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Introduction

A Lie transformation group on a smooth manifold M is a pair (G, M) of a Lie group G

which acts smoothly on M. This paper is concerned with the cohomogeneity (abbrev. coh) of

(G,M), which is defined by

coh (G, M) = dimM― dim G + min {dim Gx;xeM},

where Gx is the isotropy subgroup of G at x. Then

coh (G, M) ^dim M-dim G (=: doh (G, Af)),

{jteAf; coh (G, M) = doh (G, M) + dim GJ is an open subset of M, and

coh (G°,Af)= coh (G,M)

where G°is the identity connected component of G.

An orthogonal transformation group (abbrev. o.t.g.)on an N dimensional Euclidean

space EN is defined as a pair (G, 2?^) of a connected Lie subgroup G of the full orthogonal

group O(N) on 2?* (G, EN) is said to be contained in another o.t.g.(G', EN) on EN if there

is a real linear isometry i:EN-≫EN and a Lie group monomorshism x:G-*G' such that

r(g)i = ig for all geG.

If moreover t is a Lie group isomorphism, (G, EN) is said to be equivalent to (G＼ ^Af).

Let p be a linear representation on RN over the field R of all real numbers of a Lie

group G. We say (G, /?,J^) an orthogonal linear tripleand p an orthogonal representation of

G if there is a positive definiteinner product on RN which is invariant under the action of
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p(G). Suppose p is another orthogonal representation of G. We call(G, p', RN) and (G, p,

RN) are equivalent as real representation if p and p are equivalent as real representations

of G.

An orthogonal linear triple(G, p, RN) naturally induces an o.t.g.(p(G°), EN) which is

well defined up to equivalences and denoted by 0{G, p, RN). We denote

coh (G, p, RN) =coh (O(G, p, RN)),

doh (G, p, RN) =doh (O(G, p, RN)).

If G is compact, then any real representation of G is an orthogonal linear representation,

and the corresponding o.t.g.is called a compact linear group.

An o.t.g. is called maximal if it is not properly contained in an o.t.g. of the same

cohomogeneity. Suppose (G, EN) is a maximal o.t.g.If it contains a compact linear group

(K, EN) of the same cohomogeneity, then itselfis a compact linear group. In fact, the

closure G of G in 0{N) is compact and

coh(G,EN)=coh(G,EN)

since {xeEN; G(x) is closed (i.e.,G(x) = G(x) = G(x)), coh (G, EN)=N-dim G+dim Gx)

contains an open dense subset {xeEN; coh (K, EN)=N― dim if+dim Kx] of EN.

Hsiang-Lawson [11] studied a classification of all compact linear groups of

cohomogeneity 2 or 3 and maximal by means of the classificationof compact linear groups

which has a non trivialisotropy subgroup at a point of a principal orbit (cf. Kramer [15],

Hsiang [10] and Hsiang-Hsiang [9]). As a result, most of them can be induced from the

linear isotropy representations of Riemannian symmetric pairs.

Conversely, the linear isotropy representation of each Riemannian symmetric pair of

rank r induces a compact linear group of cohomogeneity r(cf. Takagi-Takahashi [19]).

Any of its orbit in the representation space is an R-space in the meaning of Takeuchi [20]

(cf. Takeuchi-Kobayashi [21]). A principal R-space denotes an J?-space of the highest dimen-

sion among alli?-spaces associated with a given Riemannian symmetric pair.

From tables of Takagi-Takahashi [19, Table I and II],it appears that two principal R-

spaces associated with two distinct Riemannian symmetric rairs of rank 2 are not

equivalent as Riemannian manifolds nor Riemannian submanifolds of a hypersphere of the

representation space. Especially if two maximal o.t.g.'s of cohomogeneity 2 contain

o.t.g.'sfrom two distinctRiemannian symmetric pairs of rank 2 respectively, then they are

not equivalent (cf. Ozeki-Takeuchi [17; Theorem 1, Theorem 2]).

However it is well known that the o.t.g. from the Riemannian symmetric pair (G2,

SO(4)) of rank 2 is missed in a theorem of Hsiang-Lawson [11; Theorem 5] (cf. Takagi-

Takahashi [19], Uchida [23]). More than before, Uchida [23] pointed out many examples

of real reducible (i.e.,non irreducible) compact linear groups of cohomogeneity 3 which

shows that another theorem of Hsiang-Lawson[ll; Theorem 6] shoud be properly
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modified. Uchida [23; Theorem] also gave a classification theorem of real reducible com-

pact linear groups of cohomogeneity 3 and maximal in a correct form by the use of a

classification of compact Lie groups which act transitively on spheres (cf. Montgomery-

Samelson [16], Borel [3], [4]).

In this paper, we study the classification of real irreducible o.t.g.'sof cohomogeneity at

most 3 by a direct method (cf. Sato-Kimura [18], Yokota [25]). We have the listof them in

Section 4, which shows that the other theorem of Hsiang-Lawson [11; Theorem 7] should

be properly modified and also gives a classification of real irreducible compact linear

groups of cohomogeneity 3 in a correct form (cf. Theorem 4.8, Remark 4.10).

Our results also give a proof of the fact that a compact linear group of cohomogeneity

2 and maximal is equivalent to an o.t.g.which is induced from the linear isotropy represen-

tation of a Riemannian symmetric pair of rank 2. Topologically, Asoh [2] has already com-

pleted the classificationof compact Lie groups acting on spheres with an orbit of codimen-

sion one, which properly modified the result of H.C. Wang [26] (cf. Hsiang-Hsiang [8]).

Recently, Dadok [5] classifiedreal irreducible compact linear groups with certain proper-

ty, so-called 'polar',which is satisfied by each compact linear group of cohomogeneity 2.

2. Preliminaries

For each type of compact simple Lie algebra of dimension g and rank k, we shall in-

vestigate (cf. Adams [1], Goto-Grosshans [6])

(1) 'Real' complex irreducible representations of degree m such that

do:= m ―g^3,

(2) Complex irreducible representations of degree m such that

d1 = 2m ―g^z4,

(3) 'Quaternion' complex irreducible representations of degree 2m such that

d2:= 4m ―g^-6.

We denote a compact simple Lie algebra of type Xk by Xk (X=A, B, C, D, E, F, or G)

and the corresponding compact simply connected Lie group also by Xk. A complex irreduci-

ble representation of the highest weight A is denoted by A. Especially the trivialrepresen-

tation is denoted by 0. The fundamental weights with respect to the simple roots ah

Q!2,･･･, ockare denoted by

Ai,A2>- ■-,Ak.

(A)

The simple roots of Ak are given by a Dynkin diagram:
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(1) 'Real' complex irreducible representations of Ak are given by

A=2XXAMk = l), SfJ"/ Xi(Ai+Ak-i+1)(iik=2h + 2),

2h+l
JL2h+2A2k+2+ 2 Xi(Ai+Ak-i+1)(i£k=4h + 3),

or

2h+2
2X2k+3A2h+3+ S UAi+Ak-i+1)(iik=4h + 5),

1=1

where h and A,-(/=l, ･ ･･,[(k + l)/2]) are non-negative integers, and [p] denotes the max-

imal integer at most p.

Proposition 2.1 Ifdo: =deg A ―k2―2k ^ 3, then A is equivalent as a complex represen-

tation ofAk(k^l) to one of the followings:

do<O: A2(k=3), 0(*^l),

do = O: 2A1(k=l), A1+Ak(k^2),

do = 2: 4AAk=l).

PROOF: If A,-^l for some i=4, ■･-, or [(k + l)/2], then k^7 and do^deg

Ai-k2-2k^k+1C4-k2-2k^7. If [(& + l)/2]^3 and A3^l, then &^5 and do^deg

U3+/lA-2)-^2-2^=^ + 2)(^+ l)2^-4)/36-^2-2ife^l40. If A2^l and k^i, then

4^deg U2+yii_1)-F-2^=(^ + l)2(^2-4)/4-^2-2^^51. Therefore yl= 0(*^l),

2A1/I1(^=1), AiUi+yl*)(*^2), or X2A2 + h(A1+A3)(k=3). If k=l and Ai^3, then

£?0^deg6/li-3=4. If k^2 and 1^2, then do^deg2(A1+Ak)-k2-2k=k(k + l)2(k+ 4)/

A-k2-2k^l9. If k=3 and A2^2, then rfo^deg 2A2-15 = 5.If ^=3 and Ai=A2 = l, then

4)^degMi+yl2+/l3)-15 = 49. Q.E.D.

(2) Complex irreduciblerepresentations of Ak(k^l) are given by

yl= Sf=1 A,-yl(-where A,-(f=l,･･･,^) are non-negative integers.

PROPOSITION 2.2 If dx.= 2degA―k2 ―2k^kA, then A is equivalent as a complex

representationof Ak{k^l) to one of thefallowings:

0(Jfe^l),AAk^l), 2AAk=l,2), A2(k^2),

2A2(k=2), Ak-xik^A), Ak(k^3).

Proof: If k=l and Ai^3, then degyi^deg 3^ = 4 and ^5. If k=2 and Ax(orA2)

^3, then deg>l^deg3vli = 10 and ^^12. If k^2, Ai^l and A*^l, then deg/l^deg

Mi+yl*) = ife(*+ 2)andrf1^8.If)fe^3andAi(orA*)^2,thendeg>1^deg2/li = (ife+ l)(Jfe+2)

/2and^^5. If A^l for some ?= 3, ･･･,yfe-2,thendeg/i^deg^3=^(^2-l)/6, ^^5 and

d^5. If A2(orAA_!)^2 and 2^*-l, then degyl^deg 2/l2= ^(^ + l)2(^+ 2)/12, ^^3 and

rfi^25. If Az^l.A*-!^! and 2<k-＼, then deg/l^deg (yl2+ vl*-1)= (* + l)2(ife2―4)/4,
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k^4 and ^126. If Ai£l,A*_i^l and Kk-1, then deg A^deg (A1+Ak-1) = (k + 2)

(&2-l)/2, &^3 and ^15. If A2^1,A*^1 and 2<k, then ^^15. If A^l, A2^l (or

A*_i^l,A*^l) and 2<jfe-l, then degyl^degM1+yl2)=2ife(ife + l)(*+ 2)/3,di^56.

Q.E.D.

REMARK 2.3 2A1(k=l),A2(k=3) are 'real'. A1(k=l) is 'quaternion'. A1,Ak(k^2)

(resp. A2, Ak-xik^A), resp. 2AU 2A2(k = 2)) are conjugate from each other.

(3) 'Quaternion' complex irreducible representations of Ak(k^l) are given as

yi= (2A2/r+i+ l) /l2/2+i+ £f=i Ai(Ai+Ak-i+i) where k=4h + l, A,-and h are non-negative in-

tegers.

Proposition 2.4 If d2:=2deg A ―k2―2k^8, then A is equivalent as a complex

representation of Ak{k^l) to one of the fallowings:

d2=l: A1(k=l),

d2 = b: 3i4i(ife=l), A*(k=5).

Proof: If k=4h + 1^6, then k^9 and d2^2degA2h+i-k2-2k^2degA5-k2-2k^

405.So£=lor5. Suppose& = 1.If Ai^2, thenrf2= 2deg (2^ + 1)/41-3^2deg5/t1-3 = 9.

So A=AX or 3/11.Next suppose k=5. If A2^l, then c?2^2deg (^2+^4)-35=343. If Ai^l,

then rf2^2degUi+yl5)-35 = 35. If A3^l, then rf2^2deg 3/t3-35 = 1925. So /I=yl3.

Q.E.D.

(C)

The simple roots of Ck are given by a Dynkin diagram:

ai ― a2 ― ･･■― otk-i<= ock {k^2).

(1) 'Real' complex irreducible representations of Ck(k^2) are given by

A = Tii=1XiAi where S,-:aMA,-is even and A,-(?= l, ･ ･･, k) are non-negative integers.

Proposition 2.5 If do:= degyl―&(2&+l)2s3, then A is equivalent as a complex

representationof Ck(k^2) to one of thefollowings:

do<O: 0(fc^2), A2(k^2),

do=O: 2AAk^2).

Proof: Suppose k~^5. Then degyl3<degyi, for i=4,---,k and deg^43 ―dim

Ck=4k(k2-3k-7)^20. deg3^i-dimC*=*(2* + l)(4ife-l)/3^165.degUi+>l2)-dim

C*=^(8^2-6^-ll)/3^265. deg2/l2-dimCA=^2(4^2-13)/3^725. So A = 0,A2or2A1.

Suppose k=4. Then the assertion holds since deg/i3 ―dim C4=12, degyl4 ―dim C4=6,

deg 2yl2-dim C4=272, deg 3/li-dim C4 = 84 and deg (A1+A2)-dim C4=124. Suppose
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k=3. Then the assertion holds since deg 3/11―dim C3 = 35, deg(/li+/i2)--dim C3=43,

deg(Ai+A3) ―dim C3=49, deg2A3 ―dim C3 = 63 and deg2./f2--dim C3 = 69. Suppose

k=2. Then the assertionholds since deg 4/11―dim C2=25, deg 2A2 ―dim C2=4 and deg

(2yl1+yl2)-dim C2=25. Q.E.D.

(2) Complex irreduciblerepresentationsof Ck(k^2) are given by

yl= S;=1 A,-yl,-where h(i=l, ■■-,k) are non-negative integers.

Proposition 2.6 If d1:=2degA~k(2k+l)S6, then A is equivalentas a complex

representationof Ck(k^2) to one of thefollowings:

0(Jfe£2),AAk^), A2(k=2).

Proof: Suppose k^3. If A is not equivalent to 0 nor A＼,then deg/l^degyl2, so

di^2deg/H2 ―dim Ck―2k2 ―3k―2^7. Suppose k=2. The the assertionholds since 2deg

2^-dim C2=10, 2degUi+/f2)-dim C2=22 and 2deg2yl2-dim C2=18. Q.E.D.

(3) 'Quaternion' complex irreducible representations of Ck{k^2) are given by

A = Hki=-,XiAi where IwrfA,-is odd and A,-(f=l,･･･,k) are non-negative integers.

Proposition 2.7 If d2:=2degA-k(2k+l)S6, then A is equivalentas a complex

representationof Ck{k^2) toone ofthefallowings:

AAk^2).

Proof: Suppose k^3. If A is not equivalent to Ai, then deg A ^deg A2, so rf2^2deg

A2 ―dim C&=2^2 ―3k―2^7. Suppose &=2. If/Iis not equivalent to/li,then degyl^deg

(yli+yi2)= 16, so ^2^22. Q.E.D.

(B)

The simple roots of Bk are given by a Dynkin diagram:

ai ― a2 ― ･･･ ― otk-1=> ak (k^3).

(1) 'Real' complex irreduciblerepresentationsof Bk(k^3) are given by

A S?=1Al-/ll-(if*=4* + 3or4/t+4), 2A*yl* + S*=11 A,-ylf-(otherwise) where h and A,-(/=l

&) are non-negative integers.

Proposition 2.8 If do:=deg A― &(2&+1)^15, then A is equivalent as a complex

representationofBk(k^3) toone of thefallowings:

do<O: A!(k^3), yl*(^=3or4), 0(*^3),

do=0: A2(k^3).

Proof: If A,-^l for some i=3,---,k―l, then k^4 and do^degA3 ―dim

jB*=*(2*+l)(2*-4)/3£48. If A^2, then do^deg2/l1-diin5*=2ife^6. If A2^2, then

^^deg2^2-dim5*=(2Ar + 3)(2*+ l)(*+ l)(*-l)/3-*(2ife+ l)^147. If Ai^l and A2£l,

then <i,^degUi+yl2)-dim&=(2* + l)(*+ l)(4ife-3)^84. Then yl=yii, yl2, /!*, or
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A2+Ak(if k=4h + 3 or 4A+4), A＼ or A2 (otherwise) since deg2Ak―dim.Bk=:2k+iCk+i

-k(2k+l)ZU and deg (Ax+Ak)-dimBk=k2k+I~~k(2k +1)^27. If k=Ah + 3 or 4h + 4,

k^5 and A*^l, then &^8 and di,^deg^1*-dimB*=2*-*(2ife +1)^120. If &=3(resp. 4),

then deg M2+yl*)-dim5*=91(resp. 396). Q.E.D.

(2) Complex irreduciblerepresentationsof Bk(k^3) are given by

A = Y,j=iXiAiwhere A,-(/=l,･･･,k) are non-negative integers.

Proposition2.9 If dt:=2degA-k(2k+1)^-8, then A is equivalent as a complex

representationofBk(k^3) to one of the fallowings:

d,<0: AAk^3), Ak(k=3or4), 0(*^3).

Proof: If A,-^l for some i=2, ･･･,&-!, then d1^2degA2-k(2k+l)=k(2k+l)

^21. If Ai^2, then c?1^2deg 2A1-k(2k + l)=k(2k + 5)^33. If Xk^2, then d^2deg

2Ak-k(2k+l) = 22k+iCk+i-k(2k+l)^49. If Ax£l and A*^l, then J^2deg Ui+yl*)

-^(2^ + l)=^2*+2-^(2ife + l)^75. If ^^5, then 2degAk-k(2k + l)=2k+1-k(2k+l)^9.

Q.E.D.

(3) 'Quaternion'complex irreduciblerepresentations of Bk(k^3) are given by

A = ZkillX{Ai+ (2A*+ 1) Ah where k=4h + 5 or 4h + 6, h and A,-(i= l, ■･-,*) are non-

negativeintegers.Then ^^5.

Proposition 2.10 There is no 'quaternion' complex irreducible representation of Bk

such that d2:= 2deg A-k{2k + l)S%.

Proof: Since &^5, d2^2degAk-k(2k+l)=2k+1-k(2k+l)^9. Q.E.D.

(D)

The simple roots of Dk are given by a Dynkin diagram:

I

ak

(1) 'Real' complex irreducible representations of Dk{k^i) are given by

A = Z*I?XiAi+Ak-1(Ak-i+AkWk=2h + 5), S*=1 X{A{(ifk=4h + 4), or S*"? A,-yl,-+

A*_iyl*_i+A*yl*(if*=4A + 6)f where A*_!+A*is even, h and Xf(i=l, ･･･,*) are non-

negativeintegers.

Proposition 2.11 If do:=deg A-k(2k-l)^6, then A is equivalentas a complex

representationof Dk(k^4) to one of the followings:

do<O: 0(^^4), A^k^A), Ai(k=4), A3(k=A)

dn= 0: A2(k^4).
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Proof: If A,-^l for some i=3, ■■■,or k-2, then k^5 and do^degA3-k(2k~l)

=*(2fc-l)(2fc-5)/3^75. So A,= 0 for *= 3, ･■-,Jfe-2. Since deg2/t1-fc(2£-l)

=2k-1^7,deg2A2-k(2k-l) = k2(4k2-13)^272anddeg(A1+A2)-k(2k-l) = k(4k~5)

(2Jfe+ l)/3£132, we have Ai + A2^l. Suppose ^(!{ or A^^l. K k^8, then

ffo^2*-1-^(2^-l)^8. If *=7, then do^deg (A6+A7)-91 = 2912. If *=6, then ^deg

Ms+A)-66 = 726 or do^deg (2A5)-66 = deg (2Ae)-66 = nC6-66 = 396. If k=5, then

^o^deg U4+^5)-45 = 165.If ^=4 and Ai^l, then ^0^deg Mi+yl4)-28 = deg (Ax+A3)

-28 = 28. If ^=4 and A2^l, then ^0^deg U2+yi4)-28 = deg U2+^3)-28 = 132. So

^=4 and A=A4 or yi3.Q.E.D.

(2) Complex irreduciblerepresentationsof Dk{k^A) are given by

yl= Sf=1 A,-yl,-where A,-(/=l,･･･,k) are non-negative integers.

Proposition 2.12 If d1:=2deg A ~k(2k-1)^36, then A is equivalentas a complex

representationof Dk(k^4) to one of the followings:

^<0: 0(Jfe^4),A^k^A), Az{k=A), A4(k = 4),

A4(k=5), As(k=5), A5(k=6), A6(k=6).

Proof: If A^l for some i=2, ･■■,k-2, then d{£3.tegAi-k(2&-1) = k{2k-＼)

^28. So that A,-=0 for?= 2, ･･･,£-2. Since 2deg 2Ax-k{2k-l) = {k + 2){2k-1)^42, we

have Ai^l. Suppose AA_i+ A*^l. Then ^^6 since ^^2degyl*-^(2^ ―l)= 2deg

Ak-X-k{2k-＼) = 2k-k{2k-＼)^Zl if k^7. We have that Ai+A*_i + A*^l since 2deg

(A1+Ak)-k(2k-l) = 2deg(A1+Ak-1)-k(2k-l) = (2k-k)(2k-l)^8A, 2deg(Ak-1+Ak)

-Aj(2*-1)=*(2*-1)[4(2*-2)!/{(*-1)!(* + 1)!}-1]^84 and 2deg2^*-*(2*-l)

= 2deg2^_1-^(2^-l)=^(2^-l){2(2^-2)!/(^!)2-l}^42. Q.E.D.

Remark 2.13 A4(k=5) and A5(k=5) are conjugate. A3(k=4) and /I4(&=4) are 'real',

and there are outer automorphisms t,(z= 1, 2) of D4 such that A30 °?i and /t40 °t2 are

equivalent as complex representations of D4 to A＼. There is also an outer automorphism

T3(resp. t4) of D6(resp. D5) such that A50 °T3(resp. A40 °t4) and /I6(resp. A5) are equivalent

as complex representations of D6(resp. D$).

(3) 'Quaternion' complex irreducible representations of Dk(k^4) axe given by

yl = Sf=1 XiAi where Xk-＼+Xk is odd, k=Ah + §, and h, A,-(/=l, ･ ･ ･, ^) are non-negative in-

tegers.

Proposition 2.14 If d2:=2degA― k(2k―1)^36, then A is equivalent as a complex

representation of Dk(k^4:) to one of the fallowings:

d2=-2: A5(k=6), A6(k=6).

Proof: The assertion follows from Proposition 2.12 and Remark 2.13. Q.E.D.
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(E)

The simple roots of exceptional Lie algebras are given by Dynkin diagrams:

F4: ai ― a2 => a3 ― a4

E6:

I

<X6

Ef. ≪i ― a2 ― ≪3

a7

― a4 ― ≪5 ― a6

E8: ai ― a2 ― Qt3 ― a4 ― a5 ― a& ― a7

Proposition 2.15 Suppose A is a complex irreducible representation of an exceptional

Lie algebra of dimension g.Ifd0: = deg A ―gt* 12, then A is equivalent as a complex representa-

tion to one of the followings:

do<O:

do=O:

A2(G2),

AdGJ,

AAE6),

A6(E6),

A5(Ee), A6(Ej),

A7(E8).

Proof: Case G2) HA is not equivalent to A＼nor A2, then do=^13 since deg 2/la = 77,

deg 2A2=27 and deg (Ai+A2) = 64. CaseF4) If /I is not equivalent to yli nor A2, then

4^221 since deg 2AX = deg (/11+/14) = 1053, deg 2/l4=324, deg/12=1274 and deg

yl3=273. Case E6) If /I is not equivalent to A＼,A%, nor /16, then rfo=273 since deg

2/l1 = deg2/l5 = deg/l2 = degyl4 = 351, degyl3=2925, deg2yl6=2430, deg Ui+yl5) = 650

and deg (Ai +A6) = deg (A5+A6) = 1728. Cose Zs7)In A is not equivalent to Ai nor /16,then

do^779 since deg A2 = 8645, deg/13=365750, deg /14=27664, deg A5 = 1539, deg

yl7=912, deg 2^1 = 7371, deg 2^6=1463 and deg M1+y46) = 3920. Case E8) If /I is not

equivalent to A7, then 4^3627 since deg/1^3825, degA2 = 6696000, deg/l3=

6899079264, deg/14=146325270, deg A5=2450240, deg/16 = 30380, deg A8= 147250,

and deg 2/l7=270Q0. Q.E.D.

Remark 2.16 A2(G2) is 'real'of degree 7. A4(Fi) is 'real'of degree 26. AX{E&) and

A5(E6) are conjugate from each other and of degree 27. A6(E7) is 'quaternion' of degree 56.

Ai(G2), Ai(F4),A6(E6),Ai(E7) and A7(E8) are the adjoint representations, especially

'real',of degree 14, 52, 78, 144, 248 respectively. Any A of ^i or rf2= 12 is contained in the

above list since di=d2>d0.

Next propositions are also useful in sections 3 and 4.

Proposition 2.17 Each non trivial'real'complex irreducible representation of degree at

most 3 of a compact simple Lie algebra is equivalent as a complex representation to one of the

followings:
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degree 3: 2AMi)-

PROOF: The assertion follows from Prop. 2.1, 2,5, 2.8, 2.11 and 2.15 since d0 is less

than the degree which is at most 3. Q.E.D.

Proposition 2.18 Each non trivialcomplex irreducible representation of degree at most

3 of a compact simple Lie algebra is equivalent as a complex representation toone ofthefollow-

ings:

degree 2: AMi),

degree 3: 2AM＼), MA2), A2(A2).

Proof: The assertion follows from Prop.'s 2.2, 2.6, 2.9, 2.12 and 2.15 since dx =

2degree-g^2.3-3 = 3. Q.E.D.

Remark 2.19 A2(A2) is conjugate to Ai(A2).

Proposition 2.20 Each non trivial 'quaternion' complex irreducible representation of

degree at most 6 of a compact simple Lie algebra is equivalent as a complex representation to one

of the followings:

degree 2: vli(yli),

degree 4: SAxiAi), AX(CA,

degree 6: SAMi), AX{C2).

PROOF: The assertion is trivialin the case of A%. Otherwise, it follows from Prop.'s

2.4, 2.7, 2.10, 2.14 and 2.15 since d2 = 2 degree-g^2-6-8=4. Q.E.D.

3. Basic Classificationby coliomogenelty

Let (G, M) be a Lie transformation group. For xeM, we denote G(x) the orbitof G

through x, and Gx the isotropy subgroup of G at x.

Lemma 3.1 Let (G, M), (G, N) be Lie transformationgroups and f be a G-equivariant

submersion from M onto N with theproperty:

f-Hf(x)) = Gf{x)x

atafixedxeM. Then we have that

dim M―dim G + dim Gi=dim N― dim G + dim Gf{x).

Proof: dim M=dim iV+dim/"1 (/(*))= dim iV+dim G/W(*)=dim iV+dim Gf{x)~

dim Gx since(Gf{x))x=Gx. Q.E.D.

Let R, C and H be the set ofreal numbers, complex numbers and quaternions respec-
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( U -V ＼ ( Uk(U+jV)=( j, k'(U+Vj)=( _?

h'(U+Vj) = (U, V) for U, VeC(nlt n2).

Then k,k' are reallinearinjectionssuch that

tW) = k^P), t＼W)=k'('P), k(PQ)=k(P)k(Q),

V

u

tively.NaturallyIJ contains C, and Ccontains R. The conjugateu+jvoiu+)veH(uf veC)

is defined by

where u is the complex conjugate of u. For u +jv, u +jv' e H, the product of them is defined

by

(u+)v)(ur +jv') = (uu' ―vv')+j(vu -＼uv').

Let Fbe R, C, or H. The set of all(nh n2) ―matrixes with coefficientsF is denoted by

F(fii,n2). For XeF(ni, n2), we denote the conjugate of X with respect to the coefficientsby

X, and the transposed matrix oiXby *X. We write Fn=F(n, 1), F(n) =F(n, n), and denote

the identity matrix of F(n) by /,.We denote hF(n) = {XeF(n) ;tX=X), pF(n) = {Xe hF(n); X

is positive definite}, and use the following notations for classical groups:

GF(n)= {XeF(n); tXX=XtX=IJ.

If F=R or C, denote

SF(n)= {XeGF(n); detX=l}.

Then GR(n) = O{n), GC(n)=U(n), GH{n) = Sp(n), SR(n) = SO(n) and SC(n) = SU(n) in

usual notations. Any subgroup of GF(n) acts on Fn linearly over right multiplications of F

by usual manner and acts on hF{n)(res^. pF{n)) by

A-X=AX*A (3.1)

for AeGF(n), XehF(n)(resp.pF(n)). Each matrix of hF{n) can be transformed to a

diagonal form by the action of GF(n)(resp. SF(n)). Similarly any subgroup of GF{n{)

x GF(n2) acts on F{nlt n2) by

(A,B)-X=AXtB (3.2)

for (A, B)eGF{nl) x GF(n2), XeF(nx, n2).

We use mappings k, k':H(rii, n2) ―> C(2≪i,2n2),

h: H(nu n2) ―*■C(2≪i,n2) and h': H(nu n2) ―*■C(wi, 2w2) such that

), w+yv>= (
v )

k'(PQ)=k'(P)k'(Q)

for PeHin-i, n2),QeH(n2, n3),

and h(resp. h') is a linear bijection over right (resp. left) multiplications of C such that
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h(PQ )=k(P)h(Q )(resp. h'(PQ )=h'(P)k(Q)).

For PeH{nx,n2), we see that column-ranMP):=w2-dimir{QeJH''!2; PQ=0} =

(2n2-dimc{Q Hn2;PQ=0})/2 = (Tankck(P))/2 = (r&nkck＼P))/2 = (2n1-dimc{QeH(l,n1);

QP=0})/2=n1-dimii{QeH(l,nl);QP=0}=:row-ra.nkH(P). Note that the linear in-

dependence in Hm, H(l, fii)over right multiplications of if is equivalent to one over left

multiplications ofIrrespectively owing topq=q -p(p, q in H). Therefore rankj^P):=column-

rank^(P)=row-rank^(P) is well-defined. Denote MF(nh w2)= {XeF{nx, n2); rankF(X) =

maxCwx, n2)). Then k(MH(nh n2))=MC(2n1, 2n2)f＼k{H{nx, n2)).

Assume n{^n2. Denote/: MF(iti, n2) ―> pF(n2)

such that f(X)=fXX for XeMF(nu n2). Then / is GF(nx) * GF(w2)-equivariant with

respect to the action (3.2) on MF(≪i, n2) and the following action on pF{n2):

(A,B)-Y=BYtB (3.3)

for (A, B)eGF{n,) x GF(n2), YepF(n2).

Lemma 3.2 (1) f is a submersion.

(2) f-1(f(X)) = (GF(n1)x {In2})-XforXeMF(nun2).

(3) Ifnx>n2, then f-＼f{X)) = {SF{nl) x {In2})-XforXeMF(nu n2) where F=R or C.

Proof: (1) Since any diagonal matrix inpF(n2) is in the image off, it follows that/

is onto from the diagonalizability by the action (3.3). To prove dfXo: F(nu n2)-+hF(n2);

X-t'XXo + 'XoX is onto at XoeMF{nx, n2), if we use the action (3.2) of GF{nx) x GF(n2),

we may assume that Xo has the following form for some non-zero x^eR (i=l, ■･ ･, n2):

X

.In fact, the action (3.3) of {Ini} x GF(n2) transforms 'X0X0 to a diagonal

form and the action (3.2) of GF(tii) x {/MJ gives a required form. Then itis easy to show

that ^ is onto. (2) Suppose/(X)=/(F). Denote X=[xu ･･･,xn2], Y=[yu ･･-,^2] where

Xuyi Fn＼ then txiXj=tyiyj(i,j=l, ･■･,n2). We can choosexh,yk (h, k=n2+l, ･ ･･, ≪i)such

that %Xk = tyiyh= 0 and %xk=tyhyk=Shk. ThenX' = [xu ■■■,xnj, Y' = [yx, ■■-,ynjhave the

inverse matrices. For A=Y'X'~＼ A is in GF(n^ since 'X'X'^Y'Y'. We have (A, In)

■X=Y. (3) If F=R or C, then X"=X'-diag[l, ■･･,1, detX'"1] and F"=r-diag[l,

･･ ･, 1, det Y'-1] are in SL(nlt F). Then B= Y"X"~l is in SF{nx) and (B, IHa)-X= Y if

ni>M2. Q.E.D.

The tensor product FniR- ■■RFns over F of Fn＼ ■■-,Fns is defined if F=R or C.
F F

Naturally RniR ■･ -0R"S= {z in C"11R- ･ -(x)CMs; z=z＼ where denotes the complex conjuga-
R R C C _

tion extended naturally on C"11R- ･ -RCns. If F=ZT, then we consider the real linear map/:

C2"1R- ･ -RC2*-+C2M1(g)- ･ -(g)C2"s;SU-WPa)R ･ ･ ･ (SHP^XizMPnJ)R- ･ ■Rh(Pisj)),

where z,-e C and Ptf eHnt(t= 1, ■■■,s). Then J2 = id(if s is even), or -id (if s is odd). The ten-
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sor product HniR---RHns over right H of Hn＼ ･･･,IPS is defined by HniR-･-R

Hns:= {ZeC2niR- ■■RC2tls;JZ=Z} (if s is even), or C2nxR- ■-RC2ns with the quaternion
c c ~ c c

structure/(if s is odd). If s= 1, then/is the standard quaternion structure on C2ni = h{Hni).

If 5=2, then HniRH"2 is a real form of C2miRC2"2 with respect to the real structure/on C2"1

RC2"2. For an even 5, Hni<g>- ･ -<S)Hns is equivalent as real spaces to
C H H

(HniRHn2)R- ■-R{Hns-xRHns)

H R R H

since the complexifications are isomorphic over C.

Let pi, ･ ･ ■,ps be linear representations of Lie groups Gu ■■■,Gs on F"＼ ■■■,F"s over

A A
F respectively. If F=R or C, then the exterior tensor product p＼R ■■■Rps over F is defined as

F F

the representation of the direct product group G＼x ･･･ x Gs on the tensor prodict space Fni

(x)･･ ･(x)FKs over F such that
F F

(Pi<§>-･ -Rps)(gi, ■■■,gs)-=Pi(9i)§- ･ -RPs(Qs)
F F r t

for (g1; ■･ ■, gs) in Gi x ■･ ■x Gs, where the right hand side is the usual tensor product of

linear transformations. If F=H, then note that/commutes with the representation (k o pj

<§)･ ･ ･ <§>(* o Ps) of d x ■■･ x Gs on h(Hni)(g) ■■■Rh(Hns). The exterior tensor product pj& ...<§>

C C C C BE

ps over right H is defined as the representation of Gx x ･ ･ ･ x Gs on Hni<&> ■■･<S)H"S such that

H M

(aR･ ･ -&Ps)(gi, ■■■,gs):= ((koPl)R-■ -mopMui, ■■■,gs)＼H^R-■ -RHn＼
H H C C H H

A A A
If s is even, then it is equivalent as a real representation of Gx x ･ ･ ･ x Gs to (piRp2)'&) ･ ･ ･ R

y＼ IS J2 R
ips-＼RPs)- Next, we study the case of s=2 in more detail. The identity representation of a
H

Lie subgroup K of GF(n) is denoted by id. We consider the action (3.1)of K on pF(n).

Proposition 3.3 If K is a Lie subgroup of GF{n2) and n{^n2, then (1) coHGFin^

x K, idRid, FniRFn2) = coh(K, pF{n2)), (2) coHSOM x K, iddid, R11R^2) = coh(K,

pR(n2)),(3) If nx>n2, then coHSUinJxK, id(g)id,CniRCn2) = coh(K, pC(n2)),(4) coh(if,

pF(n2))^coHGF(n2),pF(n2))=n2 (=coHSF(n2),pF(n2)) if F=R or C).

PROOF: If F=R or C, the representation space FniRFn2 Is identified with F(nu n2) by

the correspondence i: FmRFn2-^F{ni, n2) such that i{eiRej)=Eij (/=1, ･ ･ ･, ≪i;; = l, ･ ･ ･,

≫2) with respect to the standard bases {e,}, {≪,-}, {E^} of F*1, F"2, F(≪i, n2) respectively.

Through i, the action of GF(n＼) xK on F(wi, w2) is induced as

(A,B)-X=AX'B

for XeF(fii, n2), (A, B)eGF(ni) xK. The o.t.g. induced from this action is equivalent to

one from the similar action of GF(≪i) t-K where K= {B; BeK} is the conjugation of

KeGF(n2). Hence the o.t.g. induced from id(8)id is equivalent to one from the action (3.2)

of GF(ni) x/jT. When F=H, we consider i: C2mRC2n2-+C(2nlf 2n2) for the standard basis
c

e1 = h(e[)! ■■■, en.=h(e'n), en.+i = h(e[j), ■■■, e2n.=h(e'n.j) of C2m where e[, ■■■,e'n.is the stan-

dard basis of Hm (i=l, 2). Then we have
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i(HniRHm)=k(H(nl,n2))

$2

since JZ^JiZt (Z{eC2ni), i(JZ) =/ji (Z)% (ZeC2miRC72m2) and

k(H(nt, %))== {XeC(2n1, 2n2); hX%=X＼ where

H
0,, I

(*■

= 1,2)

Through /, the action of Sp(ni)xK on k(H(ni, n2)) is induced from the representation

iddid on HniRHK2 by (A,B)-k{X)=k(A)k{X)tk{B) for XeH(nlt n2),(A, B)eSp(n1)xK.

MM
ffl

The o.t.g.induced from this action is equivalent to the one which is induced from the ac-

(1)

(2)

(3)

(4)

r(nu n2,%)^18

c(nun2,≪3)^6

g(wi,n2.%)^8

if

if

if

if

tion (3.2) of SpinJxK on H(nu n2), since tk(B) = k(tB) and k(A)k(X)k(tB)=k(AXtB).

Then (1) follows from Lemma 3.1 and Lemma 3.2(0),(1),(2), since MF(nx, n2) is open

and dense in F(≪i,n2). (2) follows from (1) since GJB(≪i)°= SO(≪i). (3) follows from Lem-

ma 3.1 and Lemma 3.2(0),(1), (3).(4) follows from that GF(n2)(resp. SF(n2) if F=R or C)

transforms any matrix in pF(n2) to a diagonal form. Q.E.D.

Denote r(nlt n2, n3)= coh(SO(n1) x SO(n2) x SO(n3), Id(g)id(g)id,RniRRn2RRn3),

c(nl,n2,n3)=coh(U(n1)xSU(n2)xSU(n3), idRid(x)id, Cni<S)Cn2<g)Cn3), q(nu n2, n3) =

coh((S£(≪i)x Sp(n2)) x SO(n3), (idRid)(g)id,(Hni0Hn2)RRn3).
M It M it

Proposition 3.4

%^3, Wi^2, ≪i^M2^l-

PROOF: Denote A(≪i, n2, n3) - dim pB(n2n3)- dim 50 (w2)x 50 (≪3)(ifnx^n2n3) or

dim i?"1RJK'!2(x)i2'!3-dimS0(≪i) x S0(≪2) * S0(%) (otherwise), /c(wlfn2, n3)=dim pC(n2n3)-

dim Slf(≪2)x S£/(m3)(ifnx^n2n3) or dim C"1(8)C"2(g)Cl(3-dimC/(wi)x SU(n2) x Sf/(w3) (other-
c c

wise), and /i(≫i,n2, ≪3)= dim^i2(4M1M2)-dim Sp(ni) x Sp(n2) (ifw3^4≫1≪2), dim^fl"(≪2M3)-

dim Sp(n2) x 5O(w3) (if^3^4w1≪2, n2n3Snx) or dim (^"^if^^iJ^-dim Sj>(≪i)x S/>(≫2)

x5O(w3) (otherwise). Then A(≪i,w2, w3)^r(≪i, m2, w3),≪r(ni,w2, n3)^c(ni, n2, n3) and ^(wj,

n2, fh)^q(nlt n2, n3) by Prop. 3.3 since (BttlRHn2)RRm is equivalent to HniR{Hn2RRm) as

S/>(≪i)x Sp(n2) x SO(≪3)-spaces over R. Since A(^i, x2,x3)= (x22%l+x2x3―xl-x23+x2+x3)/2

(if*i^*2#3) or XiX2x3 + (xi+x2+x3-x21-x22-x23)/2 (otherwise), k{x＼,x2,x3)=x22x＼~x-

22―x＼-＼2(iixi^x2x3) or 2xxa:2x3-Xi-x2-x3 + 2 (otherwise), and fi(xu x2,x3)= %x＼x＼+2xxx-

2-2x＼-2x＼~Xi-x2 (＼ix3^AxiX2), 2x23x22-x3x2-2x22-x2-x23/2+x3/2 (ifx3^4xiX2, x3x2^Xi)

or 4xiX2x3―Xi(2xi + l)―x2(2x2 + l)―x23/2+x3/2 (otherwise), they define continuous

piecewise polynomial functions on R3 if we take x≫(f=l, 2, 3) as real numbers. (1) Since

dl/dXi(xi, x2, x3)^0 for x^x2^x3^l (i=l, 2, 3), we have A(≪i,n2, ≪3)^A(≪i,n2, 3)^A(wi,
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3, 3)^A(3, 3, 3) = 18. (2) Similar to (1), ic(nu n2, n3)^/c(2, 2, 2) = 6. (3) Since dju/dXi(xl} x2,

x3)^0 for i=l, 2, 3; xlt x2, #3 = 1 (Hx3^4xiX2 or x3x2^kxx), and dfi/dx3(xi, x2, x3) = {Axxx2-x3)

+ l/2>l/2, d^/a^Ui,≪2,*3) = 4(^*3-^2)-1^43Ci0c3-D-1^3, 3^/3^1 (Xi,x2^3)=4(x2^-

3―Xi) ―1> -1 for #1^*2^1, %^2 (if x3<4^1^2 and ^3^2>^i), we have /*(%, ≪2,n3)^fi(tii,

n2, 3)^fi(nlt 1, 3)=^(≪i-l, 1, Si + d/i/toifa-0,1, 3) (O<0<1)£ai(≫i-1, 1, 3) (since

/u(≪i,1, 3) and 1/(ftx― 1, 1, 3) are integers, and ― Kdfi/dxi is also an integer, especially dju/

d*i^0)^(l, 1, 3) = 3. (4) Similar to (3), M≫i, ≫2,≫3)^(≫i, 1, 3)^(2, 1, 3) = 8. Q.E.D.

Let Z, be the Lie algebra of a connected Lie group G. We write the same letter for a

linear representation of L and the corresponding representation of G. According to

Iwahori [12], there is the following relation between real irreducible representations of

L(resp. G) and complex irreducible representations of L(resp. G) (cf. Goto-Grosshans [6]).

For a complex irreducible representation p on a complex vector space V, we denote the

real restriction of p on the real restricted vector space Fjj(abbrev. V since V= VR as a set)

by /?ij(abbrev. p), which is not real irreducible if and only if p is 'real', and so we attach to p

a real irreducible representation pr as follows. pr=a (if p is the complexification ac of a real

representation a on a real form Wo>i V, i.e., p is 'real'.) or pR (otherwise). Note that p＼ and

p2 are equivalent as real representations if and only if px and p2 are conjugate or equivalent

as complex representations of L(resp. G). Conversely the complexification ac on Wc of a

real irreducible representation a on a real vector space If is not complex irreducible if and

only if Whas a L(resp. G)-invariant complex structure (then it is unique), and so we attach

to a a complex irreducible representation ac as follows. ac=a (if PFhas a L(resp. G)-

invariant complex structure) or ac (otherwise). Note that prc and p(resp. aa and a) are

equivalent as complex(resp. real) representations.

Let (G, EN) be an o.t.g. Then the Lie algebra L of G is a real reductive Lie algebra and

has a form:

L=LQRUR---RLS (3.4)

where Lo is the center of L, and L,-(f=l, ･ ･ ･, s) are simple ideals of L. Let Go, Gt be con-

nected Lie subgroups of G corresponding to Lo, L{ respectively and Go, Gi be the universal

covering groups of Go, G, respectively, then G,- (/= 1,･ ･ ･, s) are compact. Let id:G->SO(N)

be the identity representation and id be the corresponding representation of G: =

Ctq X Gi X ･ ･ ･ X Cxs.

In this paper, we consider (G, EN) in case that id is a real irreducible representation of

G. Then G is compact (cf. Kobayashi-Nomizu[14]), and so Go― U(l) or the trivial group 1.

For teR*:=R― {0}, we denote f:R-≫U(l) the complex irreducible representation of R

such that f(#) =e27"fe for xeR. We shall decompose id c of G into an exterior tensor product

of complex irreducible representations of G,(i = 0,･ ･ ･, s).

Cflsg i) /d c= /rf
c: Then Go is

trivial, and (G, /d c, C^) is equivalent as complex

reoresentations to some



314 Osami Yasukura

(Gi x ･ ･ ･ x Gt, />i(§)-･ -RA, C1R- ･ -^C"15)

where pi is a self-conjugate complex irreducible representation of G,-on Cni, w,-^2(f=l,

･･ ･,s), Usi=1tii=N, and §{i;p,is 'quaternion'} is even. We may assume pj(j=l, ･･ ･,2r)

are 'quaternion' and Pk(k=2r+1, ･ ･･, 2r+q; s=2r+q) axe 'real',and at denotes a real

representation of G, on Rni whose complexification is P2r+i(i= 1, ･ ･',%)',where r and q are

non-negative integers. Then w2r+i^3(f=l, ･ ･･, q), and (G, id ,RN) is equivalent as real

representation to

(Gi x ･ ･ ･ x G2r x G2r+i x ･ ■･ x G2r+q, {p＼Rp2)R- ■■R(p2r~iRP2r)RGiR- ■■Roq,

{Hnd2RHn2'2)R ■■■R{Hn2r-ll2RHn2rl2)RHn2r+xR ■■■RRn2r+≪) (3.5)
H R R H R R R

Case ii) id c= id ,G0― U(l): Then (G, id c,CNI2) is equivalent as complex represen-

tations to some

(R x Gx x ･ ･ ･ x Gs, /§)/h<§)* *･
&Ps,
CRCmR ■■･RC7"S)

＼j ＼j (/ C/ 0 L/

where teR, p, is a complex irreducible representation of G{ on Cni, m,-^2(/=1, ･･ -,s) and

IIf=1 ni=N/2. So (G, M , 72^) is equivalent as real representation to

(RxGiX- ■-xGs, (fR/)!R- ･･<§>/>,)*,(CW1R- ■-0Cn%)
c c c c c c

(3.6)

Case iii) id c= id, Go―1: Then (G, id c,CN/2) is equivalent as complex representa-

tions to some

(Gi x ･ ･ ■x Gs, pi& ･ ･ ･ Rps, CM1(g)･ ･ ･ RCns)

where pt is a complex irreducible representation of G,-on Cni, n>.2 (i= 1, ･ ･･, s) and n'=

tii=N/2. So (G, id, RN) is equivalent as real representation to

(Gi x ･･･ x&, (piR- ･■Rps)R, CniR- ■-RC"%)
c c c c

A A A A
where piR- ■-RPs is not real since (piR- ･ -RPs)r is real irreducible.

(3.7)

Theorem 3.5 Let (G, EN) be an o.t.g. of cohomogeneity at most 3. If id: G^SO(N) is

real irreducible and s^3 (cf. (3.4)),then (G, id , RN) is equivalent as real representation to

(Ii xii xAlf (A1^A1)^(2A1)r, (BRH)RR3)
(3.8)

Especially coh (G, EN) = 3.

PROOF: Suppose id is realirreducibleand s^3. Then O(G, id, RN) is containedin (1)

O((Sp(n1/2)xSp(n2/2))xSO(n3), {idRid)Rid, (Hni/2RHtt2/2)RRm) for some nx, n2^2,

M3^3; N=n1n2n3, (2) O(SO(≫i) x SO(n2) x SO(n3), idRidRid, RniRRn?-RRn3) for some nx,
R R R R
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n2, w3^3; N=n1n2n3, or (3) O(U(n^ x SU(n2) x SU(n3), {idRidRid)R, (CniRCn2RCn%) for

some ≫i,n2> m3^2; N=2nin2n3 owing to (3.5), (3.6) and (3.7). On the other hand, coh (2)

^18,coh(3)^6,coh((l)(max(ni,n2)^4))^8 by Prop. 3.4(1)(2)(4). There Go is trivial,

and 0{G,id,RN) is contained in O((Sp(l)xSp(l)xSO(n3), (idRid)Rid, (HRH)RRn3)

which is equivalent to O(SO(4) x SO(n3), id&id, R^R"3). Then ≫3= 3 since coh (G, EN)

^3. So O(G,id,RN) is contained in 0{Ax xAx xAu (A1^>A1)^>(2A1)r, (HRB)RR3).

Since s^3, G is isomorphic to AxxAxxAx, and O(G, /d, RN) = O{AX x-Ai xAh

Ui(§)yli)(§)(2yli)r,(HRH)RR3). Then (G, itf,12^) and (3.8) are equivalent as real represen-
MR H M

tation since A＼,2A＼ are characterized by degrees of complex irreducible representations of

ii, and 12 = 22-3(cf. Section 2). And coh (G, EN) = 3 by Prop. 3.3. Q.E.D.

Suppose s=2: L=LoRL1RL2(d. (3.4)). Then (G, id, RN) is equivalent as real

representation to one of the foliowings:

Type I) (Gi x G2, /?iR/?L R"lRRn2); n^n2^3, N=n1n2, pxis a 'real'complex irreduci-

ble representation of G, on C*', JB"'is a G-invariant real form of Cni(i=l, 2).

Type II) (Gi x G2, piRp2, HniRH"2); n^n^l, N=4n1n2, p{ is a 'quaternion' com-
H H

plex irreducible representation of G,-on C2"', and fl'Mlis C2"1 with the G-invariant quater-

nionic structure(i.e.,the right multiplicationoij)(i=t, 2).

Type III) (Rx&i xG2, {tRpiRp2)R, {CRCniRCm)R); n^n-^2, N=2n1n2, a is a

complex irreduciblerepresentation of G,-(/=l,2),teR*.

Type IV) (Gi xG2, {piRp2)n, {CmRCm)R); n^n2^2, N=2nln2, p{is a complex ir-

reducible representation of G,-on C"'(/=l,2),and PiRp2 is not 'real'.

Lemma 3.6 Let /?,be a linear representation on Fm of a compact Lie group Kif and denote

d^Zm-dimKi where i=Q(ifF=R), l(ifF=C), or2(ifF=H). Then

(1) Ifl£n<mif then doh (K{ x GF(n), ptSid, Fm(g)Ftt)^di+n{2i-1(n-3)) + l}(^di+3
F F

if moreover w^3).

(2) // lSn<mh then doh {K{ xGF(n), p&id, FmRFn)^di+2i~l [n(n-l)-2] +n

(r^dj+2 if moreover w^2 and i^l).

PROOF: doh (K{ x GF(n), p&id, Fw'RF")^dim FIWRF"-dim K{ x GF(n)=di+2i(n-!)･
F F F

m;―(2' ―l)n ―2t~1n(n―l). Replacing m, by w(resp. w + 1), we have (l)(resp. (2)). Q.E.D.

Suppose s = 1: L=Lo c Lx (cf. (3.4)).Then (G, id , RN) is equivalent as real representa-

tion to one of the followings:

Type V) (Gi, p＼,Rni); ≪i^3, N=nlt px is a 'real'complex irreducible representation

of G＼ on Cn＼ and Rni is a Gi-invariant real form of Cni.

Type VI) (R x Glf (t&pJn, (CRCn%); nx^2, N=2nlt and/7a is a complex irreducible

representation of Gi on Cni.

Type VII) (Gi, /?i,Cni); n{^2, N=2nu p＼is a complex irreducible representation of

Gi on CM1, and /?iis not 'real'.
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Lemma 3.7 If nx^n2, then GFinJi-GFin^x {/WJ in GF{nl)xGF(n2)) transforms

any matrix X=*[xi, ･ ･ ･, xnJeF(ni, n2)(x,-eFn2 for i=l, ･ ■■,ni) to a form Y=t[yi, ■■-,yn]

eF(nh n2)('yieF(l, n2)fori=l, ･･･,%) such thattyiyj=ciSij for some CieR {i,j―l, ･ ･ ･, nx)

by the action(3.2).

Proof: There Is A eGFinJ such that A transforms X1 XepF{nx) to a diagonal

form
c

cKl /

by the action(3.1).

Then Y~AX satisfied the desired property. Q.E.D.

Suppose s=0: L=L0 (cf.(3.4)).Then (G, id, RN) is equivalent as real representation to

one of the followings:

TypeVIII) (R,fR,CR);teR＼

Type IX) (1, 0, R); 1 is the trivialgroup, and 0 is the trivialrepresentation on R.

Note that the o.t.g. of type VIII is equivalent to 0(50(2), id, R2).

For general s^O, the estimate of coh (G, EN) is given in each cases i),ii),iii),if id:

G-*S0(N) is real irreducible, by the following theorem. If moreover s^>3, especially we

have coh (G,EN)^s.

Theorem 3.8

(1)

(2)

(3)

In case i), coh (G, EN) = coh of (3.5)^4r-3<1-6r-3q

In case ii),coh (G, EN) = coh of (3.6)^2s+1-3s-l,

In case iii),coh (G, EN) = coh of (3.7)^2s+1-3s-l.

Proof: (3) follows from (2). For (2), we may assume n^ ･ ･ ■̂≪s^2. If s<3, then (2)

Is trivial. Suppose s^3. If nx~^n2- ･ -ns, then we denote /(≪i, ･ ･ ･, ws)=dim pC(n2- ■-ns)

-dim SU(n2) x ･ ･ ･ xSU{ns) = n＼- ･ -n]-n＼ n2s+s-l. Then a//dwf-=2≫t-(w|- ･ ･ w2- ･ ･

^2-l) or 0^0. If n1^n2---ns, then we denote f(nu ■■･, ws) = dim C1R- ･ -RCns-

dim UinJxSUinz) x ･ ･ ･ xSU(ns) = 2n1- ■-ns-n＼ ms2+s-1. Then df/dni=2(n1- ■･

nr ･ ･ns-ni)^2(n2- ･ ･≪s-≫1)^0. Therefore coh (3.6)^/(≫i, ･■■,ns)^f{2, ■･-,2)

= 2s+1-3s-l.

(1) Suppose s=2r+g^2. If r,q^l, then (1) is trivial. If r=0, ^=5=2, then (1)

follows from Prop. 3.3. If s = 3, then (1) follows from Prop. 3.4. Assume 5^4. Suppose

r=0: Then we may assume n^ ･ ■･ ^ms^3. If n1^n2- ･ -ns, then denote f(nu ■■■,ns) =

dim pR(n2- ■-ns) ―dim SO(n2)x ･ ･ ･ xSO(ns) = (n2- ■-n2s+n2- ■-ns―n＼ n2s+n2A

+ ns)/2. Then 3//a≫,-=≪f-(ni- ･ -nf- ■-n2-l) + (n2- ･ -nr ■-ns+l)/2 or 0^0. If n^n2- ■-ns,

then denote f(nlt ･ ■■,ns) = ti.iraRmR- ･ -Ri2Ms-dim SOM x ･ ･ ･ xSO(ns)=n1- ･ -ns-

R H
(≪?+ ･ ･ ･ +≪s2)/2 + (≪i+ ･ ･ ･ +ns)/2. Then df/dni=n1-- ･≪,-･ ■ns-ni+l/2^n2- ･ -ns-ni + l/

2^1/2. Therefore coh (3.5)^/fa, ･ ･ ･, n,)^/"(3, ･ ･ -, 3)=3s-35 = 3?-3§. Suppose g = 0:

Then we may assume n^ ■･ ■̂ w >2. If Wi≪2^w3- ･ -ws, then denote {/(wi, ･ ･ ･, ≪s)= dim
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pR(n3- ･ -wj-dim Sp(n3/2) x ･･ ･ xSp{nJ2)={n＼- ■-n2s+n3- ■-ns-n＼ n2s-n3

―ns)/2. Since dg/dn^O (i=l, ･･■,s), coh (3.5)^g(≪x, n2, n3, ･■･,ns)^g{nl,n2,2, ･･･2)

=22s-5 + 2s-3-3(s-2)=22?'(22r-5 + 2-3)-6r+6^4''-6r. If nxn2^n3- ■-ns, then denote

*(≫i, ･ ･■,n,) = dim Hni/2R- ■-RHnsl2-6im Sp(n1/2) x ･ ･ ･ xSp{ns/2) = nl- ■-ns-{n＼+■ ■■

£1 M
HhWs+MxH ＼-ns)/2. Since dh/~dni=nr ･ ･≪,-･･ ■ns-ni-l/2^n2- ･ ･ns ―n1-H2'^n1n＼-nl

-1/2^2-4-2--1/2>0 (* = 1, ■･･,≪), coh(3.5)^A(≫i, ･ ･ ･, ns)^h(n3, n3, n3, n4, ･･-,≪,)

^A(m4, ≪4,≪4>≪4,≪5> ･ ･ -,ns)^h(2, ･ ■■,2)=2s ―3s = Ar―6r. Finally suppose r, q^l: Then

we may assume n{^ ･ ■■̂ n2r^2 and n2r+i7z ･ ■■̂ n2r+q^3. If Mi≪2^≪3> ･ "ns, then denote

g(nh ･-.,≪,)=dim ^JB(n3 ･ ･ ･ ns) - dim Sp(n3/2) x ･ ･ ･ x Sp(n2r/2) x SO(w2^+i) x ･ ･ ･ x SO(n2r+q)

= (n| ･ ･ ･ w?+≪3 ･ ･ ･ ≪s-≫i ≫?-≫3 ^+W2r+i"l +n2r+q)/2. Since dg/dn,-

^0 (/=!, ･･-,≪), coh (3.5)^0 (nlf ■■■,ns)^g (nlf n2, 2, ･･･,2, 3, ･ ･ ･, 3) = 22r-3?(22?-5-3?

+ 2"5) + 6-6r-3^^4r-3?-6r-3g. If nxn2^n3- ■-ns, then denote A(ni, ･ ･ ･, nt) =

dim (Hni/2R ･ ･ ･ RHn2'l2)RRn2r+1R ■■■RRn2'+≪ - dim Sp (≪i/2) x---xSp {n2rl2) x SO (n2r+1)

Si H R M It
x ･ ･･ xSO(thr+q) = n1-- -ns-{n＼+- ･･+ws2 + ≪1H +n2r-n2r+i n2r+q) /2. Since

bhlhn>n2- ･ ･ms-w1-1/2^w1(m|-1)-1/2^2(22-1)-1/2>0, coh (3.5)^A (nlt ･■-,ns)

^h (≪3, w3, ≪3,≪4, ･ ･ ･, ns)^h (nif n4, nit n4,n5, ■･ -,ns)^h (2, ･ ･ -,2, 3, ■･ ･, 3)=:4r-3" ―6r

-3a. Q.E.D.
g

4. Orthogonal transformation groups of cohomogeneity at most 3

(I) Let (G, EN) be a real irreducible o.t.g. of type I.

Proposition 4.1 coh (G, EN) 2s3 if and only if(G, id, RN) is equivalent as real represen-

tation to one of the fallowings:

coh=l: none.

coh=2:

coh=3:

none,

(1) {Ax xAlt {2Al)rR{2Al)r, R3RR3),
R R

(2)

(3)

(4)

(5)

(6)

(7)

1y,
r6Rr3),

i)r,
R5RR3),

R

(2Al)r, R2k+1RR3); k^3,

i)r,
R2kRR3): k^4,
R

tY, R8RR3),
R

tY, R8RR3); i=3A-
it

PROOF: Suppose coh (G, EN)^3. Then (G, id , RN) is equivalent as real representa-

tion to (1), ･･･,(6), or (7) owing to Prop. 3.3(2)(4),Prop. 2.17, Lemma 3.6(1)(F=R, i=0,

n = 3), 3^doh (G, EN)^d0 + 3, Prop. 2.1 (d0S3), doh (AkxAlt (Ai+AkY 0(2AJ, RdimAk
R

(g)i23)= 2dim Ak-3^13 {k^2), Prop. 2.5, doh (Ck*Au (2A1)rR(2A1)r, Rdim CkRR3) =
M H, Ft
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2dim C*-3£17 (k^2), doh (Ckx Alt A^GArf', /2*(2*-1)-1(8)/23)=4*(*-l)-6^18(ib^3),

Prop. 2.8, doh (^x^, /I5(§)(2yl1)r>tfdima<g)J23)=2dimBk-3^39(k^3), doh (54 x^i, /I4

&(2A1)r, R16RR3) = 9, Prop. 2.11, doh (DkxAlt Ar2R(2A1)r,RdimDk<g)R3)=2dim Dk-3^

53(^^4), the equivalence of o.t.g.'s0(DAxA1,AriR(2Al)r,RsRRa) for i= l, 3, 4 (cf.

Remark 2.13), Prop. 2.15, Remark 2.16, 2dim£8-3^2dimJE7-3^2dimJE6-3^2dim

F4-3^2dim G2-3^25, doh (P4xAltAr^(2Ai)r, R26RR3) = 23, doh {G2* Au A^&Atf,
R R R

R7RR3) = 4.
R
Conversely if (G, EN) is induced from (1), ･ ･･,(5), or (7), then (G, EN) can also be in-

duced from (SOfa) x SO(3), idRid, RniRR3) for some n^4. So coh (G, £'JV)= 3(cf. Prop.

3.3(2)(4)).An o.t.g.induced from (6) is of con 3. In fact Spin (7) x SO(3) acts on R(8, 3)

through i by the action (3.2)(cf. Prop. 3.3 Proof), and the isotropy subgroup at

%2

X3

)

where ＼xt＼(i=l,2,3) are non-zero distinct real numbers, is locally

isomorphic to SU(2)(cf. Yokota [24, Theorem 5.27, Theorem 5.2]).Q.E.D.

(II) Let (G, EN) be a real irreducible o.t.g.of type II.

Proposition 4.2 coh (G, EN) ^ 3 if and only if(G, id, RN) is equivalent as real represen-

tation to one of the followings:

coh = l: (8) (At xAu AXRAX, HRH),

(9) (CkxAlt A&Al HkRH); k^2,

coh = 2: (10) (Ck x C2, A&A^ HkRH2); k^2,

(11) (AxxAlt SA&Ai, H2RH),
H H

coh=3: (12) (Ck x C3, AxRAlf HkRH＼ k^3,
H it

(13) iPkxAuAi§ftAi, Hk0H2); k^2.

Proof: Suppose coh(G,EN)^3. Then n2^3(ci. Prop. 3.3(1)(4)). Assume n2 = 3.

Then (G2, p2, H"2) is equivalent as complex representation to (C3, Ai, H3) owing to Prop.

2.20 and coh {SpinJxAx, id&5Alt HlRH3)^doh (AupH(3)) = 12(ci. Prop. 3.3(1)).So

(G, id, RN) is equivalent as real representation to (12) owing to Lemma 3.6(1)(F=H, i=2,

mt = nx, n=n2 = 3, di+k {2i-1(k-3) + l} =d2 + 3), 3^doh (G, EN)^d2 + 3, Prop.'s 2.4, 2.7,

2.10, 2.14, doh(DexC3,Ai&AuHliiRH3) = 105(i=5,6), Prop. 2.15, Remark 2.16, doh

(E7 x C3, A6&Alt H28RH3) = 171.
H H

Assume n2 = 2. Then (G2, Pi, H"2) is equivalent as complex representation to (C2, Alf

H2) or (Alt 3AU H2) owing to Prop. 2.20, deg/?i = 2Mi>4(cf. Prop. 2.20 and doh (A^Ax,
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S/li&a/li, H2RH2) = 10). So (G, id, RN) is equivalent as real representation to (10) or (13)

owing to Lemma 3.6(2)(F=H, i=2,m2 = n1>n=n2 = 2), 3^doh(G,EN)^d2 + 2, deg

A>4, Prop.'s2.4,2.7,2.10,2.14,doh {D6xAu A^SAu H16RH2)^doh (D6x C2, ARAU

H16RH2) = 52(i=5,6), Prop. 2.15, Remark 2.16, doh (E7xAlf A&ZAu H28RH2)^doh
H H H

(E7 x C2,A&Au H2SRH2) = 59.
M Si

Assume n2 = l. Then (G2, P2, H"2) is equivalent as complex representation to (A＼,A＼,

H) by Prop. 2.20. So (G, id, RN) is equivalent as real representation to (8), (9) or (11) ow-

ing to Lemma S.6(1)(F=H, i=2, m2=nl, n = l, rfl+ w{2J'~1(w-3) + l} =d2-3), 3^doh (G,

EN)^d2-3, Prop. 2.4, coh (A5xAlf A3&Alt HwRH) = Mcf. The linear isotropy represen-

tation of the symmetric pair (E6, SU(6) ･ SU(1)) of rank 4 is characterized as a real 40

dimensional irreducible almost faithfulrepresentation of A5 x.A＼owing to Section 2),Pro-

p.'s 2.7, 2.10, 2.14, Remark 2.13, coh (D6xAlt A&Alf H16RH) = m=5, 6)(cf.The linear
H H

isotropy representation of the symmetric pair (E7, Spin (12) ･ Sp(l)) of rank 4 is characteriz-

ed as a real 64 dimensional irreducible almost faithful representation of D6 x A＼ owing to

Section 2), Prop. 2.15, Remark 2.16, coh (E7xAi, A6&Alt H28RH) = 4(cf. The linear

isotropy representation of the symmetric pair (E$, E7 ■Sp(l)) of rank 4 is characterized as a

real 112 dimensional irreducible almost faithfulrepresentation of E7 xAi owing to Section

2).

The linear isotropy representation of the symmetric pair (E7, Spin(12) -Sp(l)) of rank 4 is

characterized as a real 64 dimensional irreducible almost faithfulrepresentation of D6 x-Ax

owing to Section 2), Prop. 2.15, Remank 2.16, coh (E7*AU A6RAU H28RH)=4(ci. The

linear isotropy representation of the symmetric pair {Es, E7 ･Sp(l)) of rank 4 is characteriz-

ed as a real 112 dimensional irreducible almost faithful representation of E7xAi owing to

Section 2).

Conversely an o.t.g.induced from (8) or (9) is of coh 1 by Prof. 3.3(1) (4) (F=H,

n2 = l,K=Sp(l)). An o.t.g.induced from (10) is of coh 2 by Prop. 3.3 (1) (4) (F=H, n2=2,

K=Sp(2)). An o.t.g.induced from (12) is of coh 3 by Prop. 3.3 (1) (4) (F=H,n2 = 3,

K=Sp(3)). An o.t.g.induced from (11) is of coh 2(cf. The linear isotropy representation of

the symmetric pair (G2, SO(4)) of rank 2 is characterized as a real 8 dimensional irreduci-

ble almost faithfulrepresentation of Ax xAi owing to Prop.'s 2.1, 2.2, 2.4).If (G, EN) isin-

duced from (13), then coh (G, EN)=coh (AhpH(2))^doh (A1,pH(2))=3(ct Prop. 3.3)

and coh (G, EN)^coh (Au hH(2)) = coh (Au 0?'e(4yl1)r,RRR5) = 1 + coh (Au (AA^, R5)

= 3(cf. The linear isotropy representation of the symmetric pair (SU(3), SO(3)) of rank 2 is

characterized as a real 5 dimensional irreducible representation of A＼ owing to Prop.'s 2.1,

2.2, 2.4), where the action of Ax onpH(2) is given as Prop. 3.3 and Lemma 3.2. Q.E.D.
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(III) Let (G, EN) be a real irreducible o.t.g. of type III.

Proposition 4.3 cob.(G, EN) S 3 if and only if (G, id, RN) isequivalent as real represen-

tation to one of the followings:

coh=l:

coh=2:

coh = 3:

none,

(14)

(15)

(16)

(R x

(Rx

(Rx

AkxAlf

AkxA2,

CkXAi,

iRAx

A
tRA1
c

Proof: Suppose coh (G, EN)S3. Then ≪2^3(cf. Prop. 3.3(1)(4)).

Assume ≫2=3. Then (G2, Pz, C"2) is equivalent as complex representation to (A2, A＼,

C3) owing to Prop. 2.18, Remark 2.19 and coh {U{nx) x^, id&2Alt CniRC3)^doh (Ab

/>C(3))= 6.IfPi is 'real'and n^6, then coh (G, EN) = coh (U(l) x G^A2, idRpxRAx,
c c

pC{3)) = b. If px is 'rear and n^6, then coh (G, E") = coh (U(l) x d x A2, idRp1RA1, CR
c c c

C≪1(x)C73)=coh(Gt x ([/(I) x^L2), p＼&{id&Ax)Rt RllR(CRCz)R)^co＼i {SO{nx) x C/(3), frfR

idR, RniRC%)=coh (U(3),pR(6))^doh (U(3),pR(6)) = 12(ct. Prop. 3.3). So (Glt pu Cni) is

not 'real'or ≪i^5. Then (G, id, RN) is equivalent as real representation to (15) owing to

Lemma 3.6(1)(F=C, ≪= 1, *%=%, w=w2 = 3), 3^coh (G, ^^^ + 3, Prop. 2.2(A2(k=3)

is 'real' of degree 6), Remark 2.3, doh (RxAkxA2, t&2A1&A1, CRC(*+2)(*=1)/2(g)C3)
C C C

= (Jfe+ l)(2*-l)-8£27(*£4), Prop. 2.6M2(*=2) is 'real' of degree 11), doh

(RxC2xA2, t&Ai&Ai, CRC4(8)C3) = 5, coh (RxCkxA2, f&A&Au C(g)C2*(x)C3)^dim C

OC2*R^-dim i?xCftX^42 + dim C*_3=6(cf. Any isotropy subgroup contains C*_3)f

Prop. 2.9 (At(k^3) is Veal' of degree^7), doh (RxBkxA2, t&Ak&Alt CRC2"<8)C3)

c c c c

=3-2*+1-2^2-^~9^18(^^3), Prop. 2.12 Ui(*^4) is 'real' of degree^8), doh

(i2xDAx^2,
^,.(x)yli, CRC2*"1(x)C3)

= 3-2*-^(2^-l)-9^11 ior-i^k, k-1 (if *£4),
c c c c

Prop. 2.15, Remark 2.16, doh (RxEexA2, f^A^Au C7RC27(8)C3) = 75, doh

OR x £:7x A2, f&A6&Alt C7RC56(g)C3) = 194.
c c c_ c

Assume ≪2==2. Then (G2, P2, CM2) is equivalent as complex representation to (Ai,Ai,

C2) by Prop. 2.18. If (Gx, Pl, Cni) is 'real' of degree n^4, then coh (G, EN)=coh (U(l) x

Gi xAu id&p&Au CRC"I1(x)C2) = coh (Gi x (£7(1) x^i), ^^(^yli)^ JS^^CCOC2)^)^

CCCC R C EC

coh (SO(ni) x U{2), idRidH,
JKni(g)C72?)

= coh (17(2), i>J?(4))^doh (U(2), /≫/2(4))= 6. So (Glf

Pi, CK1) is not 'real' or ≪i^3. Then (G, ≪rf,i2w) is equivalent as real representation to (14) or

(16) owing to Prop. 2.18, Lemma 3.6(2)(F=C, i=l, m1 = n1>n=n2=2), 3^coh(G,EN)

^rfi+ 2, Prop. 2.2U2(^=3) is 'real'of degree 6), Remark 2.3, doh (RxAkxAlt tRA2R

Alt CRCk{k+l)RC2)=k2-4^12(k^A), doh (RxAhxAlt t&A&A^ 0RCP+w+1V2RC*)

= (*+l)(fc+3)-3^5(^l), Prop. 2.6(A2(k=2) is Veal'of degree 11),Prop. 2.9(Ax(k^3)
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is 'real' of degree^7)s doh (RxBkxAu tRAkRAx, CRC2kRC2)=2k+2-k(2k + l)-
c c c c

4^7(&^3), Prop. 2.12(At(k^4) is 'real'of degree^, Ai(k=4) for i=3, 4 are 'real'of

degree 8), dofa(RxDkxAx, t&A&Au C(g)C2k~1RC2)=2k+1-k(2k-l)-4:^15 for

i=k-l,k(it k^5), Prop. 2.15, Remark 2.16, doh (RxE6xAlt t&A&Au CRC27RC2)

=26, doh (RxEjxAu t&A&Ai, CRC56RC2) = 87.
c r c f

Conversely an o.t.g.induced from (14)(resp. (15)) is of coh 2(resp. 3)(cf.Prop. 3.3(1)

(4)).If (G, EN) is induced from (16), then coh (G, EN)=coh (U(l) x CkxAlt id&Ai&At, C
c c

(x)C2*(g)C2)=coh (U(l) x (CkxAi), id&iA&AJ*, CR(BkRHf) = coh (SO(2) x (QxAJ,

C C C H C H
tf&Wi&li), R2R{HkRH)=coh (Ck x (SO(2) xylj), A&dd&AJ, HkR(R2RH))=coh

R H R * H H R H R
(SO(2) xAltpH(2))=coh (SO(2),pR(2))+coh (Alf (2A1)r,

JR3)=2
+ l=3(cf. Prop. 3.3).

Q.E.D.

(IV) Let (G, EN) be a real irreducible o.t.g. of type IV.

Proposition 4.4 coh (G, EN) ^ 3 if and only if(G, id, RN) is equivalent as real represen-

tion to one of the following:

coh = l:

coh=2:

coh = 3:

none,

(17) {AtxAuAi

(18) (AkXA^Ai

RAh Ck+1RC2); k^2,

c c

Proof: Suppose coh (G, EN)^3. Then (G, id, RN) is equivalent as real representa-

tion to (17) or (18) owing to Prop. 4.3. In fact, (C*Xj4i, A&Au C2kRC2)(k^2) and

(AixAlt Ai&Ai, C2(8)C2) are 'real',so they are not real irreducible, and coh (A2 xA2, yli<§)

Alt C3RC3) = 4 since (U(l)xA2xA2, id&A&Ai, CRC3RC3) is equivalent to the linear

isotropy representation of the Hermitian symmetric pair (SU(6), S(U(3) x U(3))) of rank 3

whose restricted root system is of type C(cf. Tasaki-Yasukura[22], Helgason[7]).

Conversely an o.t.g. induced from (17)(resp. (18)) is of coh 2(resp. 3) since (U(l)

xAkxAlt id&Ai&Au CRCk+1RC2) of &^2(resp. (U(l)xAhxA2, id^A^Au CRCh+1R
C C Cr C G C & &

C3) of h ^3) is equivalent to the linear isotropy representation of the Hermitian symmetric

pair (SU(k + 3), S(U(k + t) x 17(2))) of rank 2(resp. (SU(h+4), S(U(k + l) x U(3))) of rank

3) whose restricted root system is of type BC(d. [22], [7]). Q.E.D.

(V) Let (G, EN) be a real irreducible o.t.g.of type V.

Proposition 4.5 coh (G, EN)-^3 if and only if{G, id, RN) is equivalent as real represen-

tation to one of the fallowings:

coh = l: (19) (Alt (2Ai)r, R3), (20) (A3,Ar2,R6),

(21) lC2,Ar2,R5), (22) (Bk, A＼,R2k+l)＼k^3,
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(23)

(25)

(27)

coh=2: (28)

(30)

(32)

coh=3: (34)

(36)
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(A, A＼,R2k); k^A,

(B3> Ar3,R8)

(G2, Ar2,R7),

(A2,(A,+A2Y,R8),

(C3) Ar2,Ru),

(G2,A[,RU),

(AzAAt+AsY.R15),

(C4,Al,R27),

(24)

(26)

(29)

(31)

(33)

(35)

(37)

(Di,AlR8);i=3,A!

(B,,Al,R16),

(Alf (4/1!)', R5),

(C2,(2A1)r,Rw),

(F4,A'4,R2≪),

(C3,(2A1)r,R21),

(Bz,A'2,Rn).

Proof: Suppose coh (G, EN)^3. Then (G, id, RN) is equivalent as real representa-

tion to one of (19)~(37) owing to Prop. 2.1, coh (Ak, (Ai+Ak)r, R*imAk) = k, Prop.

2.5, coh(Ck,(2AJr,RdimCk)=k, coh (Ck,Ar2, R{k-im+l))=k-l{d. 0{Ck, Ar2,R(k~mk+l)) is

equivalent to the linear isotropy representation of the symmetric pair (SU(2k), Sp(k)) of

rank k-1), Prop. 2.8, coh (Bk, Ar2,i?dim Bk)=k, Prop. 2.11, coh (Dk, Ar2,i?dim Dk)=k, the

equivalence of O(A, A＼,R8) for i = l, 4, 3, Prop. 2.15, coh (F4, A＼, JJ52)= 4, coh (E6, A＼,

R78) = 6, coh (E7, A＼,R1U) = 7, coh (ESy Ar7, R248) = 8.

Conversely an o.t.g.induced from one of (19) ~(24) is equivalent to (SO(n), id, Rn) for

some w=^4, which is of coh 1. An o.t.g.induced from (25), (26) or (27) is of coh l(cf.

Yokota [24, Theorems 5.27, 5.50, 5.3]. O.t.g.'s (28)~(33) are equivalent to the linear

isotropy representation of the symmetric pairs (SU(3) xSC/(3), SU(3)), (SU(3), SU(2)),

(SU(6), Sp(3)), (Sp(2) x Sp(2), Sp(2)), (G2 x G2, G2), (E6, F4) of rank 2 respectively (cf. Pro-

p.'s 2.1, 2.5, 2.15). O.t.g.'sinduced from (34)~(37) are equivalent to the linear isotropy

representations of the symmetric pairs (SU(4) *SU(4), SU(4)), (Sp(3) *Sp(3), Sp(3)),

(SU(8), Sp(4)), (SO(7) xSO(7), SO(7)) of rank 3 respectively (cf. Prop.'s 2.1, 2.5, 2.8).

They are also characterized by their degrees among 'real'complex irreducible representa-

tions. Q.E.D.

(VI) Let (G, EN) be a real irreducible o.t.g. of type VI.

Proposition 4.6 coh(G, jE^)^3 if and only if (G,id,RN) is equivalent as real

representation to one of the foliowings:

coh=l:(38)

(39)

coh=2: (40)

(41)

(42)

(43)

(44)

(45)

(RxAk,

(RxQ,

(RxBk>

(RxDk,

(RxD4,

(Ry.Au

(R*A3,

(RxCo,
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(46)

(47)

(48)

(49)

coh=3: (50)

(51)

(52)

(53)

(54)

CRC7);teRx,

CRC＼teRx,
c

CRCie);teRx,
c

CRC10);teRx,
c

, C7RC6);fei?x,
c

CRC15);teRx,

C7(x)C21);^ei?x,
c

C(g)C16);*ei?x,
c

CRC27);tERx.

PROOF: Suppose coh (G, EN)^3. Then (G, id, RN) is equivalent as real representa-

tion to one of (38)~(54) owing to Lemma 3.6(1)(F=C, i=l, n = l), Prop. 2.2, Remark 2.3,

coh (U(l) xAk, idRA2, CRC(k+1)k) = [(k + D/2] (cf. (U(l)xAk, idRA2, CRC(k+l)k) isequiva-

lent to the linear isotropy representation of the symmetric pair (SO(2& + 2), U(k + 1)) of

rank [(k + l)/2]), [(Jfe+ l)/2]£4(fc^7), Prop. 2.6, Prop. 2.9, Prop. 2.12, Remark 2.13, coh

(U(l)xD6,idRA6, CRC32)^4(cf. (U(l)xD6, idRA&, CRCZ2) is contained in the linear
c c c c

isotropy representation of the symmetric pair (E7, Sp(l)-Spin(12)) of rank 4), Prop. 2.15,

Prop. 2.16, coh(U(l)xF4, idRA4, CRC26)^7(cf. Each isotropy subgroup contains a
C7 C

group which is isomorphic to SC/(3)cG2cSpin(7)cSpin(8)cF4 by Yokota[24, Prop.'s

5.45,5.48, Thm's 5.33, 5.27,5.2]),coh (U(l)xE7, idRA&, C(g)C56)^4(cf.(U(l) xE7, idR

Ae, CRC56) is contained in the linear isotropy representation of the symmetric pair(E8,

Sp(l)-E7) of rank 4), doh (U(l) x G2, idRAx, C(g)C14)= 13, doh (U(l) xF4, idRAlf CRC52)
C C L/C

= 51, doh (U(l) xE6, idRA&, CRC78) = 77, doh (U(l) xE7, id&Alt CRC133) = 132, doh
c c c c

(U(l)xE8, idRA7, CRC248)=247.

Conversely coh (38) = coh (39) = 1 since SU(k + l) and Sp(k) are transitive on

hyperspheres in the representation spaces. (40)~(45) are equivalent to {SO(2) x SO{n), id

Rid,R2RRn) for some n^4 of coh 2. The o.t.g.induced from (46) is equivalent to

0(S0(2) x G2, idRAr2, R2RR7) and the isotropy subgroup at
( " )

in R(2, 7) -R2RR7
R R ＼ P I &

(a>#>0) is isomorphic to SU(2) by Yokota [24, Example 5.1], so coh (46)=2 (cf. Prop.

3.3(1)(4)).The o.t.g.induced from (48) is equivalent to the linear isotropy representation

of the symmetric pair (Ee, U(l) ■Spin (10)) of rank 2 by Prop. 2.12 and Remark 2.13

since it is characterized by its degree up to equivalence. Since [(& + l)/2] = 2 for k=A,

coh (49) = 2. The o.t.g.induced from (50) is equivalent to the linear isotropy representation

of the symmetric pair (Sp(3), 17(3)) of rank 3 by Prop. 2.2 and Remark 2.3. Since
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[(Jfe+ l)/2]=3 for k=5 or 6, coh (51) = coh (52) = 3. The o.t.g.Induced from (53) is equiva-

lent to O(SO(2)xSpin(9),idRA＼,R2RRW). Any element of R(2, 16)-R2RR16 to the

/ a 0 0---0 0 0 0 0---0 ＼
form 1, and the isotropy subgroup is isomorphic to SU(3)
＼ 0 P 0■･ ･0 y 8 e 0 ･･ ･0 /

if a2^fi2 + y2 + S2+e2 owing to the use of the mapping/ in Lemma 3.2 and Yokota [24,

Theorems 5.51, 5.27, 5.2]. So coh (53) = 3. The o.t.g.induced from (54) is equivalent to the

linear isotropy representation of the symmetric pair (E7, U(l)-E6) of rank 3 by Prop. 2.15

and Remark 2.16. So coh (54) = 3. Q.E.D.

(VII) Let (G, EN) be a real irreducible o.t.g. of type VII.

Proposition 4.7 coh (G, EN)^3 if and only if(G, id, RN) is equivalent as real represen-

tation to one of the folbwings:

coh=l:(55) (A* Alt Ck+1); fel,

(56) (Ck,Au C2k);k^2,

coh=2:(57) (D5, A5, C16),

(58) (A4,A2, C10),

coh=3:(59) (A6, A2, C21).

PROOF: Suppose coh (G, EN)^3. Then (G, id, RN) is equivalent as real representa-

tion to (55)~(58) or (59) by Prop. 4.6. In fact, (Bk, Alt C72*+1),(Dh Alf C2k), (Au 2Alt C3),

(A3, A2, C6), (C2, A2, C5), (G2, A2, C7), (B3, A3) C8), (B4, AA, C16) are 'real'and not real ir-

reducible, so they are not of type VII, and coh (A2, 2A＼, C6) = coh (A5, A2, C15) = coh (E6,

Ax, C27) = 4 since the restricted root systems of (Sp(3), U(3)), (SOQ2), U(6)), (E7, 1/(1)

･E6) are of type BC (cf. [7], [22]).

Conversely coh (55)=coh (56) = 1 is evident. O.t.g.'sinduced from (57), (58) are of

coh 2 since the restricted root systems of (E6, U(l)-Spin(10)) and (SO(10), U(5)) are of

type BC. The o.t.g. induced from (59) is of coh 3 since the restricted root system of

(SO(U), U(D) is of type BC (cf. [7] and [22]). Q.E.D.

Now we have the following result.

Theorem 4.8 Let (G, EN) be an o.t.g. such that the identity representation id:

G-*SO(N) is real irreducible. Then coh (G, EN)^3 if and only if(G, id, RN) is equivalent as

real representation to one of the fallowings:

coh=l: (IX), (VIII), (8), (9), (19), (20), (21), (22), (23),

(24), (25), (26), (27), (38), (39), (55), (56).

coh=2: (10), (11), (14), (17), (28), (29), (30), (31), (32),

(33), (40), (41), (42), (43), (44), (45), (46), (47),

(48), (49), (57), (58).
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coh = 3: (3.7), (1), (2), (3), (4), (5), (6), (7), (12), (13),

(15), (16), (18), (34), (35), (36), (37), (50), (51),

(52), (53), (54), (59).

PROOF: Unifying (3.7) of Theorem 3.5, Propositions 4.1~4.7 and type VIII, IX in

Section 3, we have the result. Q.E.D.

Remark 4.9 O.t.g.'sinduced from (25), (26), (27), (39), (55), (56), (17), (46), (47),

(57), (58), (6), (18), or (59) are not maximal. O.t.g.'sinduced from (13), (16), or (53) are

not obtained from the linear isotropy representations of any Riemannian symmetric pairs.

Others are equivalent to the linear isotropy representations of some Riemannian sym-

metric pairs of rank at most 3 if they are maximal. (26) is obtained from the linear isotropy

representation of (F4, Spin(9)). The o.t.g.induced from (24) (resp. (42), (7)) is equivalent

to one from (23)(reso. (41). (5)) of k=4.

REMARK 4.10 O.t.g.'s induced from (13) or (16) are missed in the Theorem 7 of

Hsiang-Lawson [11] if k and 3 are relatively prime and k^4, since the dimension of the

representation spaces of (13) or (16) is 8k and the others of cohomogeneity 3 are of dimen-

sion 3m for some integer m excent (53) of dimension 16.
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