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COVERINGS OF GENERALIZED CHEVALLEY GROUPS

ASSOCIATED WITH AFFINE LIE ALGEBRAS

By

Jun Morita

R. Steinberg [21] has given a presentation of a simply connected Chevaliey

group ( = the group of ^-rational points of a split,semisimple, simply connected

algebraic group defined over a fieldk) and has constructed the (homological) uni-

versal covering of the group. In this note, we will consider an analogy for a

certain family of groups associated with affine Lie algebras.

1. Chevalley groups, Steinberg groups and the functor K2(0, ･)･

Let 0 be a reduced irreducible root system in a Euclidean space Rn with an

inner product (･, ･) (cf. [4], [6]). We denote by $+ (resp. 0") the positive (resp.

negative) root system of 0 with respect to a fixed simple root system ll = {au ･･･,

an}. We suppose that en is a long root (for convenience' sake). Let an+i be the

negative highest root of 0. Set aij=2(ai,a/)j(aj,aj) for each i,j = l,2,---,n + l.

The matrices A ―iai^i^ij^n and A=(aij)i<ij^n+i are called a Cartan matrix of 0

and the affine Cartan matrix associated with A respectively (cf. [4], [5], [6]).

Let G(0, ･) be a Chevalley-Demazure group scheme of type 0 (cf. [1], [20]).

For a commutative ring R, with 1, we call G{0, R) a Chevalley group over R.

For each a£0, there is a group isomorphism―"exponential map"―of the additive

group of R into G{0, R): U―>xa{t). The elementary subgroup E{0, R) of G{0, R)

is denned to be the subgroup generated by xa(t) for all as0 and tzR. We use

the notation Gi(<P, ･) and Et(0, ･) (resp. Go(0, ･) and Eo(0, ■))if G(0, ･) is simply

connected (resp. of adjoint type). It is well-known that Gi(0,R) = E1(0,R) if R is

a Euclidean domain (cf. [22, Theorem 18/Corollary 3]).

Let St(0, R) be the group generated by the symbols xa{t) for all ≪e$ and teR

with the defining relations

(A) xa(s)xa(t)^xa(s + t),

(B) [xa(s), x?(ty]=n Xia+jP(Na,M,jsV),

(BY wa{u)xa{t)wa{~u) = x-a{-u'H)

for all a, B 0(a+B^O), s,teR and ugR*, the units of R, where wa(u)―xa(u)x-a(~-
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u~l)xa{u) (cf. [20]). We call St(0, R) a Steinberg group over R.

Since the relations corresponding to (A), (B), (B)' hold in Ei(0, R), there is a

homomorphism 0 of St(0,R) onto Ei(0,R) such that 0(xa(t))= xa(t) for all a£0 and

teR. Put K2(0, ･) = Ker[St{0, ■)---≫^,(<f>,.)], i. e., 1 ―> Kt(0, ■)― St(0, -)-U

Ei(0, ･)―>■ 1 is exact. For each a&0 and u,vgR*, we set {u,v}a = ha(uv)ha(u)~l

ha(v)~＼called a Steinberg symbol, where ha(u)=--wa(u)iva(―Y). Let i? = <{w, y}a|a ^,

≪,̂ Gi?*>. Then KqKz(0, R) n Cent(SM), R)).

Definition. R is called universal for 0 if K2{0, R) = K.

Let Eu{0, R)=St(0, R)/K. Then the homomorphism 0 induces a homomorphism

0 of Eu(0, R) onto E,(0, R). We see :

"R is universal for 0"

<=> " ^ is an isomorphism "

^> "/9 is a central extension."

(1)

(2)

(3)

Example 1 (cf. [20], [21], [22]). Let He a field.

St(0,k) is connected if (0, |fc|)*(A,,2), (B2! 2), (G2,2) and (A,, 3).

& is universal for each 0.

St(0,k) is a universal covering of Ei(&,k) with a few exceptions.

2. The case of Laurent polynomial rings.

Let k[T] be the ring of polynomials in T with coefficientsin a fieldk, and 301

the maximal ideal of k[T] generated by T. Let k＼T,T~l]be the ring of Laurent

polynomials in T and T~x with coefficientsin k. We identify k[T] with a subring

of k[T, T~r]naturally. Set

Z7=<a?a(/WflO|ae0+, /3e0~,f£k[T＼ geW),

N=(wa(tTm)＼a£<P, tek*, meZ),

H=<ha(t)＼ae0, tek*}, and

B=<U,H}

as subgroups of E{0,k[T,T-^), where wa(u)= xa(u)x-a{―u-l)xa(u) and ha(u)~wa(u)

wa(-l).

(1)

(2)

Theorem 2 ([17]).

BHN=H.

(E(0,k[T, T^1]), B,N) is a Tits system.



Coverings of generalized Chevalley groups 3

Corollary 3.

(1) The canonical homomorphism <J>:&(#, k[T, T"1]) ― Eo(0, k[T, T'1'}) is a cen-

tral extension.

(2) Ker<f> = {Ui-ih≪i(ti)＼U"-i*?･"*>= 1 for all fte<P],where <^,≪f>=2(/3,≪i)/(ai,ai),and

We define the subgroups U,N,H,B of St{0,klT,T-1]):

U=<£,(/), xp(g)＼a<=<P＼0*0-, fek[T], 0e2tt>,

N = (wa(tTm)＼a£0, t£k*,meZy,

fi = <ha(t)＼aQ0,t k*)K,

£= <&,&>

We denote by Uu, Nu, Hu and Bw the canonical images of U, N, H and £ in

Eu{0,k[T,T-^) respectively. Then (Eu(R,k[T,T-r＼), Bu,Nu) and (St(0,k[T, T'1]),

B, N) are Tits systems, which is established by using the same technique as in

[17].

Theorem 4.

(1) Gi(0,k[T]) is presented by the generators xr(f) and w≪(t)for all
≪e/7, y£0

f£k[T1 and tsk*, and the defining relations (Rl)―(R9):

(Rl) xr(f)xr(g)= xr(f+g),

(R2) wjf)-l=wa(-f),

(R3) wa(t)xa(u)wa(- /)= xa{-thcl)wa(t2u-l)xa{-12^1),

(R4) [xr(f),Mo)] = II £ir+j*(Nr,,.,,y/*crO.

(R5) ha(f)ha(u)=ha{tu),

Q
a

(R7) wa(t)2f(f)wa(-t)=xp.(ct-<'">f),

(R8) ha(,t)xa(f)L(t-1)= xa(tVX

(R9) wa(t)h^u)wa(-t)=h^u)ha(u-<a^>)

for all a,p f7(aArP),r,5 (P+, pe0*-{a}, f,gek[T] and t,uzk*, where ha(t)^wa(t)

wa(―l), and Nr,s,i,jand c are as in [20] or [22], and each side of the equation in

(R6) is the product of q symbols, and q=2,3,4 or 6 if (Ra + Rp)n@ is of type

AiXAi,A2,B2 or G2 respectively, and (y,ay=2(j,a)/(a,a) and p'=p-<p,a)a.

f)＼ h＼T^ic iinit7f≫rc^1fnr t^urh rnnf svcfptn r/)

Proof. (1) One can get this presentation of Gi(<D,k{TJ) by using the same

argument as in [23],[24] and [25]. (2) It follows from (1) that k[T'jis universal

(By using an amalgamated free product decomposition of Gt(0,k[T~＼)which is
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described in [26], Rehmann [19] has given a different proof of the statement (2)

from ours.) q.e.d.

Theorem 5. k＼T,T~l~＼is universal for each root system 0.

Proof. In the following commutative diagram:

0

BuNuBu = EJO,k＼T, T-'l) ―> Ei(0.MT, T-1D=BtN,B,

1

~

i

Eu{0, k[T]) >El(0,k[T])^Bl

we have Kerd^Bu. On the other hand, Bu―B

Therefore 8 is an isomorphism, q.e.d.

by the universality of k[T＼

By taking T~l, the sequence Q-*k->-k[T,T~l] splits,so K.,(0,k) is a direct

sumraand of KM, k＼T,T~y＼).Then :

(1)

(2)

Theorem 6 ([2]).

K2(A,,k[T, T-1])=i22(A,,fe)cS, where S=({T,t}B＼tek*y and a is a fixed root

Sczk* if k*=k (i.e. k is a square root closed field).

Corollary 7 (cf.[2],[12],[13]).

(1) Ki(0,k[T,T-^) = Ki(0,k)@S, where S=<{T,t}a＼tek*y and a is a fixed long

root.

(2) S is isoraorphic to a factor group of k* if @*?Cn (≪>1).

(3) S is isomorphic to a factor group of &* if kz=k.

Proof. (1) and (3) follow from Theorem 6. If 0*Cn (n>l), then A2 can be

embedded in the long roots of 0. By Matsumoto's theorem, one sees (2). q. e.d,

Remark 8. The statements of Theorem 5, Theorem 6 and Corollary 7 have

been confirmed by Hurrelbrink [7] in the case when @±?G2. He has directly

calculated the relations of Gl{0,k[T,T-1]) of type <&=Ai,AB, and B2, and by using

this has proved Theorem 5 for #%G2. Our proof of Theorem 5 is different from

his, and contains the case of type G2.

As an application of [20,(5.3) Theorem/Remarks] and Theorem 5, we can

establish the following theorem.

Theorem 9. If char&=0, then St(0,k[T,T"^]) is a universal covering of

Eo(0,k[T,T-ll).
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3. Kac-Moody Lie algebras and generalized Chevalley groups.

An Ixl integral matrix C={ci3) is called a generalized Cartan matrix if (i)

cu―2, (ii) i^j^>Cij<Q, and (iii)Ci/=0<zz>t>=0. From now on, we suppose char&

=0. We denote by Li=L1(C) the Lie algebra over k generated by the 3/ genera-

tors eu ･■',ei,hi,'",hi,fu---,fi with the defining relations [hi,hj]=O, [eitfj]=dijhi,

[hi,ej]=cJiej, [hiJ/j^-Cjifj for all l<i,j<I, and (ad^-^+'^O, (ad/i)-e*+1/}=0

for all l<i^j<l. Then the generators ei,---,ei,hu---,h,,fu---,fi are linearly inde-

pendent in Li. We view Lx as a Z'-graded Lie algebra defined by deg(^)==(0, ･･-,

0,1,0, ･･･,0), deg(A,) = (0, ･･･,0) and deg(/i) = (0,-,0,-1,0, ―,0), where ±1 are in

the 2-th position. Then there is the maximal homogeneous ideal Ri―Ri(C) of Lt

such that RiD(LUkhi + -- + khl)=0. Set L = L{Q = LijRi, called the Kac-Moody

Lie algebra over k associated with a generalized Cartan matrix C (cf. [3],[5],[8],

[10],[14]). The algebra L is also Z'-graded. For each /-tuple {nu---,ni)^Zl, we

let L{ni,---,ni) denote the homogeneous subspace of degree (wi, ･･-,≪≪)in L. We

identify ei,hi,fi with their images in L. Then:

Proposition 10.

(1) L(nu ･･-,ni) is the subspace of L spanned by the elements ＼e%v[et2,･･･,[eir_v

£ir>"H (resp. [fiv [fh, ･･-,[/ir_1,/ir]---]]),where e} (resp. fj) occurs |%| times, if

(≫i,-,≪/) belongs to (Z+)l-{0) (resp. (Z_)J-{0}).

(2) L(0,-,0)=^Ai + -+A!AJ.

(3) L(nu ･･･,ni)=0 otherwise.

Put L0 ―L0(C)―khi + ---+khi. For each z'=l, ･･･,/,we define a degree deriva-

tion A on L such that Di(x)―niX for all x L(nu--",ni). Set D0~kD1-＼ f&A,

viewed as an abelian Lie algebra of dimension /. For a subspace D^D0, let

Le―L(C)e=DxL (semidirect product) and (L0)e~DxL0 (direct product). For each

j ―1, ･･･,/,let 77 be an element of ((Lo)6)*, the dual of (L0)e, such that {h,ej'＼=jj{h)e)

for all h (L0)e. We note that Tj(hi)=Cji for all i,j=l, ･･･,/. We will choose and

fix a subspace Z> of A such that 7-1,･･･yi are linearly independent in ((L0)e)*. This

is possible, since j^D^-da. Set Lr-{a; L|[A?^j = ^)x for all he(L0)e} for each

7" ((L0)e)*- It is easily seen that Dl^Jr-+niTi=L(nu---,ni) for all {nu---,nt)£Zl. In

particular, LT>=kei, L°―Lo and L~r'―kfi.

Let J=J(C) = {r ((L0)e)*|I/^0}, called the root system of L. Set r=ZJ_i<Zr*.

a free Z-submodule of ((Lo)6)*. The Weyl group W=W(Q is defined to be the

subgroup of GL(((L0)e)*) generated by wt for all i=l,―,l, where w* is an endo-

morphism of ((L0)e)* such that Wi{j)=y~y{hi)yi. Then A and F are If-stable.

Also W acts on Lo naturally: Wi{hj)=hj―Cijhi. Hence we see (wr)(wti) ―j(h) for
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all w£W, re((L0)e)* and hzU.

Let F0(C, k) be the subgroup of Aut(L) generated by exp ad tei and exp ad tf%

for all tsk and f = l, ･･･,/. Let V be a standard //-module with a highest weight

1*0 (cf. [5], [10]). We let Fv(C,k) denote the subgroup of GL{V) generated by

exp tei and exptfi for all izk and f = !,･･･,/. These groups F0(C,k) and FviC,k)

have Tits systems respectively (cf. [11], [16]). Then there is a homomorphisms v

of Fv(C,k) onto F0(C,k) such that y(exp /^?;)= exp ad fe4 and y(exp//i) = exp ad If,-,for

all tek and f=l,-,/ (cf. [11]), and v is central (cf. [18]).

4. The affine case.

Let 0, A and A be as in §1. Then we can regard L(A) as a subalgebra of

L{A) naturally. We note that i?,(A)=i?,(I)-0, and that J(A)≪#U{G} and J(I)≪

A(A)xZ (cf. [5], [9], [15]). Also we identify W(A) with a subgroup of W{A).

Therefore we have the following commutative diagram.

W(A)xUA)―>La(A)

I 1

W(A)xL≪(A)―>Lo(A)

We take an element o of W{A) such that a(a,)=an+i. Put ho=a(h1) and ht =

hn+i ―ho. Then ji(h())=Yi{ahi)= (a''lYi)(hi)= (a~lai,≪,>= <a,;,n'mn>=≪i,ran and ^(Af)=0.

Therefore iZ=M5 is the center of L(^), and we have an exact sequence of Lie

algebras over k (cf. [5], [8],[15]):

0 ― % ―> UA) -
^
-> k＼T, T-1] <g> L(A) ―> 0

k

Hence the map k induces an isomorphism fi of F0(A, k) onto Eo(0, k[T, T1"1])such

that

7c(expa.dtei)=xai(t) for alll<i<n,

7?(expad ten+i)=Xan+l(tT),

7r(expad tft)=x-ai(t) for all 1 < i <n,

?r(expad tfn+i)=x^n+1(tT-1).

Since St{R,k[T,T-l~])is a universal covering of E0{R,k[T,T-lJ) (cf.Theorem 9),

there is a unique homomorphism, denoted by <j>,of S£(0,k＼T,T-1]) into FF(^, ^)

such that the following diagram is commutative.

Fy(A, k)

V
)

/B

St(0, k＼T, T"1]) ―> EM, k[T, T-V＼)
JL Eo(0, k[T, T~%])
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Then, by the relation ha{t)xa{a)ha{t)'1= xa(t2a), we see

<p(xai{a))―expaei for all l<i<n,

<fi(xan+1(aT))=exp aen+u

(/)(x-.ai(a))―expafi for all ＼<i<n,

([>{x...an+l{aT-l))=&xpafn,u

4≫{wai(t))~Wi{i) for all l<i<n,

(j)(ha,i(t))=hi{t) for all l<i<n,

where Wi(t) = (expte.i) (exp -t^fa) (expte4) and hi(t)= Wi(t)Wi(―l) for each i = l, 2, ･･-,

n + 1, and ae^ and ife^*. In particular, <pis an epimorphism. Thus:

Theorem 11. St{R,k[T,T~x']) is a universal covering of Pv(A,k).

Finally in this note, we will discuss the kernel of <fi. Since Ker <p<^=Ker{0(p),

an element x of Ker (j) can be written as ＼＼'Uihai{U) ＼＼v{av,bp}raP＼]%i{T, Cj}a£+l,

where ti,ap,bp,Cj£k* and rp,SjGZ+. Then (p({T,Cj}ann) = hn+i(cj)ahl(cj)~1<r1. On

each weight space VP of V (cf. [5], [10]), ^(x)=＼~＼nl=athi>Ul--icfnn)Sj(:~io~1''nhl)Sj=

II"=i tfhi) Fl*=i tfA≪+i)sicj"<ft≫)si= I]?=i ^(/t'°n i= 1 cfw*. Therefore :

≪=>n"-i^(fti) n*-ic5Cfte)^= l for all weight pi.

Put P=<n"-i^i)n?=i{r,^+1in<=i≪(fci)n?=ic5(fce)^ = l for all weight fi of F>.

Theorem 12. Ker(/)=K2(@,k)@P.
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Note added in proof. Recently H. Garland [Publ. IHES 52 (1980), 181-312] has con-

structed a subgroup Ft of Aut(V) containing Fv(A, k), and has shown that St(0,k((T))) is

a universal covering of Fv, where k{{T)) is the T-adic completion of k[T, T'1]. Then the

composite map St(@, k[T, T-l])~+St(@,k((T)))->F1 coinsides with the covering map of Fy(A, k)




