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§1. Introduction.

Expansive transformations play important roles in topological dynamics.

However there are several notions for expansiveness of real flows and the rela-

tionships between them have not been clarifiedenough. We investigate in this

paper the relationship between some of expansive notions and show that the

notions are unified into two kinds of expansiveness (Theorem and Theorem A).

One is the expansiveness introduced by R. Bowen and P. Walters [2] and

another is the weak expansivenass found in [5] in investigating the geometric

Lorentz flow introduced by J. Guckenheimer [3].

Let X be a compact metric space with metric d and R denote the additive

group of real numbers. A map F: XxR-^-X is called a flow on X if F is con-

tinuous and ft+≫x=ft(fsx), fox = x for every t,seJS and xeZ, where ftx =

F(x, t).

R. Bowen and P. Walters introduced in [2] the notion of expansiveness as

follows: A flow F is expansive if for any e>0 there exists 8>Q such that if

x, y^X satisfy d(ftx, ft^yXd (t^R) for some continuous map s; R―>R with

s(0)=0, then y=ftx for some ＼t＼<s.

fj(S)―{ftx; feJ, xeS} for an interval / and SdX. A flow F on X is

called weakly expansive if F satisfiesthe property that for any s>0 there exists

<5>0 with the property that if there exist a pair of points xjel and a strictly

increasing surjective homeomorphism h : R-+R with /i(0)=0 such that d(ftx,

fnit>y)<d for every t^R, then fhuoiy^fao-.ta+Mx}) for some toeR.

Theorem (R. Bo wen and P. Walters [2]). The following are equivalent for

a flow F.

(i) F is expansive.

(ii) For any s>0 there exists <5>0 such that if x, yGX satisfy d(ftx, /sco30
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<8 (t^R) for some continuous map s:R-+R with s(0)=0, then y is in the same

orbit as x and the orbit from x to y liesinside Bs(x)={y<^X; d(x, y)<*e}.

(Hi) For any s>0 there exists d>0 with the property: for f=(^)^=_K≫and

u=(u{)?=-<*>to which satify

to= ua―O, Q<ti+1 ―ti^d, ＼ui+1―Ui＼<.d.

and

tt―> oo, t-i―> ―oo as i―>oo

if d(ftix, fUiy)<£ {i^Z), then y=ftx for some U|<s.

(iv) For any s>0 there exists <5>0 such thatif x, ye.X satisfy d(ftx, f h^y)

<.8 (t<BR) for some strictlyincreasing surjective homeomorphism h: R-+R with

h(0)=0, then y―ftx for some ＼t＼<s.

Theorem was firstproved by R. Bowen and P. Walters [2] for flows with-

out fixed points. However Theorem is true for all real flows dropped the con-

dition of fixed points. In §2 we shall explain that reason.

Theorem A. A weakly expansive flow without fixed points must be an expan-

sive flow.

The proof of Theorem A will be proceeded in §3. By Theorem A it seems

likely that some of properties obtained for expansive flow hold also for weakly

expansive flows with fixed points. Concerning with topological entropy Theo-

rem B below is a natural extension of Theorem 5 [2] for weakly expansive

flows. h(F) is the topological entropy of F and v(t)denotes the number of

closed orbits of F with a period re[0, f]. It is easily checked that a weakly

expansive flow is /i-expansive in the sense of [1] and so Theorem B is readily

confirmed according as the proof of Theorem 5 [2].

Theorem B. Let F be a weakly expansive How. Then

lim sup [(1/0 log v(ty]£KF)<°o .

§2. Proof for the case with fixed points.

A point x^X is called a periodic point if ftx ―x for some t>0, and called

a fixed point if ftx~x for any t(ER. The smallest t>0 with ftx = x is called

the period of a point #. Fix (F) denotes the set of all fixed point of F.

Each fixed point is an isolated point of X for both expansive flows and

flows with the property (ii)of Theorem (c.f. [2, Lemma 1]). Since (i) and (ii)
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are equivalent for a flow F without fixed point by [2, Theorem 3], it is easily-

checked that (i) and (ii)are equivalent.

That (i)―>(iii)and (Hi)―>(iv)has been essentially proved in the proof of [2,

Theorem 3]. We show that (iv)―>(i).

Assume that F satisfies the property (iv). Let <5>0 be a constant of the

property (iv) for 1. Put 80=d/3. Ur{x) is an open ballwith radius r and center

Lemma 1. // X is connected and Card(Z)^2, then F has no fixed points.

Proof. Assume that F has a fixed point x0. We have by the property (iv)

that there is no fixed point in Us(x0)＼{x0} and that if xet/^^i^o}, then

d(ftx, xo)^28o for some teR.

For any xeX, put

T(x)=inf{＼t＼:d(ftx, xo)^8o}.

Obviously T(x)>0 for any x<bU3o/2(xo). By the facts that X is connected and

Card (X)^2 and that x0 is a fixed point of F, we have jyoe£7'soii(xo)with T(y0)

Put

T0=inf{t>0; d(ftya, xo)=8e＼

and

So=supU<0; d(ftyo, xo)=<5o}.

Then T0^2 and 50^― 2, where inf <j>―oo and sup^= ―oo.

Let yi―fiy0. Take a strictlyincreasing surjective homeomorphism h : R-*R

with /i(0)=0 such that A(O=f-l in |f|^2, h(t)=t/2 in 0^/^2 and h(t)=3t/2

in -2^f^0. We have

rfC/t^o,fh<≫yi)=d(fty0, fuo+iyo)

^d(ftyo, xo)+d(x<,, /ftco+ijo)

for Ul^2. Obviously

d(fty0, fhcnyi)―d(fty0, fhcn+iy<>)=0

for U|^2. Hence d(fty0, fmoyiXd for any £ei£. Therefore we have that

yi―ftyo for some UI<1 by the property (iv), From this fact we have that

fl_ty0=y0 and l ―t<2. Hence j>0 is a periodic point of F with period 1 ―t.

Since {ftyQ: ―2^^2}ci3ao(x0), we have that d(fty0, xo)^do for any /ei?.
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This contradicts that d(fty0, *o)s^2<5ofor some t^R. Hence F has no fixed

point.

Lemma 2. Each fixed point of F is an isolated point of X.

PROOF. Assume that there exists xo^Fix(F) which is not isolated in X.

Take xneB1/n(xo)＼{xo} for each n^N, where TVis the set of all positive integers.

C(X) denotes the set of all non-empty closed subsets of X Let C{xn) be the

connected component of xn in X. Obviously C(xn)^C(X).

Since C(X) is compact with respect to the Hausdorff metric, we can assume

that C(xn) converges to some Cg^(I) when n goes to oo. Then C is connected.

We claim that {xo}£C. Indeed, if C={x0}, then C(xn)dBs(x0) for sufficiently

large n, where 8>0 is a constant of the property (iv) for 1. Since /£(xn)e

C(xn) for any t^R, we have that xn=x0 by the property (iv), which contradicts

that Xn^FX0.

Since C(x0) is the connected component of x0 in X, C(xo)Z)C^ {x0}. Hence

Card(C(xo))^2. We have that /t(C(x0)=C(x0) for any t(ER. Hence F induces

a flow on C(x0) with a fixed point x0. Since C(x0) is compact and connected

and Card(C(xo))^2, this contradicts Lemma 1.

Since F satisfies the property (iv), F has finitelymany fixed points. Put

Fix(F)={xi, ･･■, xk). By Lemma 2, X＼{x1, ･･･, xk) is a compact invariant set

of F. F is a flow on X＼{xu ■■･, xk＼with the property (iv) and has no fixed

points on it. Hence F is expansive by [2, Theorem 3]. Take s>0. Let a be

an expansive constant of F on X＼＼xlf■■･, xk＼for s.

Put 8i=d(Xi, X＼{xt}) for i―l, ･■･, k, where d(x, Z＼{z})=inf{d(x, y); y^

X＼{x}}. Then dt>0 from Lemma 2. Put ao―mm{a, 8U ■■■, 8k}. We show

that a0 is an expansive constant of F for e.

Assume that there is a continuous map s: R-*R with s(0)=0 such that

d(ftx, fsmyX^o for any t^R. If x<=Fix(F), then by the property (iv) we have

that y=x. Hence y=fox. Similarly y~fox when ;yeFix(F). If x, j><=Fix(F),

then y=ftx for some ＼t＼<ssince ao^a. Hence F must be an expansive flow

on X. The proof is completed.

§3. Proof of Theorem A.

For a continuous flow F we define

6o(F)='mf{t>Q) Fit, x)=x for some x^X^F＼x(F)}.
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Obviously e0{F)=oo if F has no periodic points except fixed points.

Lemma 3. The following (i) and (ii) are equivalent.

(i) F is weakly expansive.

(ii) For any £>0 there exists ao>O such that the following holds: for a with

0<a^a0 and for t―it^-oo and u―iui)^.^ to which satisfy

to= ua=0, 0<ti+1―ti^a, 0<ui+i ―Ui^a

and

ti,Ui > co, t-i, U-i > ―oo (*-≫oo),

if d{ftix, fUiy)<oc (i^Z) thex there exists feZ such that

f Uiy^fc-s-a +ti.ti+a+odx}) ･

Proof. (i)-≫(ii). For any s>0 take ao>O such that

a0+2sup{<iO, fuz); z^X, |u|^ao}<<5,

where 8 is an expansive constant of F for e. We assume that £=(£f) =_<≫and

M=(Mf)"=_≫ satisfy the assumption of (ii). Let h be a strictly increasing surjec-

tive homeomorphism of R with h(ti)=Ui for any. s'eZ. Then we have

d(ftx, fhcny)£d(ftx, ftix)+d(ftix, fUiy)+d(fUiy,fhcny)

<^a+2$up{d(z, fuz); zel, ＼u＼^a}

<d

for tit^t^ti+1. Since F is weakly expansive by (i), we have fnu^y^-

fa0-s.t0+o({x}) for some to^R. By the definition of h there is feZ such that

ti^t0Sti+i and Ui<.h(to)<,ui+1. Hence fitiy=fui-iiit0>°fint0)y=fui-Mt0)+tX for

some te(t0―s, £0+ e). Put s = Ui ―h(to)+t. Then

s>Ui ―h(tQ)+t0 ―e^Ui ―h(to)+tt ―£

^i―a ―s,

S<Mi ― /2(£o)+^o+ S^≪f ― ^(^o)+ii+i + £

Therefore there is j'eZ such that

(ii)->(i) Take and fix s>0. Let ≪0>0 satisfy (ii) for e/2 and let 0<a£
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min{a0, s/2}. Then it is enough to show that a is an expansive constant of

F for s.

Assume that h is a strictlyincreasing surjective homeomorphism of R with

h(0)=0, and that d(ftx, fhWy)<a for any t^R. Choose Ui)^- such that to=O,

0<tj+i―U^a and 0<h(ti+1)―h(tt)£a and that tu h(tt)-*°oand f_<, /i(f_<)->―oo

as /―>oo. Then we have d(fttx,fUiy)<a where Ui=h(tt) for /=Z. By (ii)

there exists i"eZ such that /u^e/c-./s-a+^.tt+a+./sjCW). Thus fhitt>y&

/are,tj+t)(W). This implies that F is weakly expansive.

For the rest of this section F is assumed to be a continuous flow on X

without fixed points.

A subset ScX is called a local cross-sectionof time C>0 for a continous

flow Fii S is closed and Sn/c-c.a({*})={*} f<>r all xeS, where C<£o(i?)/2.

If S is a local cross-section of time C, F maps Sx[―C, C] homeomorphically

onto /c-^,c](S). By the interior S* of S we mean the set Snint /c_;,p(S). Note

that /(_£
S)(S*)

is open in X for any s>0.

Lemma 4 ([4]). Under the above notations and assumptions, there is a 0<C

<so(F)/2 such that for each a>0 we can find a finite family S={SU S2, ･･■, Sk]

of pairwise disjoint local cross-sections of time C and diameter at most a, and a

finite family of local cross-sections 2"={T1, T%, ･･･, Tk＼ with T^cSf (i―1,2, ･･･,k)

such that

X=flo.aiT+)=fz_a.ol(T+)=fto,ai(S+)=ft-a.oiS+).

where T+

i. e

= U Tt and S+=(jS

Hereafter let

i=＼

i

0<3a<£ and B be the minimum time between sectionsof Q

j8=sup{3>0; /≪>.<>)(W)nS+=0 for xgS+}.

Obviously 0<j8^a. Let p satisfy 0<2p<fi.

For xeT+ let £be the smallest positive number such that /£(x)eT+. Then

we can define a first return map <p by <p(x)=ftx. It is easily checked that

(p: T+-+T+ is bijective but not continuous. Note that fiStf^a.

For Sfe5, let Dip=fi-p,P2(Si) and define a projective map Pp: Dp-^Si by

Pp(x)=ftx, where /£xeSt and U|^/o. Since 2p<C, Pi is well defined and onto

continuous. We write Dp=Dlp and Pp~Pi if there is no confusion.

Lemma 5. There is an 0<c<j8/2 such that for x, yGSt if d(x, y)<,a and

/txe7＼ (|*|^3a) for some TJt then fty^Dl



Proof is clear.

Expansiveness of real flows
7

Using Lemma 5 we can set up a shadowing orbit of y relative to a ^o-orbit

of igT+ as follows. If y is sufficientlyclose to x, the orbit of y will cross Sf

at a time near the time when the orbit of x crosses Tt. For x<=l＼ and y<=St

with d(x, y)^a, we can define a set of points {3^} where yo=y and y{=

Pp(ftyi-i),where t is the smallest positive time such that (pi(x)=ft(<pi~＼x)),and

we can continue this construction as long as d(<p＼x),yd^a. Then we obtain a

time delated y shadow orbit along a piece of the orbit of x. We can also pro-

ceed the same construction as the above for negative powers of <p. For sim-

plicitywe write T, S instead of Tit St respectively. Let a>0 be as in Lemma

5 and let 0<r)<a.

For xgT the 57-stableset of x is

W'(x)={y<=S; d(,<p＼x),ytXij for all i^O}

and the ^-unstable set of x is

W%(x)={y(=S; d(a>Kx),yt)<rj for all *£()}.

Lemma 6 ([4]). F is expansive if and onlyif given collectionsof local cross-

sections Q and £T{with C and 3a<£) and p>0 (with 2p<fi), there is >?>0 such

that W'lx)r＼WHx)―{x} for any xeT+.

Proof of Theorem A. Since F has no fixed points, take C>0 as in Lemma

4. Put s=C/3 and let ao>O be as in Lemma 3 (ii). Now take a with 0<2a<

min{C/3, ≪o}. For this ≪>0, we can find local cross-sections Q and 2 by

Lemma 4.

Let /3 be as the above. Take p>0 such that 2p<fi. Let 0<a</3/2 be as

in Lemma 5 and let 0<>y<min{a, 2a}. To obtain the conclusion, it is enough

to show that W%x)rW%(x)={x] for any x(ET+.

Let y&W%x)nW%(x) for xgT+. Then we have d(<p＼x),yt)>7j for allieZ.

Let Ti be the smallest positive number such that <pi{x)=fTi((pi~l(x))for zeZ.

Since ^>i(x)=<p(y)i~1(x))=fTi(<pi'l(x)),we have ft^ti^a. Since d(<p＼x),yd<T] for

i£Z, the time difference Xt between yi+i and yt satisfies＼h―Ti＼^kp- Thus

(1) j8/2=j8-j8/2<rt-/i^^^ri + /o<ri+ a^2a.

Now define doubly infinitesequences £=(M?=-≪, and a=(ttv)°?≪ where
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ti(Ui) ―

I

Sr*tf≫)

0

if i^O

if *=0

-2r*0i*) if i^O
k=0

Then we have ^ti+1―t1^a^2a for ≪eZ and from (1), ^/2^ui+1-ut^2a.

Hence tif m,:-≫ooand t-iy w_i―*･―°oas f->oo. Since

d(ft.x, fUiy)=d((Pi(x)> yi)<7]<2a (ie=Z),

there is /gZ such that /≪^e/c_£_2a+t.,j.+2a+s)({x})(by Lemma 3) and l^l^k

such that ft.x^Ti. Since £+2a=C/3+2a<2C/3<3<C and since St is a local

cross-section of time C, we obtain fUiy=ftix. By using induction on z'we see

that x=y holds. Hence F is an expansive flow on X by Lemma 6.
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