TSUKUBA J. MATH.
Vol. 6 No. 1 (1982). 18

COVERINGS OF GENERALIZED CHEVALLEY GROUPS
ASSOCIATED WITH AFFINE LIE ALGEBRAS

By

Jun MoriTa

R. Steinberg [21] has given a presentation of a simply connected Chevalley
group (=the group of A-rational points of a split, semisimple, simply connected
algebraic group defined over a field 4) and has constructed the (homological) uni-
versal covering of the group. In this note, we will consider an analogy for a
certain family of groups associated with affine Lie algebras.

1. Chevalley groups, Steinberg groups and the functor K,(®, ).

Let @ be a reduced irreducible root system in a Euclidean space R™ with an
inner product (-, -) (cf. [4], [6]). We denote by @' (resp. @) the positive (resp.
negative) root system of @ with respect to a fixed simple root system /7 ={a, -,
a,}. We suppose that «, is a long root (for convenience’ sake). Let an.: be the
negative highest root of ®. Set ai;=2(a;, a))/(a;, «;) for each i,7=1,2, -, n+1.
The matrices A =(a:;)i<i. jon and f~1=(aij)1g, jen+1 are called a Cartan matrix of @
and the affine Cartan matrix associated with A respectively (cf. [4], [5], [6)).

Let G(2,-) be a Chevalley-Demazure group scheme of type @ (cf. [1], [20)).
For a commutative ring R, with 1, we call G(®, R) a Chevalley group over R.
For each ae®, there is a group isomorphism—* exponential map”—of the additive
group of R into G(®, R):t—x,(f). The elementary subgroup E(®, R) of G(®, R)
is defined to be the subgroup generated by xz.() for all ae® and teR. We use
the notation G (@, -) and Eu(®, -) (resp. Go(®, -) and Ey(®,-)) if G(®,:) is simply
connected (resp. of adjoint type). It is well-known that G,(®, R)=£(®, R) if R is
a Euclidean domain (cf. [22, Theorem 18/Corollary 37).

Let St(®, R) be the group generated by the symbols #.(¢) for all ae® and ¢eR
with the defining relations

(A)  2u(8)Zult) =25 +1),

(B)  [2u(8)y Z2sO]=TI] Biws js(Na.p.i. 5 5%9),

(BY  @.()2o(O)Wu(—~ ) =2 _o( —u™2F)
for all a, Be@(a+p=0), 5s,tcR and weR*, the units of R, where @.(2)=2.(%)&_.(—
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u ")z, (1) (cf. [20]). We call SK®, R) a Steinberg group over R.

Since the relations corresponding to (A), (B), (B) hold in E(®, R), there is a
homomorphism ¢ of SK®, R) onto E(®, R) such that 6(2,())=ux.{) for all ae@® and
leR. Put Ky(®,-)=KeriSUD, -) ——s Ex(®, )], i€, 1 — K@, ) —> SHD, ) —>
E(®,-)—1 is exact. For each we® and u,veR*, we set {#, v).=/a(u0)ha(26)""
h ()", called a Steinberg symbol, where J.(x) =w.()@.(—1). Let K =u, v}.|ac®,
u,0€R*>. Then K CKy(®, R)NCent(SH(®, R)).

Definition. R is called universal for @ if K,(®, R)=K.
Let E,(®, R)=SH®, R)/K' . Then the homomorphism ¢ induces a homomorphism
0 of E,(®,R) onto E\(9, R). We see:
“R is universal for @”
& “4 is an isomorphism”

> “@ is a central extension.”

ExampLE 1 (cf. [20], [21], [22]). Let k& be a field.
(1) St@, k%) is connected if (@, |k])=(A,,2), (B, 2), (G:,2) and (A4, 3).
(2) & is universal for each @.
(3) St(@, k) is a universal covering of E,(®, k) with a few exceptions.

2. The case of Laurent polynomial rings.

Let 2[7T'] be the ring of polynomials in T with coefficients in a field %, and
the maximal ideal of A[T] generated by 7. Let k[T, 7'] be the ring of Laurent
polynomials in 7 and T-' with coefficients in k& We identify 2[7"] with a subring
of R[T, T~'] naturally. Set

U=Lx.f), xp(g)lacD*, fe®@, fek[T], geM),

N=w,(T™)|ac®, tek*, med>,

H={,$)|e®, tek*), and

B=<U,H>
as subgroups of E(®, k[T, T-')), where w,(u)=z.(u)r_.(—u )x.(u) and f.(u)=w.(u)
wa(—=1).

TuroreEM 2 ([17]).
1) BNN=H.
2) (E@,kT, T '), B,N) is a Tits system.
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COROLLARY 3.
(1) The canonical homomorphism O E(DRT, TY]) —> Ey(®, k[T, T-1]) is a cen-
tral extension.

@) Ker ¢={ Tt b ()| T30 882 =1 for all Bed}, where (B, a;>=2(8, a;)/(as, a;), and
tiek*.

We define the subgroups U, N, H, B of SK®, K[ T, T-'7):

U=(2.(f), &:lg)laed®, e, fekT], geM,
N=(@,4T™)|acd, tek*, meZ>,
H={h|aecd, tek*>R,
B=, Ay
We denote by U, N, H, and B, the canonical images of U/ ,N,H and B in
Eu(®@, k[T, T-')) respectively. Then (Eu(@, [T, T, By, N,) and (SHD, k[T, T,

B, 1\7) are Tits systems, which is established by using the same technique as in
[171.

THEOREM 4.
(1) Gu(®, KT is presented by the generators Z,(f) and @.() for all aell, 7ed’,
fek[T] and tek*, and the defining relations (R1)—RY9):

RY 2()%0)=%,(f+9),

R2) @) =W(~1),

R3) W) Bt — 1) = Fo ~ 4™ Vi o B4~ Bo(— 207,
RA) [0, 2lD)]=T1 Ziaso (N;.0.0.5 Fig7),

(R5)  ho(®ha() =ha(tu),

(R6)  a(t)ig(ue)ie(t) = W) a(p(w)-,

RSN —

S

q q
(R7) u’v/a(t)jp(f)wa<~t)=§pr(ci_<’”">f‘),
R8) () (N)ha(t™)=Z.(2F),
RY)  Wa(&)p(10)i(— ) = Rs(uihhr (6P

for all a, pell(axp), y,0eP*, pe®*~{a}, f,gek[T] and ¢ uek* where Ba(t) =0,(0)
Wa(—1), and N, 5.1,; and ¢ are as in [20] or [22], and each side of the equation in
(R6) is the product of g symbols, and ¢=2,3,4 or 6 if (Ra+Rp)ND is of type
AyxX Ay, As, B, or G, respectively, and g a>=2(r,0)/(a, «) and o =p—
(2) K[T] is universal for each root system @.

{p, @a.

Proor. (1) One can get this presentation of G(®,k[T]) by using the same
argument as in (23], [24] and [25]. (2) It follows from (1) that A[T] is universal.
(By using an amalgamated free product decomposition of G(®,KT]) which is
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described in [26], Rehmann [19] has given a different proof of the statement (2)
from ours.) q.e.d.

THEOREM 5. KT, T-'] is universal for each root system O.

Proor. In the following commutative diagram:

]
BuNuBy=Eu(®, k[T, T™) —> Ex@, k[T, T )= BN. By

V"
FEul®, B[ T)——E\(@, RIT) 2B,

we have Ker6CB,. On the other hand, B,~B, by the universality of A[T]
Therefore § is an isomorphism. gq.e.d.

By taking T=1, the sequence 0—k—k[T,T'] splits, so Ku(@, k) is a direct
summand of Ky(@, AT, T']). Then:

THEOREM 6 ([2]).
1) KA, KT, T )=Ky(A:, KPS, where S={{T, th.ltek*) and « is a fixed root.
(2) S=fk* if k*=Fk (i.e. k is a square root closed field).

CoroLLARY 7 (cf. [2], [12], [13)).
(1) Ko@, KT, T ') =K@, B)DS, where S={T, B.tek*> and « is a fixed long
root.
(2) S is isomorphic to a factor group of &* if @xC, (n=1).
(3) S is isomorphic to a factor group of &* if B?=k.

Proor. (1) and (3) follow from Theorem 6. If @xC, (n=>1), then A, can be
embedded in the long roots of @. By Matsumoto’s theorem, one sees (2). q.e.d.

REMARK 8. The statements of Theorem 5, Theorem 6 and Corollary 7 have
been confirmed by Hurrelbrink [7] in the case when ®xG, He has directly
calculated the relations of G(®, k[T, T']) of type d=A,, As, and B;, and by using
this has proved Theorem 5 for #%G,. Our proof of Theorem 5 is different from
his, and contains the case of type G..

As an application of [20, (5.3) Theorem/Remarks] and Theorem 5, we can
establish the following theorem.

TaroreMm 9. If char =0, then SK@k[T,T"') is a universal covering of
Eo(@, k[T, T")).



ol

Coverings of generalized Chevalley groups

3. Kac-Moody Lie algebras and generalized Chevalley groups.

An Ix/ integral matrix C=(c;;) is called a generalized Cartan matrix if (i)
cu=2, (i) i¥j=>ei;<0, and (i) ¢;;=0<=c;;=0. From now on, we suppose char &
=0. We denote by L,=L,(C) the Lie algebra over & generated by the 3/ genera-
tors ey, -, e, fu, oo, By, fo, 0o, i with the defining relations [4y, &;]1=0, (e, fi1=08i/,
Vai, e1=cjaej, [hi, fil= —cuf; for all 1<i,7</, and (ad e;)“7it'e;=0, (ad fi) %5+ f,=0
for all 1<ixj</ Then the generators e, -, e, ki, -, ks, fu, -, fi are linearly inde-
pendent in L;. We view L, as a Zl-graded Lie algebra defined by deg(e;)=(0, ---,
0,1,0,---,0), deg(h)=(0,---,0) and deg(f:)=(0,---,0,~1,0,..-,0), where +1 are in
the i-th position. Then there is the maximal homogeneous ideal R,=R,(C) of L,
such that RN (X4, kAt +ki)=0. Set L=L(C)=L,/R, called the Kac-Moody
Lie algebra over % associated with a generalized Cartan matrix C (cf. [3],[5], [8],
[10],[14]). The algebra L is also Z'graded. For each [-tuple (s, ---,m)eZ! we
let L(ni, -, m) denote the homogeneous subspace of degree (m,,--, %) in L. We
identify e;, 4, f; with their images in L. Then:

ProrosiTiON 10.
(1) L{n, -, %) is the subspace of L spanned by the elements lei,, [eiy, -+, Tei,_ys
ei ]+ (resp. [fiy, [ fig = [ fip_pp i, Jo-]1), where e; (resp. f;) occurs |n;| times, if
(7, +++, m) belongs to (Z,)'—{0} (resp. (Z.)'—{0}).
@) L, -, 0)=Fkby+ - +Eh.
3) L(ny, -, n)=0 otherwise.

Put Lo=Lo(C)=Fkk\+---+kh. For each i=1,--,/, we define a degree deriva-
tion D; on L such that Diz)=n;x for all xeL(n,, ---,n;). Set Dy=EkED+--+kD,,
viewed as an abelian Lie algebra of dimension /. For a subspace DCD,, let
L*=L(C)*=DxL (semidirect product) and (L,)*=DxX L, (direct product). For each
j=1,,1, let y; be an element of ((Lo)%*, the dual of (L), such that [4, ejl=r;h)e;
for all he(Lo)*. We note that y;(k)=c; for all i,j=1,---,/. We will choose and
fix a subspace D of D, such that y,, -y, are linearly independent in ((Lo)9*. This
is possible, since 7i(Dj)=d:;. Set L'={xeL|[k, x]=7(k)x for all he(Ly)’} for each
re((Lo))*. It is easily seen that Lmn++wi=[(sn,, .-, m) for all (ny, -, m)eZt. In
particular, Lii=ke;, L°=L, and L-"i=kf;.

Let 4=4(C)={re((Lo)*)*|L"=0}, called the root system of L. Set I'=3t, Zy,
a free Z-submodule of ((Lo))*. The Weyl group W=W(C) is defined to be the
subgroup of GL((Lo)")*) generated by w; for all i=1, ---,/, where w; is an endo-
morphism of ((Lo))* such that wi(y)=y—y(k)y.. Then 4 and I' are W-stable.
Also W acts on L, naturally : wi(k;)=rh;—ci;#. Hence we see (wy)(wh)=y(h) for
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all weW, ye((Lo)®)* and Ael,.

Let Fo(C, k) be the subgroup of Awi(L) generated by exp ad‘e; and exp ad #f;
for all fek and i=1,---,/. Let V be a standard L°module with a highest weight
2, %0 (cf. [5], (10]). We let Fy(C, k) denote the subgroup of GL(V) generated by
expfte; and expif; for all ek and i=1,-.-,[. These groups Fy(C, k) and Fy(C, k)
have Tits systems respectively (cf. [11], [16]). Then there is a homomorphisms v
of Fy(C, k) onto Fy(C, k) such that v(exp fe;)=exp ad Ze; and v(exp i) =exp ad ¢f; for
all fek and i=1, -, (cf. [11]), and v is central (cf. [18]).

4. The affine case.

Let @, A and A be as in §1. Then we can regard L(A) as a subalgebra of
L(A) naturally. We note that R,(A)=R.(A)=0, and that 4(A)=®U{0} and MA) =
AMA)YX Z (cf. [5],(9],[15]). Also we identify W(A) with a subgroup of W(A).
Therefore we have the following commutative diagram.

W(A) X Lo(A) —> Lo(A)

l i

W(A) X Lo(A) —> Lo(A)

We take an element ¢ of W(A) such that o(a))=ans. Put ho=0(k) and h;=
Finer—ho. Then yilho)=7i(ch) = (07" rs) () = o~ i, ) =L, dtn 1) = nir a0 7i(he) =0.
Therefore &=Fkh: is the center of L(ﬁ), and we have an exact sequence of Lie
algebras over & (cf. [5], [8], [153):

~ T
00— % — LA — KT, T7"] (Z) L(A)— 0.

Hence the map = induces an isomorphism # of Fo(ﬁ, k) onto Ey(®, k[T, T™']) such
that

#(exp ad te;) =x.,(2) for all 1<i<n,

#(exp ad teps1) =Ly, (ET),

#(exp ad ify) =2_a,(2) for all 1<i<#,

#(exp ad tfne1) =Ty ET 7.

Since SH®,E[T,T~']) is a universal covering of Eo@, k[T, T~']) (cf. Theorem 9),
there is a unique homomorphism, denoted by ¢, of SH®, k[T, T"']) into Fo(A, P)
such that the following diagram is commutative.

~ v ~
F(A k) ————— Fo(A,R)
¢,/ Z;f

/

St(q)v k[Tr Tl]) /_/—A—) El((bv k[T! j‘“ID —f“* Eo(q)y k[Ts :-7‘—-1])
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Then, by the relation 2.(#)2.(@)h.() ' =2.(t2a), we see

¢(Z.,(a))=expae for all 1<i<n,
(B, (@T)) =€Xp aensy,

O _a(@)) =€xp af; for all 1<i<n,
P Tty iy (@T 1)) =€XD af 011y

(i, (1)) = wi(2) for all 1<i<n,
$(Dy (4T =00 1(2),

¢(hab(f))"hi(t) for all 1<i<n,

Q({Y t’“nﬂ °71H )) }Z”ﬂ(l’)

where w;(¢) =(exp te;) (exp —¢'fs) (exp le;) and A:(t) =w;(w;(—1) for each i=1,2, .-,
n+1, and ack and fek*. In particular, ¢ is an epimorphism. Thus:

THEOREM 11. SH®, k[T, T-']) is a universal covering of F‘V(%Nl,k).

Finally in this note, we will discuss the kernel of ¢. Since Ker ¢< Ker (¢),
an element x» of Ker¢ can be written as [[7.i /4.,(t) [1pl@p b,,}:f] -7, c]} o
where 4, ap, by, c;ek* and rp,s;€Z,.  Then ¢({T,cjle, ) =lhari(c)omilc)'o™'. On
each weight space V, of V (cf. [5], [10]), ¢(x)=[[71 25®2 T[4, ¢ihm1035 =0~ ‘ww—
]—["{:1 tf;(hi) nrjl o 4(/» +D8j C""("")“?* Hn [/x(h,) ]'[q {.;mem . Therefore -

g(z)=1
& [13-1 8% [0, %=1 for all weight p.

Put P={T]%- lha‘(tz) [T5=1 AT cs¥ed, N 1520 2599 [T 520 e =1 for all weight o of V).

Tueorem 12. Ker ¢ =K,(®, k)DL
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Note added in proof. Recently H. Garland [Publ. IHES 52 (1980), 181-312] has con-

structed a subgroup F; of Au#(V) containing Fv(ff, k), and has shown that Si(®, k(T))) is
a universal covering of F|, where k(7)) is the T-adic completion of A7, T-1]. Then the

composite map SHP, k[T, T '])—>SH®, k(T)))—F; coinsides with the covering map of FV(/:L k)





