COVERINGS OF GENERALIZED CHEVALLEY GROUPS ASSOCIATED WITH AFFINE LIE ALGEBRAS

By
Jun Morita

R. Steinberg [21] has given a presentation of a simply connected Chevalley group (=the group of k-rational points of a split, semisimple, simply connected algebraic group defined over a field k) and has constructed the (homological) universal covering of the group. In this note, we will consider an analogy for a certain family of groups associated with affine Lie algebras.

1. Chevalley groups, Steinberg groups and the functor $K_{2}(\Phi, \cdot)$.

Let ϕ be a reduced irreducible root system in a Euclidean space \boldsymbol{R}^{n} with an inner product (\cdot, \cdot) (cf. [4], [6]). We denote by Φ^{+}(resp. Φ^{-}) the positive (resp. negative) root system of Φ with respect to a fixed simple root system $I I=\left\{\alpha_{1}, \cdots\right.$, $\left.\alpha_{n}\right\}$. We suppose that α_{1} is a long root (for convenience' sake). Let α_{n+1} be the negative highest root of ϕ. Set $a_{i j}=2\left(\alpha_{i}, \alpha_{j}\right) /\left(\alpha_{i}, \alpha_{j}\right)$ for each $i, j=1,2, \cdots, n+1$. The matrices $A=\left(a_{i j}\right)_{1 \leq i . j \leq n}$ and $\tilde{A}=\left(a_{i j}\right)_{1 \leq i, j \leq n+1}$ are called a Cartan matrix of Φ and the affine Cartan matrix associated with A respectively (cf. [4], [5], [6]).

Let $G(\Phi, \cdot)$ be a Chevalley-Demazure group scheme of type Φ (cf. [1], [20]). For a commutative ring R, with 1 , we call $G(\Phi, R)$ a Chevalley group over R. For each $\alpha \in \Phi$, there is a group isomorphism-"exponential map"-of the additive group of R into $G(\Phi, R): t \longmapsto x_{\alpha}(t)$. The elementary subgroup $E(\Phi, R)$ of $G(\Phi, R)$ is defined to be the subgroup generated by $x_{\alpha}(t)$ for all $\alpha \in \Phi$ and $t \in R$. We use the notation $G_{1}(\Phi, \cdot)$ and $E_{1}(\Phi, \cdot)$ (resp. $G_{0}(\Phi, \cdot)$ and $\left.E_{0}(\Phi, \cdot)\right)$ if $G(\Phi, \cdot)$ is simply connected (resp. of adjoint type). It is well-known that $G_{1}(\Phi, R)=E_{1}(\Phi, R)$ if R is a Euclidean domain (cf. [22, Theorem 18/Corollary 3]).

Let $S t(\Phi, R)$ be the group generated by the symbols $\hat{x}_{\alpha}(t)$ for all $\alpha \in \Phi$ and $t \in R$ with the defining relations
(A) $\hat{x}_{\alpha}(s) \hat{x}_{\alpha}(t)=\hat{x}_{\alpha}(s+t)$,
(B) $\left[\hat{x}_{\alpha}(s), \hat{x}_{\beta}(t)\right]=\prod \hat{x}_{\alpha+j \beta}\left(N_{\alpha, \beta, i, j} s^{i t j}\right)$,
(B) $\hat{w}_{\alpha}(u) \hat{x}_{\alpha}(t) \hat{w}_{\alpha}(-u)=\hat{x}_{-\alpha}\left(-u^{-2} t\right)$
for all $\alpha, \beta \in \Phi(\alpha+\beta \neq 0), s, t \in R$ and $u \in R^{*}$, the units of R, where $\hat{w}_{\alpha}(u)=\hat{x}_{u}(u) \hat{x}_{-\alpha}(-$
$\left.u^{-1}\right) \hat{x}_{\alpha}(u)$ (cf. [20]). We call $S t(\Phi, R)$ a Steinberg group over R.
Since the relations corresponding to $(\mathrm{A}),(\mathrm{B}),(\mathrm{B})^{\prime}$ hold in $E_{1}(D, R)$, there is a homomorphism θ of $S t(\Phi, R)$ onto $E_{1}(\Phi, R)$ such that $\theta\left(\hat{x}_{\alpha}(t)\right)=x_{\alpha}(t)$ for all $\alpha \in \Phi$ and $t \in R$. Put $K_{2}(\Phi, \cdot)=\operatorname{Ker}\left[S t(\Phi, \cdot) \xrightarrow{\theta} E_{1}(\Phi, \cdot)\right]$, i. e., $1 \longrightarrow K_{2}(\Phi, \cdot) \longrightarrow S t(\Phi, \cdot) \xrightarrow{\theta}$ $E_{1}(\Phi, \cdot) \longrightarrow 1$ is exact. For each $\alpha \in \Phi$ and $u, v \in R^{*}$, we set $\{u, v\}_{\alpha}=\hat{h}_{\alpha}(u v) \hat{h}_{\alpha}(u)^{-1}$ $\hat{h}_{\alpha}(v)^{-1}$, called a Steinberg symbol, where $\hat{h}_{\alpha}(u)=\hat{w}_{\alpha}(u) \hat{w}_{\alpha}(-1)$. Let $\hat{K}=\left\langle\{u, v\}_{\alpha}\right| \alpha \in \Phi$, $\left.u, v \in R^{*}\right\rangle$. Then $\hat{K} \subseteq K_{2}(\Phi, R) \cap \operatorname{Cent}(S t(\Phi, R))$.

Definition. R is called universal for $\bar{\Phi}$ if $K_{2}(\Phi, R)=\hat{K}$.
Let $E_{u}(\Phi, R)=S t(\Phi, R) / \hat{K}$. Then the homomorphism θ induces a homomorphism $\bar{\theta}$ of $E_{u}(\Phi, R)$ onto $E_{1}(\Phi, R)$. We see:

$$
\begin{aligned}
& " R \text { is universal for } \phi " \\
& \Leftrightarrow " \bar{\theta} \text { is an isomorphism" } \\
& \Rightarrow " \theta \text { is a central extension." }
\end{aligned}
$$

Example 1 (cf. [20], [21], [22]). Let k be a field.
(1) $\operatorname{St}(\Phi, k)$ is connected if $(\Phi,|k|) \neq\left(\mathrm{A}_{1}, 2\right),\left(\mathrm{B}_{2}, 2\right),\left(\mathrm{G}_{2}, 2\right)$ and $\left(\mathrm{A}_{1}, 3\right)$.
(2) k is universal for each Φ.
(3) $S t(\Phi, k)$ is a universal covering of $E_{1}(\Phi, k)$ with a few exceptions.

2. The case of Laurent polynomial rings.

Let $k[T]$ be the ring of polynomials in T with coefficients in a field k, and M the maximal ideal of $k[T]$ generated by T. Let $k\left[T, T^{-1}\right]$ be the ring of Laurent polynomials in T and T^{-1} with coefficients in k. We identify $k[T]$ with a subring of $k\left[T, T^{-1}\right]$ naturally. Set

$$
\begin{aligned}
& U=\left\langle x_{\alpha}(f), x_{\beta}(g) \mid \alpha \in \Phi^{+}, \beta \in \Phi^{-}, f \in k[T], g \in \mathfrak{M}\right\rangle, \\
& N=\left\langle w_{\alpha}\left(t T^{m}\right) \mid \alpha \in \Phi, t \in k^{*}, m \in \boldsymbol{Z}\right\rangle, \\
& H=\left\langle h_{\alpha}(t) \mid \alpha \in \Phi, t \in k^{*}\right\rangle, \text { and } \\
& B=\langle U, H\rangle
\end{aligned}
$$

as subgroups of $E\left(\Phi, k\left[T, T^{-1}\right]\right)$, where $w_{\alpha}(u)=x_{\alpha}(u) x_{-a}\left(-u^{-1}\right) x_{\alpha}(u)$ and $h_{\alpha}(u)=w_{a}(u)$ $w_{\alpha}(-1)$.

Theorem 2 ([17]).
(1) $B \cap N=H$.
(2) $\left(E\left(\Phi, k\left[T, T^{-1}\right]\right), B, N\right)$ is a Tits system.

Corollary 3.
(1) The canonical homomorphism $\psi: E_{1}\left(\Phi, k\left[T, T^{-1}\right]\right) \longrightarrow E_{0}\left(\Phi, k\left[T, T^{-1}\right]\right)$ is a central extension.
(2) $\operatorname{Ker} \psi=\left\{\prod_{i=1}^{n} h_{a_{i}}\left(t_{i}\right) \mid \prod_{i=1}^{n} t_{i}^{\left.\beta, \alpha_{i}\right\rangle}=1\right.$ for all $\left.\beta \in \Phi\right\}$, where $\left\langle\beta, \alpha_{i}\right\rangle=2\left(\beta, \alpha_{i}\right) /\left(\alpha_{i}, \alpha_{i}\right)$, and $t_{i} \in k^{*}$.

We define the subgroups $\hat{U}, \hat{N}, \hat{H}, \hat{B}$ of $\operatorname{St}\left(\Phi, k\left[T, T^{-1}\right]\right)$:

$$
\begin{aligned}
\hat{U} & \left.=\left\langle\hat{x}_{\alpha}(f), \hat{x}_{\beta}(g) \mid \alpha \in \Phi^{+}, \beta \in \Phi^{-}, f \in k[T], g \in \mathfrak{M}\right\rangle\right\rangle, \\
\hat{N} & =\left\langle\hat{w}_{\alpha}\left(t T^{m}\right) \mid \alpha \in \Phi, t \in k^{*}, m \in \boldsymbol{Z}\right\rangle, \\
\hat{H} & =\left\langle\hat{h}_{\alpha}(t) \mid \alpha \in \Phi, t \in k^{*}\right\rangle \hat{K}, \\
\hat{B} & =\langle\hat{U}, \hat{H}\rangle
\end{aligned}
$$

We denote by U_{u}, N_{u}, H_{u} and B_{u} the canonical images of $\hat{U}, \hat{N}, \hat{H}$ and \hat{B} in $E_{u}\left(\Phi, k\left[T, T^{-1}\right]\right)$ respectively. Then $\left(E_{u}\left(\Phi, k\left[T, T^{-1}\right]\right), B_{u}, N_{u}\right)$ and ($S t\left(\Phi, k\left[T, T^{-1}\right]\right)$, $\hat{B}, \hat{N})$ are Tits systems, which is established by using the same technique as in [17].

Theorem 4.
(1) $G_{1}(\Phi, k[T])$ is presented by the generators $\tilde{x}_{r}(f)$ and $\tilde{w}_{\alpha}(t)$ for all $\alpha \in I I, \gamma \in \Phi$, $f \in k[T]$ and $t \in k^{*}$, and the defining relations (R1)-(R9):
(R1) $\tilde{x}_{r}(f) \tilde{x}_{r}(g)=\tilde{x}_{r}(f+g)$,
(R2) $\quad \tilde{w}_{\alpha}(t)^{-1}=\tilde{w}_{\alpha}(-t)$,
(R3) $\tilde{w}_{\alpha}(t) \tilde{x}_{\alpha}(u) \tilde{w}_{\alpha}(-t)=\tilde{x}_{\alpha}\left(-t^{2} u^{-1}\right) \tilde{w}_{\alpha}\left(t^{2} u^{-1}\right) \tilde{x}_{\alpha}\left(-t^{2} u^{-1}\right)$,
(R4) $\left[\tilde{x}_{r}(f), \tilde{x}_{\sigma}(g)\right]=\Pi \tilde{x}_{i_{r}+j o}\left(N_{r, \dot{i}, i, j} f^{i} j^{j}\right)$,
(R5) $\tilde{h}_{\alpha}(t) \tilde{h}_{\alpha}(u)=\tilde{h}_{\alpha}(t u)$,
(R6) $\underbrace{\tilde{w}_{\alpha}(t) \tilde{w}_{\beta}(u) \tilde{w}_{\alpha}(t) \cdots}_{q}=\underbrace{\tilde{w}_{\beta}(u) \tilde{w}_{\alpha}(t) \tilde{w}_{\beta}(u) \cdots,}_{q}$
(R7) $\quad \tilde{w}_{\alpha}(t) \tilde{x}_{\rho}(f) \tilde{w}_{\alpha}(-t)=\tilde{x}_{\rho^{\prime}}\left(c t^{-\langle\rho, a\rangle} f\right)$,
(R8) $\tilde{h}_{\alpha}(t) \tilde{x}_{\alpha}(f) \tilde{h}_{\alpha}\left(t^{-1}\right)=\tilde{x}_{\alpha}\left(t^{2} f\right)$,
(R9) $\quad \tilde{w}_{\alpha}(t) \tilde{h}_{\beta}(u) \tilde{w}_{\alpha}(-t)=\tilde{h}_{\beta}(u) \tilde{h}_{\alpha}\left(u^{-\langle\alpha, \beta)}\right)$
for all $\alpha, \beta \in I I(\alpha \neq \beta), \gamma, \delta \in \Phi^{+}, \rho \in \Phi^{+}-\{\alpha\}, f, g \in k[T]$ and $t, u \in k^{*}$, where $\tilde{h}_{\alpha}(t)=\tilde{w}_{\alpha}(t)$ $\tilde{w}_{\alpha}(-1)$, and $N_{r, i, i, j}$ and c are as in [20] or [22], and each side of the equation in (R6) is the product of q symbols, and $q=2,3,4$ or 6 if $(\boldsymbol{R} \alpha+\boldsymbol{R} \beta) \cap \Phi$ is of type $\mathrm{A}_{1} \times \mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{2}$ or G_{2} respectively, and $\langle\gamma, \alpha\rangle=2(\gamma, \alpha) /(\alpha, \alpha)$ and $\rho^{\prime}=\rho-\langle\rho, \alpha\rangle \alpha$.
(2) $k[T]$ is universal for each root system Φ.

Proof. (1) One can get this presentation of $G_{i}(\Phi, k[T])$ by using the same argument as in [23], [24] and [25]. (2) It follows from (1) that $k[T]$ is universal. (By using an amalgamated free product decomposition of $G_{1}(\Phi, k[T]$) which is
described in [26], Rehmann [19] has given a different proof of the statement (2) from ours.) q.e.d.

Theorem 5. $k\left[T, T^{-1}\right]$ is universal for each root system Φ.

Proof. In the following commutative diagram:

$$
\begin{aligned}
B_{u} N_{u} B_{u}=E_{u}\left(\Phi, k\left[T, T^{-1}\right]\right) \stackrel{\bar{\theta}}{\longrightarrow} E_{1}\left(\Phi, k\left[T, T^{-1}\right]\right)=B_{1} N_{1} B_{1} \\
E_{u}(\Phi, k[T]) \xrightarrow{\longrightarrow} E_{1}(\Phi, k[T]) \supseteq B_{1}
\end{aligned}
$$

we have $\operatorname{Ker} \bar{\theta} \subseteq B_{u}$. On the other hand, $B_{u} \simeq B_{1}$ by the universality of $k[T]$. Therefore $\bar{\theta}$ is an isomorphism. q.e.d.

By taking $T=1$, the sequence $0 \rightarrow k \rightarrow k\left[T, T^{-1}\right]$ splits, so $K_{2}(\Phi, k)$ is a direct summand of $K_{2}\left(\Phi, k\left[T, T^{-1}\right]\right)$. Then:

Theorem 6 ([2]).
(1) $K_{2}\left(\mathrm{~A}_{1}, k\left[T, T^{-1}\right]\right)=K_{2}\left(\mathrm{~A}_{1}, k\right)(\oplus) S$, where $S=\left\langle\{T, t\}_{\alpha} \mid t \in k^{*}\right\rangle$ and α is a fixed root.
(2) $S \simeq k^{*}$ if $k^{2}=k$ (i. e. k is a square root closed field).

Corollary 7 (cf. [2], [12], [13]).
(1) $K_{2}\left(\Phi, k\left[T, T^{-1}\right]\right)=K_{2}(\Phi, k) \oplus S$, where $S=\left\langle\{T, t\}_{\alpha} \mid t \in k^{*}\right\rangle$ and α is a fixed long root.
(2) S is isomorphic to a factor group of k^{*} if $\Phi \neq \mathrm{C}_{n}(n \geq 1)$.
(3) S is isomorphic to a factor group of k^{*} if $k^{2}=k$.

Proof. (1) and (3) follow from Theorem 6. If $\Phi \neq \mathrm{C}_{n}(n \geq 1)$, then A_{2} can be embedded in the long roots of Φ. By Matsumoto's theorem, one sees (2). q.e.d.

Remark 8. The statements of Theorem 5, Theorem 6 and Corollary 7 have been confirmed by Hurrelbrink [7] in the case when $\Phi \neq G_{2}$. He has directly calculated the relations of $G_{1}\left(\Phi, k\left[T, T^{-1}\right]\right)$ of type $\mathscr{D}=\mathrm{A}_{1}, \mathrm{~A}_{2}$, and B_{2}, and by using this has proved Theorem 5 for $\Phi \neq \mathrm{G}_{2}$. Our proof of Theorem 5 is different from his, and contains the case of type G_{2}.

As an application of $[20,(5.3)$ Theorem/Remarks $]$ and Theorem 5, we can establish the following theorem.

Theorem 9. If char $k=0$, then $\operatorname{St}\left(\Phi, k\left[T, T^{-1}\right]\right)$ is a universal covering of $E_{0}\left(\Phi, k\left[T, T^{-1}\right]\right)$.

3. Kac-Moody Lie algebras and generalized Chevalley groups.

An $l \times l$ integral matrix $C=\left(c_{i j}\right)$ is called a generalized Cartan matrix if (i) $c_{i i}=2$, (ii) $i \neq j \Rightarrow c_{i j} \leq 0$, and (iii) $c_{i j}=0 \Leftrightarrow c_{j i}=0$. From now on, we suppose char k $=0$. We denote by $L_{1}=L_{1}(C)$ the Lie algebra over k generated by the $3 l$ generators $e_{1}, \cdots, e_{l}, h_{1}, \cdots, h_{l}, f_{1}, \cdots, f_{l}$ with the defining relations $\left[h_{i}, h_{j}\right]=0,\left[e_{i}, f_{j}\right]=\partial_{i j} h_{i}$, $\left[h_{i}, e_{j}\right]=c_{j i} e_{j},\left[h_{i}, f_{j}\right]=-c_{j i} f_{j}$ for all $1 \leq i, j \leq l$, and $\left(\operatorname{ad} e_{i}\right)^{-c_{j i}+1} e_{j}=0,\left(\operatorname{ad} f_{i}\right)^{-c_{j i+1}} f_{j}=0$ for all $1 \leq i \neq j \leq l$. Then the generators $e_{1}, \cdots, e_{l}, h_{1}, \cdots, h_{1}, f_{1}, \cdots, f_{l}$ are linearly independent in L_{1}. We view L_{1} as a Z^{l}-graded Lie algebra defined by $\operatorname{deg}\left(e_{i}\right)=(0, \cdots$, $0,1,0, \cdots, 0), \operatorname{deg}\left(h_{1}\right)=(0, \cdots, 0)$ and $\operatorname{deg}\left(f_{i}\right)=(0, \cdots, 0, \cdots 1,0, \cdots, 0)$, where ± 1 are in the i-th position. Then there is the maximal homogeneous ideal $R_{1}=R_{1}(C)$ of L_{1} such that $R_{1} \cap\left(\sum_{i=1}^{l} k h_{1}+\cdots+k h_{1}\right)=0$. Set $L=L(C)=L_{1} / R_{1}$, called the Kac-Moody Lie algebra over k associated with a generalized Cartan matrix C (cf. [3], [5], [8], [10], [14]). The algebra L is also \boldsymbol{Z}^{l}-graded. For each l-tuple $\left(n_{1}, \cdots, n_{l}\right) \in \boldsymbol{Z}^{l}$, we let $L\left(n_{1}, \cdots, n_{l}\right)$ denote the homogeneous subspace of degree $\left(n_{1}, \cdots, n_{l}\right)$ in L. We identify e_{i}, h_{i}, f_{i} with their images in L. Then:

Proposition 10.

(1) $L\left(n_{1}, \cdots, n_{l}\right)$ is the subspace of L spanned by the elements $\left[e_{i_{1}},\left[e_{i_{2}}, \cdots,\left[e_{i_{-1}}\right.\right.\right.$, $\left.\left.\left.e_{i_{r}}\right] \cdots\right]\right]$ (resp. [$\left.f_{i_{1}},\left[f_{i_{2}}, \cdots,\left[f_{i_{r-1}}, f_{i_{r}}\right] \cdots\right]\right]$), where e_{j} (resp. f_{j}) occurs $\left|n_{j}\right|$ times, if (n_{1}, \cdots, n_{l}) belongs to $\left(\boldsymbol{Z}_{+}\right)^{l}-\{0\}$ (resp. $\left(\boldsymbol{Z}_{-}\right)^{l}-\{0\}$).
(2) $L(0, \cdots, 0)=k h_{1}+\cdots+k h_{l}$.
(3) $L\left(n_{1}, \cdots, n_{l}\right)=0$ otherwise.

Put $L_{0}=L_{0}(C)=k h_{1}+\cdots+k h_{l}$. For each $i=1, \cdots, l$, we define a degree derivation D_{i} on L such that $D_{i}(x)=n_{i} x$ for all $x \in L\left(n_{1}, \cdots, n_{l}\right)$. Set $D_{0}=k D_{1}+\cdots+k D_{l}$, viewed as an abelian Lie algebra of dimension l. For a subspace $D \subseteq D_{0}$, let $L^{e}=L(C)^{e}=D \times L$ (semidirect product) and $\left(L_{0}\right)^{e}=D \times L_{0}$ (direct product). For each $j=1, \cdots, l$, let γ_{j} be an element of $\left(\left(L_{0}\right)^{e}\right)^{*}$, the dual of $\left(L_{0}\right)^{e}$, such that $\left[h, e_{j}\right]=\gamma_{j}(h) e_{j}$ for all $h \in\left(L_{0}\right)^{e}$. We note that $\gamma_{j}\left(h_{i}\right)=c_{j i}$ for all $i, j=1, \cdots, l$. We will choose and fix a subspace D of D_{0} such that $\gamma_{1}, \cdots \gamma_{l}$ are linearly independent in $\left(\left(L_{0}\right)^{\ell}\right)^{*}$. This is possible, since $\gamma_{i}\left(D_{j}\right)=\delta_{i j}$. Set $L^{r}=\left\{x \in L \mid[h, x]=\gamma(h) x\right.$ for all $\left.h \in\left(L_{0}\right)^{e}\right\}$ for each $\gamma \in\left(\left(L_{0}\right)^{e}\right)^{*}$. It is easily seen that $L^{n_{11_{1}}+\cdots+n_{l} \eta_{l}}=L\left(n_{1}, \cdots, n_{l}\right)$ for all $\left(n_{1}, \cdots, n_{l}\right) \in \boldsymbol{Z}^{l}$. In particular, $L^{t_{i}}=k e_{i}, L^{0}=L_{0}$ and $L^{-r_{i}}=k f_{i}$.

Let $\Delta=\Delta(C)=\left\{\gamma \in\left(\left(L_{0}\right)^{e}\right)^{*} \mid L^{\gamma} \neq 0\right\}$, called the root system of L. Set $\Gamma=\sum_{i=1}^{l} \boldsymbol{Z}_{\gamma i}$, a free \boldsymbol{Z}-submodule of $\left(\left(L_{0}\right)^{e}\right)^{*}$. The Weyl group $W=W(C)$ is defined to be the subgroup of $G L\left(\left(\left(L_{0}\right)^{\epsilon}\right)^{*}\right)$ generated by w_{i} for all $i=1, \cdots, l$, where w_{i} is an endomorphism of $\left(\left(L_{0}\right)^{\ell}\right)^{*}$ such that $w_{i}(\gamma)=\gamma-\gamma\left(h_{i}\right) \gamma_{i}$. Then Δ and Γ are W-stable. Also W acts on L_{0} naturally: $w_{i}\left(h_{j}\right)=h_{j}-c_{i j} h_{i}$. Hence we see $\left(w_{\gamma}\right)(w h)=\gamma(h)$ for
all $w \in W, \gamma \in\left(\left(L_{0}\right)^{e}\right)^{*}$ and $h \in L_{0}$.
Let $F_{0}(C, k)$ be the subgroup of $A u t(L)$ generated by exp ad $t e_{i}$ and exp ad $t f_{i}$ for all $t \in k$ and $i=1, \cdots, l$. Let V be a standard L^{e}-module with a highest weight $\lambda, \neq 0$ (cf. [5], [10]). We let $F_{V}(C, k)$ denote the subgroup of $G L(V)$ generated by $\exp t e_{i}$ and $\exp t f_{i}$ for all $t \in k$ and $i=1, \cdots, l$. These groups $F_{0}(C, k)$ and $F_{V}(C, k)$ have Tits systems respectively (cf. [11], [16]). Then there is a homomorphisms ν of $F_{V}(C, k)$ onto $F_{0}(C, k)$ such that $\nu\left(\exp t e_{i}\right)=\exp$ ad $t e_{i}$ and $\nu\left(\exp t f_{i}\right)=\exp$ ad $t f_{i}$ for all $t \in k$ and $i=1, \cdots, l$ (cf. [11]), and ν is central (cf. [18]).

4. The affine case.

Let Φ, A and \tilde{A} be as in $\S 1$. Then we can regard $L(A)$ as a subalgebra of $L(\tilde{A})$ naturally. We note that $R_{1}(A)=R_{1}(\tilde{A})=0$, and that $\Delta(A) \approx \Phi \cup\{0\}$ and $\Delta(\tilde{A}) \approx$ $\Delta(A) \times \boldsymbol{Z}$ (cf. [5], [9], [15]). Also we identify $W(A)$ with a subgroup of $W(\tilde{A})$. Therefore we have the following commutative diagram.

We take an element σ of $W(A)$ such that $\sigma\left(\alpha_{1}\right)=\alpha_{n+1}$. Put $h_{0}=\sigma\left(h_{1}\right)$ and $h_{\xi}=$ $h_{n+1}-h_{0}$. Then $\gamma_{i}\left(h_{0}\right)=\gamma_{i}\left(\sigma h_{1}\right)=\left(\sigma^{-1} \gamma_{i}\right)\left(h_{1}\right)=\left\langle\sigma^{-1} \alpha_{i}, \alpha_{1}\right\rangle=\left\langle\alpha_{i}, \alpha_{n+1}\right\rangle=a_{i, n+1}$ and $\gamma_{i}\left(h_{\xi}\right)=0$. Therefore $\mathscr{L}=k h_{\xi}$ is the center of $L(\tilde{A})$, and we have an exact sequence of Lie algebras over k (cf. [5], [8], [15]):

$$
0 \longrightarrow \mathscr{Z} \longrightarrow L(\tilde{A}) \xrightarrow{\pi} k\left[T, T^{-1}\right] \underset{k}{\otimes} L(A) \longrightarrow 0
$$

Hence the map π induces an isomorphism $\tilde{\pi}$ of $F_{0}(\tilde{A}, k)$ onto $E_{0}\left(\Phi, k\left[T, T^{-1}\right]\right)$ such that

$$
\begin{aligned}
& \tilde{\pi}\left(\exp \text { ad } t e_{i}\right)=x_{\alpha_{i}}(t) \quad \text { for all } 1 \leq i \leq n, \\
& \tilde{\pi}\left(\exp \operatorname{ad} t e_{n+1}\right)=x_{\alpha_{n+1}}(t T), \\
& \tilde{\pi}\left(\exp \text { ad } t f_{i}\right)=x_{-\alpha_{i}}(t) \quad \text { for all } 1 \leq i \leq n, \\
& \tilde{\pi}\left(\exp \operatorname{ad} t f_{n+1}\right)=x_{-\alpha_{n+1}}\left(t T^{-1}\right) .
\end{aligned}
$$

Since $S t\left(\Phi, k\left[T, T^{-1}\right]\right)$ is a universal covering of $E_{0}\left(\Phi, k\left[T, T^{-1}\right]\right)$ (cf. Theorem 9), there is a unique homomorphism, denoted by ϕ, of $S t\left(\Phi, k\left[T, T^{-1}\right]\right)$ into $F_{V}(\tilde{A}, k)$ such that the following diagram is commutative.

Then, by the relation $\hat{h}_{\alpha}(t) \hat{x}_{\alpha}(a) \hat{h}_{\alpha}(t)^{-1}=\hat{x}_{\alpha}\left(t^{2} a\right)$, we see

$$
\begin{aligned}
& \phi\left(\hat{x}_{\alpha_{i}}(a)\right)=\exp a e_{i} \quad \text { for all } 1 \leq i \leq n, \\
& \phi\left(\hat{x}_{a_{n+1}}(a T)\right)=\exp a e_{n+1}, \\
& \phi\left(x_{-a_{i}}(a)\right)=\exp a f_{i} \quad \text { for all } 1 \leq i \leq n, \\
& \phi\left(x-a_{n+1}\left(a T^{-1}\right)\right)=\exp a f_{n+1}, \\
& \phi\left(\hat{w}_{a_{i}}(t)\right)=w_{i}(t) \quad \text { for all } 1 \leq i \leq n, \\
& \phi\left(\hat{w}_{\alpha_{n+1}}(t T)\right)=w_{n+1}(t), \\
& \phi\left(\hat{h}_{\alpha_{i}}(t)\right)=h_{i}(t) \quad \text { for all } 1 \leq i \leq n, \\
& \phi\left(\left\{T, t_{s_{c_{+1}}} \hat{h}_{a_{n+1}}(t)\right)=h_{n+1}(t),\right.
\end{aligned}
$$

where $w_{i}(t)=\left(\exp t e_{i}\right)\left(\exp -t^{-1} f_{i}\right)\left(\exp t e_{i}\right)$ and $h_{i}(t)=w_{i}(t) w_{i}(-1)$ for each $i=1,2, \cdots$, $n+1$, and $a \in k$ and $t \in k^{*}$. In particular, ϕ is an epimorphism. Thus:

Theorem 11. $\operatorname{St}\left(\Phi, k\left[T, T^{-1}\right]\right)$ is a universal covering of $F_{V}(\tilde{A}, k)$.
Finally in this note, we will discuss the kernel of ϕ. Since $\operatorname{Ker} \dot{\varphi} \subseteq \operatorname{Ker}(\theta \phi)$, an element x of $\operatorname{Ker} \phi$ can be written as $\prod_{i=1}^{n} \hat{h}_{\alpha_{i}}\left(t_{i}\right) \prod_{p}\left\{a_{p}, b_{p}\right\}_{a_{1}} \prod_{j} \prod_{j=1}^{q}\left\{T, c_{j}\right\}_{\alpha_{n+1}}^{s}$, where $t_{i}, a_{p}, b_{p}, c_{j} \in k^{*}$ and $r_{p}, s_{j} \in \mathbb{Z}_{+}$. Then $\phi\left(\left\{T, c_{j}\right\}_{\alpha_{n+1}}\right)=h_{r+1}\left(c_{j}\right) \sigma h_{1}\left(c_{j}\right)^{-1} \sigma^{-1}$. On each weight space V_{n} of V (cf. [5], [10]), $\phi(x)=\prod_{i=1}^{n} t_{i}^{u\left(h_{i}\right)} \prod_{j=1}^{q} c_{j}^{n\left(t h_{n+1}\right) s_{j}} c^{-\left(a-1,()\left(h_{1}\right) s_{j}\right.}=$ $\prod_{i=1}^{n} t_{i}^{\mu\left(h_{i}\right)} \prod_{j=1}^{q} c_{j}^{\mu\left(h_{n+1}\right) s_{j}} C_{j}^{-\mu\left(h_{0}\right) s_{j}}=\prod_{i=1}^{n} t_{i}^{\mu\left(h_{i}\right)} \prod_{j=1}^{q} c_{j}^{\mu\left(h_{\xi}\right) s_{j}}$. Therefore:

$$
\phi(x)=1
$$

$$
\Leftrightarrow \prod_{i=1}^{n} t_{i}^{\left(h_{i}\right)} \prod_{j=1}^{q} c_{j}^{\left(h h_{\xi} s_{j}\right.}=1 \quad \text { for all weight } \mu
$$

Put $P=\left\langle\prod_{i=1}^{n} \hat{h}_{\alpha_{i}}\left(t_{i}\right) \prod_{j=1}^{q}\left\{T, c_{j}\right)_{\alpha_{n+1}}^{s j}\right| \prod_{i=1}^{n} t_{i}^{t\left(h_{i}\right)} \prod_{j=1}^{q} c_{j}^{\mu\left(h_{k}\right)_{s}=1}$ for all weight μ of $\left.V\right\rangle$.
Theorem 12. $\operatorname{Ker} \phi=K_{2}(\Phi, k) \oplus P$.

Acknowledgment. The author wishes to thank Professor Eiichi Abe for his valuable advice.

References

[1] Abe, E., Chevalley groups over local rings, Töhoku Math. J., 21 (1969), 474-494.
[2] Alperin, R. and Wright, D., $K_{2}\left(2, k\left[T, T^{-1}\right]\right)$ is generated by "symbols," J. Algebra, 59 (1979), 39-46.
[3] Berman, S., On the construction of simple Lie algebras, J. Algebra, 29 (1973), 158-183.
[4] Bourbaki, N., "Groupes et algèbres de Lie," Chap. 4-6, Hermann, Paris, 1968.
[5] Garland, H., The arithmetic theory of loop algebras, J. Algebra, 53 (1978), 480-551.
[6] Humphreys, J. E., "Introduction to Lie algebras and representation theory," Springer, Berlin, 1972.
[7] Hurrelbrink, J., Endlich präsentierte arithmetiche Gruppen und K_{2} über LaurentPolynomringen, Math. Ann., 225 (1977), 123-129.
[8] Kac, V.G., Simple irreducible graded Lie algebras of finite growth, Math. U.S.S.R.. Izv., 2 (1968), 211-230.
[9] _-- Infinite-dimensional Lie algebras and Dedekind's η-function, Functional Anal. Appl., 8 (1974), 68-70.
[10] Lepowsky, J., "Lectures on Kac-Moody Lie algebras," Paris University, 1978.
[11] Marcuson, R., Tits' systems in generalized nonadjoint Chevalley groups, J. Algebra, 34 (1975), 84-96.
[12] Matsumoto, H., Sur les sous-groupes arithmétiques des groupes semi-simple déployés, Ann. Scient. Ec. Norm. Sup., (4) 2 (1969), 1-62.
[13] Milnor, J., "Introduction to algebraic K-theory," Ann. of Math. Studies, Princeton University Press, Princeton, 1971.
[14] Moody, R. V., A new class of Lie algebras, J. Algebra, 10 (1968), 211-230.
[15] - Euclidean Lie algebras, Canad. J. Math., 21 (1969), 1432-1454.
[16] - .-... and Teo, K. L., Tits' systems with crystallographic Weyl groups, J. Algebra, 21 (1972), 178-190.
[17] Morita, J., Tits' systems in Chevalley groups over Laurent polynomial rings, Tsukuba J. Math., (2) 3 (1979), 41-51.
[18] -, Moody-Teo's groups and Marcuson's groups, preprint.
[19] Rehmann, U., Präsentationen von Chevalley-Gruppen über $k[T]$, preprint (Bielefeld, 1975).
[20] Stein, M. R., Generators, relations and coverings of Chevalley groups over commutative rings, Amer, J. Math., 93 (1971), 969-1004.
[21] Steinberg, R., Générateurs, relations et revêtements de groupes algébriques, "Colloque sur la théorie de groups algébriques," Bruxelles, 1962.
[22] - - "Lectures on Chevalley groups," Yale University Lecture notes, 1967/68.
[23] Behr, H., Eine endliche Präsentation der symplektischen Gruppe $S p_{4}(\boldsymbol{Z})$, Math, Z., 141 (1975), 47-56.
[24] - Explizite Präsentation von Chevalleygruppen uiber Z, Math., 141 (1975), 235241.
[25] Hurrelbrink, J. and Rehmann, U., Eine endliche Präsentation der Gruppe $G_{2}(Z)$, Math. Z., 141 (1975), 234-251.
[26] Soulé, C., Chevalley groups over polynomial rings, London Math. Soc. Lecture Notes Series, 36 (1979), 359-368.

Institute of Mathematics
University of Tsukuba
Sakura-mura, Niihari-gun
Ibaraki, 305 Japan

Note added in proof. Recently H. Garland [Publ. IHES 52 (1980), 181-312] has constructed a subgroup F_{1} of $\operatorname{Aut}(V)$ containing $F_{V}(\tilde{A}, k)$, and has shown that $S t(\Phi, k((T)))$ is a universal covering of F_{1}, where $k((T))$ is the T-adic completion of $k\left[T, T^{-1}\right]$. Then the composite map $S t\left(\Phi, k\left[T, T^{-1}\right]\right) \rightarrow S t(\Phi, k((T))) \rightarrow F_{1}$ coinsides with the covering map of $F v(\tilde{A}, k)$

