated by pseudoreflections in $G L(V)$.

But, in the case where $|G| \equiv 0 \bmod \operatorname{char}(k)$, there are only the following results:
(1) L. E. Dickson [5]; $\boldsymbol{F}_{q}\left[T_{1}, \cdots, T_{n}\right]^{G L(n, q)}$ and $\boldsymbol{F}_{q}\left[T_{1}, \cdots, T_{n}\right]^{S L(n, q)}$ are polynomial rings, where \mathbb{F}_{q} is the finite field of q elements.
(2) M.-J. Bertin [1]; $\mathbb{F}_{q}\left[T_{1}, \cdots, T_{n}\right]^{U n i p(n, q)}$ is a polynomial ring, where

$$
\operatorname{Unip}(n, q)=\left\{\sigma \in G L(n, q): \sigma=\left[\begin{array}{llll}
1 & & & \\
& \cdot & & \\
& & \cdot & \\
* & & & 1
\end{array}\right]\right\} .
$$

(3) J.-P. Serre [8]; (i) If $k[V]^{a}$ is a polynomial ring, then G is generated by pseudo-reflections in $G L(V)$. (ii) $F_{q}\left[T_{1}, T_{2}, T_{3}, T_{4}\right]_{4}^{o^{+}(F q)}$ is not a polynomial ring, where $O_{4}^{+}\left(\boldsymbol{F}_{q}\right)$ is the orthogonal group and $\operatorname{char}\left(\boldsymbol{F}_{q}\right) \neq 2$.

The purpose of this paper is to determine finite irreducible subgroups G of $G L(V)$ such that $k[V]^{G}$ are polynomial rings in the case where $|G| \equiv 0 \bmod \operatorname{char}(k)$. Let V be an n-dimensional vector space over a finite field k of characteristic p and let G be a subgroup of $G L(V)$. Then our results are the following
[I] If G is a transitive imprimitive group generated by pseudo-reflections, then $k[V]^{G}$ is a polynomial ring.
[II] Suppose that $p \neq 2, n \geqq 3$ and G is an irreducible group generated by transvections. Then $k[V]^{G}$ is a polynomial ring if and only if G is conjugate in $G L(V)$

Received June 2, 1978. Revised December 25, 1978
to $S L(n, q)$.
[III] Suppose that $p \neq 2$ and V is a faithful linear representation of least degree of the symmetric group S_{m} of degree m with $m \geq 7$. Then $k[V]^{s_{m}}$ is a polynomial ring if and only if $(m, p)=1$ and all transpositions of S_{m} are represented by reflections in $G L(V)$.
[IV] Let F be a subfield of k and let $O_{n}(F)$ be the orthogonal group of dimension n over F. Suppose that G is a subgroup of $O_{n}(F)$ which contains the commutator subgroup $\Omega_{n}(F)$ of $O_{n}(F)$. If $n \geqq 4$, then $k[V]^{a}$ is not a polynomial ring.

Let $G \cong G L(V)$ be an irreducible primitive group and let $p \neq 2$. If G is generated by transvections, G is called a transvection group. Transvection groups are classified by A.E. Zalesskii and V.N. Serezkin [11]. This result will be used in the proof of [II]. On the other hand G is called a reflection group if G is a group generated by reflections which contains no transvections. By using the classification stated in V.N. Serezkin [7], we can determine all reflection groups G such that $k[V]^{G}$ are polynomial rings under the assumption of $n \geqq 4, p>7$. For convenience we will describe their results in $\S 1$.

§ 1. Preliminaries

Let V be a vector space over a field k. According to [2], an element $\sigma \in G L(V)$ is called a pseudo-reflection in V if $\operatorname{dim} V_{\sigma} \leqq 1$ where $V_{\sigma}=(1-\sigma) V$.

On the other hand an automorphism σ of an integral domain R is called a generalized reflection in R if $(\sigma-1) R \subseteq p$ for some prime ideal p of R of height 1 . For a subgroup G of $\operatorname{Aut}(R)$ and a prime ideal \mathfrak{p} of R, we put $D_{G}(\mathfrak{p})=\{\sigma \in G: \sigma(\mathfrak{p})=$ $\mathfrak{p}\}$ (resp. $\left.I_{G}(\mathfrak{p})=\{\sigma \in G:(\sigma-1) R \subseteq \mathfrak{p}\}\right)$ which is called the decomposition group of G at \mathfrak{p} (resp. the inertia group of G at \mathfrak{p}).

Let $R=\underset{i=0}{\oplus} R_{i}$ be a graded algebra over R_{0} with a graduation $\left\{R_{i}\right\}$. We define that

$$
\begin{aligned}
A u t_{g r}(R) & =\{\sigma \in A u t(R): \sigma \text { preserves the graduation of } R\}, \\
A_{u t_{R_{0}-g r}}(R) & =\left\{\sigma \in A u t_{g r}(R): \sigma \text { acts trivially on } R_{v}\right\}, \\
R_{+} & =\oplus \underset{i>0}{ } R_{i} .
\end{aligned}
$$

Theorem 1.1. ([8]) Let R be a regular local ring with the residue class field k. Let G be a finite subgroup of $\operatorname{Aut}(R)$ such that $|G| \cdot 1_{R} \in U(R)$ and $k^{a}=k$, where $U(R)$ denotes the unit group of R. Then R^{G} is a regular local ring if and only if G is generated by generalized reflections.

The following lemma is well known.

Lemma 1.2. Let R be a noetherian graded algebra over a field k. Then the following conditions are equivalent:
(1) R is a graded polynomial algelra over k.
(2) $R_{R_{+}}$is a regular local ring.

For an element σ of $\operatorname{Aut}(R)$ and a σ-stable prime ideal $\mathfrak{p} \sigma$ induces an element of $\operatorname{Aut}\left(R_{\text {) }}\right)$ which is denoted by the same symbol σ. Let $R=\underset{i=0}{\oplus} R_{i}$ be a noetherian graded polynomial algebra over a field $R_{0}=k$. Then, for $\sigma \in A u t_{k-y r}(R), \sigma$ is a generalized reflection in R if and only if σ is so in $R_{R_{+}}$. Therefore, from (1.1), we obtain

Corollary 1.3. Let $R=\oplus_{i=0}^{\infty} R_{i}$ be a noetherian graded polynomial algebra over a field $R_{0}=k$, and let G be a finite subgroup of $\operatorname{Aut} t_{k-g r}(R)$ such that $|G| \cdot 1_{k} \in U(k)$. Then R^{a} is a graded polynomial algebra over k if and only if G is generated by generalized reflections.

Lemma 1.4. (e.g. [2]) Suppose that $R=k\left[T_{1}, \cdots, T_{n}\right]$ is a polynomial ring over an algebraically closed field k and that G is a finite subgroup of $G L_{n}(k)$. If R^{G} is a polynomial ring, then $R^{D_{G}(\mathrm{nn})}$ is a polynomial ring for any maximal ideal n of R and $D_{G}(\mathfrak{n l})$ is generated by pseudo-reflections.

Proof. $\operatorname{dim}\left(R_{\mathrm{m}}{ }^{G^{(\mathrm{m})}}\right)=\operatorname{dim}\left(\left(R^{G}\right)_{\mathrm{m} \cap R^{G}}\right)$ and $R_{\mathrm{m}}^{D_{G}(\mathrm{~m})}$ is unramified over $\left(R^{G}\right)_{\mathrm{m} \cap R^{G}}$. Hence $R_{\mathrm{m}}{ }^{D_{G}(\mathfrak{m})}$ is a regular local ring. Since \mathfrak{m} is $D_{G}(\mathfrak{n t})$-stable,

$$
R_{\mathrm{m}}^{D_{G}(\mathrm{~m})}=\left(R^{D_{G}(\mathrm{~m})}\right)_{\mathrm{m} \cap R^{D_{G}(\mathrm{ml})}} .
$$

On the other hand there exist elements $a_{i} \in k(1 \leqq i \leqq n)$ such that $\mathfrak{m}=\left(T_{1}-a_{1}, \cdots, T_{n}-\right.$ $\left.a_{n}\right)$. Put $X_{i}=T_{i}-a_{i}(1 \leqq i \leqq n)$ and regard $R=k\left[X_{1}, \cdots, X_{n}\right]$ as a graded algebra by $\operatorname{deg} X_{i}=1$. Then $D_{G}(\mathfrak{m}) \subseteq A u t_{k-g r}(R)$ and $R_{+}=\mathfrak{m}$. Therefore $S=R^{D_{G}(\mathbb{m})}$ is a graded subalgebra of R and $S_{+}=\mathfrak{n} \cap R^{D_{G}(n)}$. Since $S_{S_{+}}$is a regular local ring, S is a polynomial ring over k by (1.2). Hence $D_{G}(\mathfrak{m})$ is generated by pseudo-reflections.

From here to the end of this section, we assume that V is an n-dimensional vector space over a finite field k of characteristic $p \neq 2$. A pseudo-reflection $\sigma \neq 1$ is called a transvection if $\sigma \mid V_{\sigma}=1$ and a reflection if $\sigma \mid V_{\sigma}=-1$. Let G be a subgroup of $G L(V)$. Then we use the following notation :

$$
\begin{aligned}
& P(G)=\{\sigma \in G: \sigma \text { is a pseudo reflection }\}, \\
& T(G)=\{\sigma \in G: \sigma \text { is a transvection }\} \\
& R(G)=\{\sigma \in G: \sigma \text { is a reflection }\}
\end{aligned}
$$

A.E. Zalesskii and V.N. Serezkin obtained the following result which gives the classification of transvection groups.

Theorem 1.6. ([11]) Suppose that $G \cong G L(V)(n \geqq 2)$ is a transvection group. Then G is conjugate in $G L(V)$ to one of the groups $S L(n, q), S p(n, q)$ or $\operatorname{SU}(n, q)$, except for the case where $G \cong S L(2,5), G \cong S L\left(2,3^{2}\right)$.

Recently V.N. Serezkin obtained the following
Theorem 1.7. ([6], [7]) Suppose $n>3, p>5$. Let $G \subseteq G L(V)$ be a reflection group. Then G is conjugate in $G L(V)$ to one of the groups in the following list:
(1) The orthogonal groups $O_{2 m+1}(F), O_{2 m}^{ \pm}(F)$, where F is a subfield of k and $n=2 m+1,2 m$ respectively, or the groups $x \cdot \Omega$, where $x \in R\left(O_{n}(F)\right)$ and Ω is the commutator subgroup of the orthogonal group $O_{n}(F)$.
(2) The symmetric groups S_{n+1} where $n+1 \neq 0$ mod p, and S_{n+2} where $n+2 \equiv 0$ $\bmod p$.
(3) The nine exceptional groups, namely,
$W\left(F_{4}\right), W\left(N_{4}\right), E W\left(N_{4}\right), W\left(H_{4}\right)$ where $n=4 ; W\left(K_{5}\right)$ where $n=5$;
$W\left(K_{6}\right), W\left(E_{6}\right)$ where $n=6 ; W\left(E_{7}\right)$ where $n=7 ; W\left(E_{8}\right)$ where $n=8$.
However the complete proof of this result has not been published yet.
For a field k of characteristic $p>7$, the orders of the groups in part (3) of (1.7) are units in k.

§ 2. Monomial groups

Let V be a finitely generated free module over a commutative ring R. A subgroup G of $G L(V)$ is said to be monomial if G has a monomial form on some R-basis of $V([12], \S 43)$. For a field k, if $G \subseteq G L_{n}(k)$ is a finite transitive imprimitive group generated by pseudo-reflections, then G is a monomial group.

In this section, we use the following notation.
Notation 2.1. Let R be an integral domain and k be the quotient field of R. Put

$$
\begin{aligned}
& I_{n}(R)=\left\{\sigma \in G L_{n}(R): \sigma \text { is a permutation matrix }\right\} \\
& D_{n}(R)=\left\{\sigma \in G L_{n}(R): \sigma \text { is diagonal }\right\}
\end{aligned}
$$

For a finite subgroup G of $G L_{n}(R)$ of monomial form, the sequence $1 \rightarrow D(G) \rightarrow G \rightarrow \vec{\Delta}$ $I_{n}(R)$ is exact, where $A: G \rightarrow I_{n}(R)$ is the canonical homomorphism and $D(G)=$ $D_{n}(R) \cap G$. Let

$$
\tilde{P}(G)=\left\{\sigma \in G: \sigma \text { is a pseudo-reflection in } G L_{n}(k)\right\} .
$$

We identify S_{n} with $\Pi_{n}(R)$.
Lemma 2.2. Let $G \subseteq G L_{n}(R)$ be a finite subgroup of monomial form generated by pseudo-reflections in $G L_{n}(k)$. Assume that the following conditions are satisfied:
(1) The sequence $1 \rightarrow D(G) \rightarrow G \rightarrow \Pi_{n}(R) \rightarrow 1$ is exact and $\Pi_{n}(R)$ is contained in G.
(2) $\tilde{P}(D(G))=\left\{E_{n}\right\}$.

Then $R\left[T_{1}, \cdots, T_{n}\right]^{G}$ is a polynomial ring.
Proof. For $r \in \tilde{P}(G)-\left\{E_{n}\right\}$, there exists $\tau_{r} \in \Pi_{n}(R)$ such that $\tau_{r}{ }^{-1} \Delta(r) \tau_{r} \in H=$ $\operatorname{diag}\left[D_{2}(R), 1_{n-2}\right]$ where $\operatorname{diag}\left[D_{2}(R), 1_{n-2}\right]=\left\{\operatorname{diag}\left[\sigma, 1_{n-2}\right]: \sigma \in D_{2}(R)\right\}$. For matrices $A, B, C, \cdots, \operatorname{diag}[A, B, C, \cdots]$ means the block diagonal matrix defined canonically. Put $L=\left\{\tau_{r}^{-1} J(r) \tau_{r}: r \in \tilde{P}(G)-\left\{E_{n}\right\}\right\} \cup\left\{E_{n}\right\}$. Then L is a subgroup of H and there is a monomorphism from L into $U(R)$. Hence L is generated by $\sigma_{1}=\operatorname{diag}\left[a, a^{-1}, 1_{n-2}\right]$. Let $\sigma_{2}=\operatorname{diag}\left[a, 1, a^{-1}, 1_{n-3}\right], \cdots, \sigma_{n-1}=\operatorname{diag}\left[a, 1_{n-2}, a^{-1}\right]$ and put $m=|\langle a\rangle|$. It is easy to show that $D(G)=\left\langle\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n-1}\right\rangle$. Since any monomial of $R\left[T_{1}, \cdots, T_{n}\right]$ is a semiinvariant of $D(G)$, we have $R\left[T_{1}, \cdots, T_{n}\right]^{D(G)}=R\left[T_{1}^{m}, \cdots, T_{n}{ }^{m}, \prod_{i=1}^{n} T_{i}\right]$. Let $S=$ $R\left[T_{1}, \cdots, T_{n}\right]^{D(G)}, \tilde{S}=R\left[T_{1}^{m}, \cdots, T_{n}{ }^{m}\right], U=\prod_{i=1}^{n} T_{i}, X_{i}=T_{i}^{m}(1 \leqq i \leqq n)$. Then $S=\tilde{S} \oplus \tilde{S} U \oplus$ $\cdots \oplus \tilde{S} U^{m-1}$ and $G / D(G)$ acts on S as permutations of $\left\{X_{1}, \cdots, X_{n}\right\}$. Let $U_{i}(1 \leqq i \leqq n-1)$ be the fundamental symmetric polynomial of degree i in $R\left[X_{1}, \cdots, X_{n}\right]$. Then we must have $R\left[T_{1}, \cdots, T_{n}\right]^{a}=R\left[U_{1}, \cdots, U_{n-1}, U\right]$.

Lemma 2.3. Let $V=\underset{i=1}{\oplus} R Y_{i}$ be a free R-module and let G be a finite subgroup of $G L(V)$ generated by the set $\tilde{P}(G)$ such that G has a monomial form on the basis $\left\{Y_{1}, \cdots, Y_{n}\right\}$. Then there is an R-basis $\left\{X_{1}, \cdots, X_{n}\right\}$ of V such that the following conditions are satisfied:
(1) G has a monomial form on the basis $\left\{X_{1}, \cdots, X_{n}\right\}$.

We regard G as a subgroup of $G L_{n}(R)$ afforded by $\left\{X_{1}, \cdots, X_{n}\right\}$. Let $\Delta: G \rightarrow I_{n}(R)$ be the canonical homomorphism.
(2) There exists a canonical isomorphism $H \cong I_{n_{1}}(R) \times \cdots \times I_{n_{s}}(R)$, where $H=$ $\operatorname{Im}(\Delta)$ and $\sum_{i=1}^{s} n_{i}=n$.
(3) H is contained in G.

Proof. We identify G with the image of the matrix representation of G afforded by the R-basis $\left\{Y_{1}, \cdots, Y_{n}\right\}$. Let H^{\prime} be the image of the canonical homomorphism $\Delta^{\prime}: G \rightarrow I_{n}(R)$. Since G is generated by the set $\tilde{P}(G)$, we may assume that $H^{\prime}=$ $H_{1} \times \cdots \times H_{s}$ where

$$
\begin{aligned}
& H_{1}=\operatorname{diag}\left[I I_{n_{1}}(R), 1_{n-n_{1}}\right], H_{2}=\operatorname{diag}\left[1_{n_{1}}, I I_{n_{3}}(R), 1_{n-n_{1}-n_{2}}\right], \\
& \cdots, H_{s}=\operatorname{diag}\left[1_{n-n_{s}}, \Pi_{n_{s}}(R)\right] .
\end{aligned}
$$

$$
\begin{aligned}
& 厶^{\prime-1}((1,2)) \cap \tilde{P}(G) \ni \sigma_{1}^{(1)}, \cdots, J^{\prime-1}\left(\left(1, n_{1}\right)\right) \cap \tilde{P}(G) \ni \sigma_{n_{1}-1}^{(1)}, \\
& \Delta^{\prime-1}\left(\left(n_{1}+1, n_{1}+2\right)\right) \cap \tilde{P}(G) \ni \sigma_{1}^{(2)}, \cdots, \\
& \Delta^{\prime-1}\left(\left(n_{1}+1, n_{1}+n_{2}\right)\right) \cap \tilde{P}(G) \ni \sigma_{n_{2}-1}^{(2)}, \\
& \quad \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& \Delta^{\prime \prime-1}\left(\left(\sum_{i=1}^{s-1} n_{i}+1, \sum_{i=1}^{s-1} n_{i}+2\right)\right) \cap \tilde{P}(G) \ni \sigma_{1}^{(s)}, \cdots, \\
& \Delta^{\prime-1}\left(\left(\sum_{i=1}^{s-1} n_{i}+1, n\right)\right) \cap \tilde{P}(G) \ni \sigma_{n_{s}-1}^{(s)} .
\end{aligned}
$$

Put

$$
\begin{aligned}
& X_{1}=Y_{1}, X_{2}=Y_{1}^{\sigma_{1}^{(1)}}, \cdots, X_{n_{1}}=Y_{1}^{\sigma_{n_{1}-1}^{(1)}}, \\
& X_{n_{1}+1}=Y_{n_{1}+1}, X_{n_{1}+2}=Y_{n_{1}+1}^{\sigma_{1}^{(2)}}, \cdots, X_{n_{1}+n_{2}}=Y_{n_{1}+1}^{\sigma_{n_{2}-1}^{(2)}},
\end{aligned}
$$

Then $\left\{X_{1}, \cdots, X_{n}\right\}$ is the R-basis of V such that the conditions stated in this lemma are satisfied.

Theorem 2.4. Let G be a finite monomial subgroup of $G L_{n}(R)$ generated by pseudo-reflections in $G L_{n}(k)$. Then $R\left[T_{1}, \cdots, T_{n}\right]^{G}$ is a polynomial ring over R.

Proof. By (2.3), we may assume that G is indecomposable in $G L_{n}(R)$. Hence G contains the group $\Pi_{n}(R)$. Since $H=\langle\widetilde{P}(D(G))\rangle$ is a normal subgroup of G, there is an integer m such that $R\left[T_{1}, \cdots, T_{n}\right]^{H}=R\left[T_{1}{ }^{m}, \cdots, T_{n}{ }^{m}\right]$. G / H acts R-linealy on $\sum_{i=1}^{n} R X_{i}$ and G / H has a monomial form on the basis $\left\{X_{1}, \cdots, X_{n}\right\}$, where $X_{i}=T_{i}^{m}(1 \leqq$ $i \leqq n$). If we regard G as a subgroup of $G L_{n}(R)$, then the sequence $1 \rightarrow D(G / H) \rightarrow$ $G / H \rightarrow \Pi_{n}(R) \rightarrow 1$ is exact and $\Pi_{n}(R)$ is contained in G / H. If $\tilde{P}(D(G / H)) \neq\left\{E_{n}\right\}$, we continue this procedure. So we may assume that $\tilde{P}(D(G / H))=\left\{E_{n}\right\}$. In this case, by (2.2), $R\left[X_{1}, \cdots, X_{n}\right]^{G / H}$ is a polynomial ring over R.

§3. Unipotent abelian groups

We will consider about invariants of subgroups of the group:

$$
A(m, n: q)=\left\{\left[\begin{array}{cc}
E_{m} & 0 \\
M & E_{n}
\end{array}\right]: \quad M \in \operatorname{Mat}_{n \times m}\left(\boldsymbol{F}_{q}\right)\right\}
$$

We preserve the following notation in this section.
Notation 3.1. Let $k=\boldsymbol{F}_{q}$ where $q=p^{\prime}$ and p is a prime. Let

$$
\sigma=\left[\begin{array}{cc}
E_{m} & 0 \\
M & E_{n}
\end{array}\right], \quad M=\left[\mu_{1} \cdots \mu_{m}\right]
$$

where $\mu_{i}(1 \leqq i \leqq m)$ are column vectors. If $\sigma \neq 1$, we put $\varphi(\sigma)=\mu_{i_{0}}$ where $i_{0}=\min \{i$: $\left.\mu_{i} \neq 0\right\}$. And if $\sigma=1$, put $\varphi(\sigma)=0$. For a subgroup G of the group $A(m, n: q)$, set $d(G)=\operatorname{dim}_{k}\langle\varphi(P(G))\rangle_{k}$, where $\left\langle\varphi(P(G))_{k}\right.$ is the subspace of the column vector space k^{n} spanned by the set $\varphi(P(G))$. The group $A(m, n: q)$ acts linearly on the polynomial ring $S=k\left[X_{1}, \cdots, X_{m}, Y_{1}, \cdots, Y_{n}\right]$ in the form that for $\sigma=\left[\sigma_{i j}\right] \in A(m, n: q)$

$$
\left(\left[X_{1}, \cdots, X_{m}, Y_{1}, \cdots, Y_{n}\right]\right)^{o}=\left[\sigma_{i j}\right]^{t}\left[X_{1}, \cdots, X_{m}, Y_{1}, \cdots, Y_{n}\right] .
$$

Lemma 3.2. Let G be a subgroup of $A(m, n: q)$ generated by pseudo-reflections. Then there exists an element $\delta \in G L(n, q)$ such that $Z_{i} \in S^{G}(d(G)<i \leqq n)$ where

$$
{ }^{t}\left[Z_{1}, \cdots, Z_{n}\right]=\delta^{t}\left[Y_{1}, \cdots, Y_{n}\right]
$$

Proof. Put $d=d(G)$. We can choose elements $\sigma_{i} \in P(G)(1 \leqq i \leqq d)$ such that $\langle\varphi(P(G))\rangle_{k}=\underset{i=1}{\oplus} k \varphi\left(\sigma_{i}\right)$. Hence, for some $\delta \in G L(n, q)$, we have $\varphi\left(\delta^{\prime} \sigma_{i} \delta^{\prime-1}\right) \in k e_{i}(1 \leqq i \leqq d)$, where $\delta^{\prime}=\operatorname{diag}\left[1_{m}, \delta\right]$ and $\left\{e_{1}, \cdots, e_{n}\right\}$ is the standard basis of k^{n}. Since $G=\langle P(G)\rangle$ and $\langle\varphi(P(G))\rangle_{k}=\underset{i=1}{\oplus} k \varphi\left(\sigma_{i}\right)$, this lemma is obvious.

Proposition 3.3. Let G be a subgroup of $A(m, n: q)$ of order $p^{d(G)}$ generated by pseudo-reflections. Then S^{G} is a polynomial ring.

Proof. Put $d=d(G)$ and choose elements $\sigma_{i} \in P(G)(1 \leqq i \leqq d)$ such that $\langle\varphi(P(G))\rangle_{k}$ $=\underset{i=1}{\nmid} k \varphi\left(\sigma_{i}\right)$. By (3.2) there exists $\Psi^{\prime}=\operatorname{diag}\left[1_{m}, \Psi \Psi^{\prime}\right] \in G L(m+n, q)$ such that $\varphi\left(\Psi^{\prime} \sigma_{i} \Psi^{\prime-1}\right) \epsilon$ $k e_{i}(1 \leqq i \leqq d)$ and $Z_{i} \in S^{G}(d<i \leqq n)$, where $\left\{e_{1}, \cdots, e_{n}\right\}$ is the standard basis of k^{n} and ${ }^{4}\left[Z_{1}, \cdots, Z_{n}\right]=T^{t}\left[Y_{1}, \cdots, Y_{n}\right]$. Set

$$
\Psi^{\prime} \sigma_{i} \Psi^{\prime-1}=\left[\begin{array}{cc}
E_{m} & 0 \\
\tilde{w}_{i 1} \cdots \tilde{w}_{i m} & E_{n}
\end{array}\right] \quad(1 \leqq i \leqq d) .
$$

Then we have $\tilde{w}_{i j}=w_{i j} e_{i}(1 \leqq i \leqq d ; 1 \leqq j \leqq m)$ for some $w_{i j} \in k$. Let

$$
W_{i}=Z_{i}^{p}-\left(\sum_{j=1}^{m} w_{i j} X_{j}\right)^{p-1} Z_{i} \quad(1 \leqq i \leqq d) .
$$

S^{d} is integral over $k\left[X_{1}, \cdots, X_{m}, W_{1}, \cdots, W_{d}, Z_{d \sim 1}, \cdots, Z_{n}\right]$. Since the rings have the
common quotient field, we obtain

$$
S^{a}=k\left[X_{1}, \cdots, X_{m}, W_{1}, \cdots, W_{d}, Z_{d+1}, \cdots, Z_{n}\right] .
$$

Proposition 3.4. Let G be a subgroup of $A(1, n: q)$. Then $k\left[X, Y_{1}, \cdots, Y_{n}\right]^{a}$ is a polynomial ring and we can construct a system of fundamental invariants of G.

Proof. Assume that $|G|>p^{d(G)}$. Choose elements $\sigma_{1}^{(1)}, \cdots, \sigma_{d(G)}^{(1)} \in G$ such that $\langle\varphi(P(G))\rangle_{k}=\bigoplus_{i=1}^{d(G)} k \varphi\left(\sigma_{i}^{(1)}\right)$. Put $G_{1}=\left\langle\sigma_{1}^{(1)}, \cdots, \sigma_{d(G)}^{(1)}\right\rangle$, and take a suitable element $\Psi^{\prime}=$ $\operatorname{diag}[1, \Psi] \in G L(n+1, q)$ as we did in the proof of (3.3). Let ${ }^{t}\left[Z_{1}, \cdots, Z_{n}\right]=T^{t}\left[Y_{1}, \cdots, Y_{n}\right]$ and let $W_{i}=Z_{i}^{p}-\left(w_{i} X\right)^{p-1} Z_{i}(1 \leqq i \leqq d(G))$, where the elements $w_{i} \in k(1 \leqq i \leqq d(G))$ are determined by T^{\prime}. Then we have $k\left[X, Y_{1}, \cdots, Y_{n}\right]^{G_{1}}=k\left[X, W_{1}, \cdots, W_{d(\theta)}, Z_{d(G)+1}, \cdots, Z_{n}\right]$ and $Z_{i} \in k\left[X, Y_{1}, \cdots, Y_{n}\right]^{G}(d(G)<i \leqq n)$. For $\sigma \in G^{(1)}=G / G_{1}$, there exist elements $a_{o}^{(i)} \in k$ $(1 \leqq i \leqq d(G))$ which satisfy $W_{i}{ }^{\sigma}=W_{i}+a_{o}^{(i)} X^{p}$. Let $\tilde{X}=X^{p}$ and set

$$
\tilde{V}=k \tilde{X} \oplus k W_{1} \oplus \cdots \oplus k W_{d(G)} \oplus k Z_{d(G)+1} \oplus \cdots \oplus k Z_{n} .
$$

Then $G^{(1)}$ acts linearly and faithfully on the k-space \tilde{V} and we can identify the group $G^{(1)}$ with the image of the canonical homomorphism from $G^{(1)}$ to the group $A(1, d(G): q)$ which is defined on the basis $\left\{\tilde{X}, W_{1}, \cdots, W_{d(G)}\right\}$. If $d\left(G^{(1)}\right) \neq 0$, then we can construct a subgroup G_{2} of $G^{(1)}$ such that $\left|G_{2}\right|=p^{d\left(G^{(1)}\right)}=p^{d\left(G_{2}\right)}$. By (3.3), $k\left[X, W_{1}, \cdots, W_{d(G)}\right]^{\sigma_{2}}$ is a polynomial ring. Hence $\left(k\left[X, Y_{1}, \cdots, Y_{n}\right]^{G_{1}}\right)^{G_{2}}$ is a polynomial ring. Put $G^{(2)}=G^{(1)} / G_{2}$. If $d\left(G^{(2)}\right) \neq 0$, then we continue this procedure. Since G is finite, there is an integer $j>0$ such that $d\left(G^{(j)}\right)=0 . \quad d\left(G^{(j)}\right)=0$ implies $G^{(j)}=\{1\}$, and so this proposition is proved.

Proposition 3.5. Let G be a subgroup of $A(m, 1: q)$. Then $k\left[X_{1}, \cdots, X_{m}, Y\right]^{a}$ is a polynomial ring.

Proof. First we suppose that G is contained in $A(m, 1: p)$ and $G=\underset{i=1}{\star}\left\langle\tau_{i}\right\rangle$. In this case we may assume that $Y^{\tau_{i}}=Y+a_{i} X_{i}(1 \leqq i \leqq t)$ for some elements $a_{i} \in k$. Put $V_{1}(T)=T^{p}-\left(a_{1} X_{1}\right)^{p-1} T$ and define $V_{i+1}(T)=V_{i}(T)^{p}-V_{i}\left(a_{i} X_{i}\right)^{p-1} V_{i}(T)(1 \leqq i<t)$ inductively. Then we must have $k\left[X_{1}, \cdots, X_{m}, Y\right]^{G}=k\left[X_{1}, \cdots, X_{m}, V_{t}(Y)\right]$. Using this result we can prove the general case. The canonical isomorphism $k=\boldsymbol{F}_{p} 1 \oplus \boldsymbol{F}_{p} w_{2} \oplus$ $\cdots \oplus \boldsymbol{F}_{p} w_{f} \ni \sigma \longmapsto\left(\sigma^{(1)}, \cdots, \sigma^{(f)}\right) \in \boldsymbol{F}_{p}^{f}$ as \boldsymbol{F}_{p}-spaces induces a group homomorphism η : $A(m, 1: q) \rightarrow A(m f, 1: p)$ defined by

$$
\left[\begin{array}{cc}
E_{m} & 0 \\
b_{1}, \cdots, b_{m} & 1
\end{array}\right] \longmapsto\left[\begin{array}{cc}
E_{m f} & 0 \\
b_{1}^{(1)}, \cdots, b_{1}^{(f)}, \cdots, b_{m}^{(1)}, \cdots, b_{m}^{(f)} & 1
\end{array}\right] .
$$

Let $R=k\left[X_{1}^{(1)}, \cdots, X_{1}^{(f)}, \cdots, X_{m}^{(1)}, \cdots, X_{m}^{(f)}, Y\right]$ be a polynomial ring of $m f+1$ variables with the canonical action of $\eta(G)$. Define a ring homomorphism ρ from R to $S=$
$k\left[X_{1}, \cdots, X_{m}, Y\right]$ by $\rho(Y)=Y, \rho\left(X_{1}^{(1)}\right)=X_{1}, \rho\left(X_{1}^{(2)}\right)=w_{2} X_{1}, \cdots, \rho\left(X_{i}^{(f)}\right)=w_{f} X_{1}, \cdots, \rho\left(X_{m}^{(1)}\right)$ $=X_{m}, \cdots, \rho\left(X_{m}^{(f)}\right)=w_{f} X_{m}$. There exists a polynomial $V(Y) \in R$ such that

$$
R^{n(G)}=k\left[X_{1}^{(1)}, \cdots, X_{1}^{(f)}, \cdots, X_{m}^{(1)}, \cdots, X_{m}^{(f)}, V(Y)\right] .
$$

Then we obtain $S^{a}=k\left[X_{1}, \cdots, X_{m}, \rho(V(Y))\right]$.
Theorem 3.6. Let G be a subgroup of $G L_{n}(k)$ and let $R=k\left[T_{1}, \cdots, T_{n}\right]$. Then for any minimal prime ideal p of $R, R^{I_{G}(\mathfrak{p})}$ is a polynomial ring and can be determined effectively.

Proof. We may assume that $|N| \equiv 0 \bmod p$ where $N=I_{G}(p)$. There exists a normal p-subgroup H of N such that $([N: H], p)=1$. Since the action of H on R preserves the natural graduation of R, \mathfrak{p} is generated by a homogeneous polynomial of degree 1. Exchanging the basis of $\underset{i=1}{n} k T_{i}$, we can regard H as a subgroup of $A(1, n-1: q)$. By (3.4), R^{H} is a polynomial ring. N / H is generated by generalized reflections in R^{H}, therefore $R^{V}=\left(R^{H}\right)^{N / H}$ is a polynomial ring.

Theorem 3.7. Preserve the notation of (3.6) and let $I_{G}^{*}(\mathfrak{p})=\left\{\left[\sigma_{i j}\right]: \sigma=\left[\sigma_{i j}\right] \in I_{G}(p)\right\}$ for any minimal prime ideal \mathfrak{p} of R. Then $R^{t_{G}^{*}(户)}$ is a polynomial ring.

Proof. This theorem is reduced to (3.5).
Remark 3.8. Let V be an n-dimensional k-space and let G be an abelian subgroup of $G L(V)$ generated by pseudo-reflections. If $n \leqq 3$, then $k[V]^{a}$ is a polynomial ring. Suppose that $n=4$ and that $G=S p(4, p) \cap A(2,2: p)$. Then G is an abelian group generated by transvections, but $k[V]^{a}$ is not a polynomial ring.

§4. Symmetric groups

First we will give a remark.
Proposition 4.1. Let k be a field and let G be a finite group. Let V and W be finite dimensional G-faithful $k G$-modules. Suppose that there exists a $k G$ epimorphism $\varphi: V \rightarrow W$. If $k[V]^{a}$ is a polynomial ring, then $k[W]^{G}$ is a polynomial ring.

Proof. Put $g=|G|$. Then $k[V]=\sum_{i=1}^{g} k[V]^{a} f_{i}$ for some $f_{i} \in k[V](1 \leqq i \leqq g)$. It follows that $k[W]=\sum_{i=1}^{q} k[W]^{a} \tilde{\varphi}\left(f_{i}\right)$, where the homomorphism $\tilde{\varphi}: k[V] \rightarrow k[W]$ is the epimorphism induced by φ. Since G acts faithfully on $W, k[W]$ is a free $k[W]^{\alpha_{-}}$ module. Hence $k[W]^{\alpha}$ is a polynomial ring.

We preserve the following notation from here to (4.4).
Notation 4.2. Suppose that k is a finite field of characteristic $p \neq 2$ and that n is an integer with $n+2 \equiv 0 \bmod p, n \geqq 3$. Let $\tilde{V}=\underset{i=0}{+1} k e_{i}, V^{\prime}=\stackrel{n+1}{\oplus} k\left(e_{i}-e_{0}\right)$ and $V=$ $V^{\prime} \mid k \sum_{i=0}^{n+1} e_{i}$ be vector spaces with natural $k S_{n+2}$-module ${ }^{i=0}$ structure, where S_{n+2} is the symmetric group of degree $n+2$. Let $\tilde{F}: S_{n+2} \rightarrow G L_{n+2}(k)\left(r e s p . F^{\prime}: S_{n+2} \rightarrow G L_{n+1}(k)\right)$ be the matrix representation of S_{n+2} on the basis $\left\{e_{n}, e_{1}, \cdots, e_{n+1}\right\}\left(\right.$ resp $p .\left\{e_{1}-e_{0}, \cdots, e_{n+1}-\right.$ $\left.\left.e_{0}\right\}\right)$ and put $\tilde{G}=\operatorname{Im}(\tilde{F})\left(\right.$ resp. $\left.G^{\prime}=\operatorname{Im}\left(F^{\prime}\right)\right)$. Let

$$
\begin{aligned}
& \widetilde{\widetilde{G}}=w \tilde{G} w^{-1}, \quad G^{\prime \prime}=z G^{\prime} z^{-1} .
\end{aligned}
$$

We denote by G the subgroup of $G L_{n}(k)$

$$
\left\{g \in G L_{n}(k):\left[\begin{array}{ll}
1 & 0 \\
b_{g} & g
\end{array}\right] \in G^{\prime \prime}\right\} .
$$

Let $\Phi: \tilde{G} \rightarrow G^{\prime}\left(\right.$ resp. $\left.\Psi: G^{\prime} \rightarrow G\right)$ be the canonical isomorphism $\tilde{G} \rightarrow \widetilde{\widetilde{G}} \rightarrow G^{\prime}\left(\right.$ resp. $G^{\prime} \rightarrow$ $\left.G^{\prime \prime} \rightarrow G\right)$. Then the two maps $P(\tilde{G}) \ni \sigma \longmapsto \mathscr{} \longmapsto(\sigma) \in P\left(G^{\prime}\right), P\left(G^{\prime}\right) \ni \sigma \longmapsto \Psi(\sigma) \in P(G)$ are bijective.

Lemma 4.3. $k\left[V^{\prime}\right]^{s_{n+2}}$ and $k[V]^{s_{n+2}}$ are not polynomial rings.
Proof. G^{\prime} (resp. G) acts naturally on the column vector space k^{n+1} (resp. k^{n}).
(A) Let $G^{\prime}\left(a^{\prime}\right)$ be the stabilizer of G^{\prime} at a^{\prime}, where $a^{\prime}=t[1,2, \cdots, p-1,0,1, \cdots, p-$ $1, \cdots, 0,1, \cdots, p-1] \in k^{n+1}$. We identify S_{n+2} with the group of permutation matrices in $G L_{n+2}(k)$. For $\delta \in G^{\prime}\left(a^{\prime}\right)$, there is an element d of \boldsymbol{F}_{p} such that

$$
\Phi^{-1}(\delta)\left[\begin{array}{c}
0 \\
a^{\prime}
\end{array}\right]=\left[\begin{array}{c}
0 \\
a^{\prime}
\end{array}\right]+\left[\begin{array}{c}
d \\
\vdots \\
d
\end{array}\right] .
$$

Since $\Phi^{-1}(\delta) \in P(\tilde{G})$ for $\delta \in P\left(G^{\prime}\left(a^{\prime}\right)\right)$, we have $d=0$. Therefore $\Phi^{-1}\left(P\left(G^{\prime}\left(a^{\prime}\right)\right)\right)=\left\{\left(i_{0}, j_{0}\right)\right.$: $\left.i_{0} \equiv j_{0} \bmod p, i_{0} \neq j_{0}\right\} \cup\left\{E_{n+2}\right\}$. On the other hand

$$
\sigma^{\prime}=\left[\begin{array}{ccccc}
-1 & 1 & & & 0 \\
-1 & & 1 & & \\
\vdots & & \ddots & \\
\vdots & 0 & & & 1 \\
-1 & & & &
\end{array}\right] \in G^{\prime}\left(a^{\prime}\right)
$$

but σ^{\prime} is not contained in $\left\langle P\left(G^{\prime}\left(a^{\prime}\right)\right)\right\rangle$. Since $G^{\prime}\left(a^{\prime}\right)$ is the decomposition group of G^{\prime} at some maximal ideal of $\bar{k}\left[V^{\prime}\right]$, we have shown that $k\left[V^{\prime}\right]^{s_{n+2}}$ is not a polynomial ring by (1.4).
(B) For some $a \in k^{n}, z a^{\prime}=\left[\begin{array}{l}0 \\ a\end{array}\right]$. Let $G(a)$ be the stabilizer of G at a. Then $\Psi\left(G^{\prime}\left(a^{\prime}\right)\right)=G(a)$. Since $\left\langle P\left(G^{\prime}\left(a^{\prime}\right)\right)\right\rangle \neq G^{\prime}\left(a^{\prime}\right)$ and $P\left(G^{\prime}\right) \ni \tau \longmapsto \Psi(\tau) \in P(G)$ is bijective, we obtain $\langle P(G(a))\rangle \neq G(a)$. Hence $k[V]^{s_{n+2}}$ is not a polynomial ring by (1.4).

Remark 4.4. Suppose that $V^{\prime *}$ is the dual space of V^{\prime}. Then $k\left[V^{\prime *}\right]^{S_{n+2}}$ is a polynomial ring over k by (4.1).

Theorem 4.5. Let k be a finite field of characteristic $p \neq 2$ and let V be a faithful linear representation of least degree of S_{n} with $n \geqq 7$. Then the following conditions are equivalent:
(1) $k[V]^{s_{n}}$ is a polynomial ring.
(2) $(n, p)=1$ and all transpositions of S_{n} are represented by reflections in $G L(V)$.
And if V satisfies these conditions, then we have $\operatorname{dim}(V)=n-1$.
Proof. According to [10] and (4.3), it is sufficient to show that (2) implies (1). We can obtain the $k S_{n}$-module V as in (2) as follows. Let \tilde{V} be a canonical representation of S_{n} of degree n : Since $(n, p)=1$, the sequence $0 \rightarrow \tilde{V} S_{n \rightarrow i} \tilde{V} \rightarrow \operatorname{Coker}(i) \rightarrow 0$ is a split exact sequence of $k S_{n}$-modules and $\operatorname{Coker}(i)$ is $k S_{n}$-isomorphic to V. Therefore, by (4.1), $k[V]^{s_{n}}$ is a polynomial ring over k.

§5. Classical groups

In this section k is a finite field of characteristic $p \neq 2$.
Theorem 5.1. Let G be a subgroup of $G L_{2}(k)$. Suppose that $T(G)=\phi$ in the case of $p=3$. Then $k\left[T_{1}, T_{2}\right]^{a}$ is a polynomial ring if and only if G is generated by pseudo-reflections.

Proof. We have only to show the if part. Assume that G is generated by pseudo-reflections. Since $T(G)=\phi$ implies $(|G|, p)=1, k\left[T_{1}, T_{2}\right]^{G}$ is a polynomial ring in the case of $T(G)=\phi$. Suppose that $T(G) \neq \phi$ and let $H=\langle T(G)\rangle$. Then we have $(|G / H|, p)=1$. If G is reducible, we may assume that H is contained in $A(1,1: q)$. Since $k\left[T_{1}, T_{2}\right]^{H}$ is a polynominal ring, $k\left[T_{1}, T_{2}\right]^{G}=\left(k\left[T_{1}, T_{2}\right]^{H}\right)^{G / H}$ is regular by (1.3). Hence, by (2.4), we can suppose that G is irreducible primitive. By Clifford's theorem ([12], $\S 49), H$ is irreducible and H is conjugate in $G L_{2}(k)$ to $S L(2, q)$. It is known
that $k\left[T_{1}, T_{2}\right]^{H}$ is a polynomial ring. By (1.3), $k\left[T_{1}, T_{2}\right]^{G}$ is regular. Thus the proof is completed.

Theorem 5.2. For a transvection group $G \subseteq G L_{n}(k)(n \geqq 3)$, the following conditions are equivalent:
(1) $k\left[T_{1}, \cdots, T_{n}\right]^{a}$ is a polynomial ring over k.
(2) G is conjugate in $G L_{n}(k)$ to $S L(n, q)$.

Proof. According to (1.6), it suffices to prove that $k\left[T_{1}, \cdots, T_{n}\right]^{a}$ is not a polynomial ring for $G=S p(n, q)$ or $S U\left(n, q^{2}\right)$. Put $S=k\left[T_{1}, \cdots, T_{n}\right]$.
(A) First we suppose that $n=4$ and $G=S p(4, q)$. Let $\left\{T_{1}, T_{2}, T_{3}, T_{4}\right\}$ be the canonical basis on which G can be expressed in the form $\left\{\sigma \in S L(4, q)\right.$: $\left.{ }^{\prime} \sigma \Phi_{\sigma}=\Phi\right\}$ where

$$
\Phi=\left[\begin{array}{cc}
0 & E_{2} \\
-E_{2} & 0
\end{array}\right] .
$$

Take maximal ideals $\mathfrak{m}_{1}=\left(T_{1}-1, T_{2}, T_{3}, T_{4}\right), \mathfrak{m}_{2}=\left(T_{1}, T_{2}-1, T_{3}, T_{4}\right), \mathfrak{m}_{3}=\left(T_{1}, T_{2}, T_{3}-\right.$ $\left.1, T_{4}\right), \mathfrak{m}_{4}=\left(T_{1}, T_{2}, T_{3}, T_{4}-1\right)$ of S and put $H=\bigcap_{i=1}^{2} D_{G}\left(\mathfrak{m}_{i}\right), N=\left\langle D_{H}\left(\mathfrak{m}_{3}\right), D_{H}\left(\mathfrak{m}_{4}\right)\right\rangle$. Then there exist homogeneous polynomials X_{1}, X_{2} of degree q such that $S^{N}=k\left[T_{1}, T_{2}, X_{1}, X_{2}\right]$. We regard $S^{N}=\oplus_{i=0}^{\infty}\left(S^{N}\right)_{i}$ and $S^{H}=\bigoplus_{i=0}^{\infty}\left(S^{H}\right)_{i}$ as graded subalgebras of S. Assume that S^{H} is a polynomial ring. Since $\operatorname{dim}_{k}\left(S^{H}\right)_{1}=2$, there are homogeneous polynomials f_{1}, f_{2}, which satisfy $S^{H}=k\left[T_{1}, T_{2}, f_{1}, f_{2}\right] . S^{N}$ is integral over S^{H} and so the set $\left\{T_{1}, T_{2}, f_{1}, f_{2}\right\}$ is a system of parameters of S^{N} at origin. Let $\varphi: S^{N} \rightarrow k\left[X_{1}, X_{2}\right] \subseteq S$ be a ring homomorphism defined by $\varphi\left(T_{1}\right)=\varphi\left(T_{2}\right)=0$ and $\varphi\left(X_{i}\right)=X_{i}(i=1,2)$. From $\varphi\left(f_{i}\right) \neq 0$, we obtain $\operatorname{deg}\left(f_{i}\right)=\operatorname{deg}\left(\varphi\left(f_{i}\right)\right)$ in $S(i=1,2)$. Hence $\operatorname{deg}\left(f_{i}\right)$ is a power of q. But $|H|=q^{3}=\prod_{i=1}^{2} \operatorname{deg}\left(f_{i}\right)$ and $\left.\varphi\left(\left(S^{H}\right)_{q}\right)=\varphi\left(\left(S^{N}\right)_{q}\right)^{H^{/ N}}\right)=0$, which is a contradiction. Therefore S^{G} is not a polynomial ring by (1.4). The general case is reduced to the case of $S p(4, q)$ with aids of (1.2) and (1.4).
(B) We consider the case of $G=S U\left(n, q^{2}\right)$. It is sufficient to prove the assertion for $n=3$. Let $\lambda \longmapsto \bar{\lambda}$ be an involutory automorphism of the field $\boldsymbol{F}_{q^{2}}$, and let $\varepsilon \in$ $\boldsymbol{F}_{q^{2}}^{*}$ be an element such that $\operatorname{Tr}(\varepsilon)=0$. We denote

$$
\Gamma\left(q^{2}\right)=\left\{\sigma \in S L\left(3, q^{2}\right): \bar{\sigma}_{\sigma} \Psi \sigma=\Psi\right\}
$$

where

$$
\Psi=\left[\begin{array}{rrr}
0 & \varepsilon & 0 \\
-\varepsilon & 0 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Suppose that H is the stabilizer of $\Gamma\left(q^{2}\right)$ at ${ }^{t}[1,0,0]$ under the natural action of $\Gamma\left(q^{2}\right)$
on the column vector space $\boldsymbol{F}_{q^{2}}^{3}$ over $\boldsymbol{F}_{q^{2}}$. It is easy to show that H is not generated by pseudo-reflections in $G L\left(3, q^{2}\right)$. Since G is conjugate to $\Gamma\left(q^{2}\right), S^{a}$ is not a polynomial ring by (1.4).

We give the following remark which is a generalization of the preceding result without its proof.

Remark 5.3. Let G be an irreducible subgroup of $G L_{n}(k)$ which contains a transvection and suppose $n \geqq 4$. Then $k\left[T_{1}, \cdots, T_{n}\right]^{G}$ is a polynomial ring if and only if G is generated by pseudo-reflections and the normal subgroup $\langle T(G)\rangle$ is conjugate to $S L(n, q)$ in $G L_{n}(k)$.

Theorem 5.4. Let F be a subfield of k and let \mathcal{O} be the orthogonal group of a non-singular quadratic form Q of dimension n over F. Suppose that G is a subgroup of \mathcal{O} which contains the commutator subgroup Ω of \mathcal{O}. If $n \geqq 4$, then $k\left[T_{1}, \cdots, T_{n}\right]^{a}$ is not a polynomial ring over k.

Proof. Let ν be the index of Q and let V be the n-dimensional F-space with the quadratic form Q. For a subgroup N of \mathcal{O}, we denote by $N(x)$ the stabilizer of N at $x \in V$ under the natural action of N on V. Let W be a suitable maximal totally isotropic subspace of V. If $n=2 \nu$, then we have $H=\bigcap_{x \in W} \mathcal{O}(x) \cong F^{\nu \nu-1) / 2}$. In general V can be expressed as an orthogonal direct sum of hyperbolic planes M_{i} ($1 \leqq i \leqq \nu$) and a quadratic space L of index 0 . Hence, if $\nu \geqq 2$, we obtain $H^{\prime}={ }_{x \in W} \mathcal{O}^{\prime}(x)$ $\cong F^{\nu(\nu-1) / 2}$ where $\mathcal{O}^{\prime}=\bigcap_{x \in L} \mathcal{O}(x)$. Suppose that $\nu \geqq 2$. Consequently we can take maximal ideals $\mathfrak{m}_{i}(1 \leqq i \leqq \nu+2)$ of $\bar{k}\left[T_{1}, \cdots, T_{n}\right]$ such that

$$
F^{\nu(\nu-1) 2 /} \cong \bigcap_{i=1}^{\nu+2} D_{O}\left(\mathfrak{m}_{i}\right)=\bigcap_{i=1}^{\nu+2} D_{S O}\left(\mathfrak{m}_{i}\right)
$$

where

$$
S \mathcal{O}=S L_{n}(k) \cap \mathcal{O} .
$$

Since $S \mathcal{O} / \Omega \cong F^{*} / F^{* 2} \cong \boldsymbol{Z} / 2 \boldsymbol{Z}, \bigcap_{i=1}^{\nu+2} D_{\Omega}\left(\mathrm{m}_{i}\right) \neq\{1\}$ follows. On the other hand we have $P\left({ }_{i=1}^{\nu+2} D_{O}\left(\mathfrak{n}_{i}\right)\right)=\{1\}$. Hence ${\underset{i=1}{\nu+2} D_{G}\left(\mathfrak{m}_{i}\right) \text { is not generated by pseudo-reflections. Next we }}_{\text {a }}$ assume that $\nu=1$. Then it follows that $n=4$ and $\mathcal{O}=O_{4}^{-}(F)$. Take an isotropic point and a non-isotropic point of V appropriately. Then we can choose maximal ideals n_{1}, n_{2} of $\bar{k}\left[T_{1}, T_{2}, T_{3}, T_{4}\right]$ such that $\left|\left\langle P\left(\bigcap_{i=1}^{2} D_{O_{4}^{-}(F)}^{-}\left(n_{i}\right)\right)\right\rangle\right|=2$ and $\bigcap_{i=1}^{2} D_{S O_{4}^{-}(F)}^{-}\left(n_{i}\right)$ $\cong F$ where $S O_{4}^{-}(F)=S L_{4}(k) \cap O_{4}^{-}(F)$. Since $\left|S O_{4}^{-}(F) / \Omega\right|=2, \bigcap_{i=1}^{2} D_{G}\left(\mathfrak{n}_{i}\right)$ is not generated by pseudo-reflections. In both cases $k\left[T_{1}, \cdots, T_{n}\right]^{\sigma}$ is not a polynomial ring by (1.4).

Remark 5.5. Let $G \subseteq G L_{n}(k)$ be a reflection group and let $n>3, p>7$. Then
$k\left[T_{1}, \cdots, T_{n}\right]^{a}$ is a polynomial ring over k if and only if G is conjugate in $G L_{n}(k)$ to one of the groups in the following list:
(i) The symmetric group S_{n+1} where $n+1 \neq 0 \bmod p$.
(ii) The groups in part (3) of (1.7).

This follows from (1.3), (1.7), (4.3), (4.4) and (5.4).

References

[1] Bertin, M.-J., Sous-anneaux d'invariants d'anneaux de polynomes, C. R. Acad. Sci. Paris. 260 (1965), 5655-5658.
[2] Bourbaki, N., Groupes et algèbres de Lie, Chapitre 5, Groupes engendrés par des réflexions, Hermann, Paris, 1968.
[3] Chevalley, C., Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
[4] Coxeter, H.S. M., The product of generators of a finite group generated by reflections, Duke Math. J. 18 (1951), 765-782.
[5] Dickson, L. E., A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), 7598.
[6] Serezkin, V. N., Groups of reflections over finite fields of characteristic $p>5$, Preprint, Inst. Mat. Akad. Nauk BSSR, Minsk, 1976.
[7] , Reflection groups over finite fields of characteristic $p>5$, Dokl. Akad. Nauk SSSR 227 (1976), $574-575 .=$ Soviet Math. Dokl. 17 (1976), 478-480.
[8] Serre, J.-P., Groupes finis d'automorphismes d'anneaux locaux reguliers, Colloq. d'Alg. E.N.S., 1967.
[9] Shephard, G.C. and Todd, J. A., Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274-304.
[10] Wagner, A., The faithful linear representation of least degree of S_{n} and A_{n} of odd characteristic, Math. Z. 154 (1977), 103-114.
[11] Zalesskii, A.E. and Serezkin, V.N., Linear groups generated by transvections, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), $26-49 .=$ Math. USSR Izvestija 10 (1976), 25-46.
[12] Curtis, C.W. and Reiner, I., Representation theory of finite groups and associative algebras, Interscience, New York, 1962.

Department of Mathematics Faculty of Technology Keio University Hiyoshi, Yokohama-shi 223 Japan

