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COMPACTNESS CRITERIA FOR RIEMANNIAN MANIFOLDS

WITH COMPACT UNSTABLE MINIMAL HYPERSURFACES

By

Kazuo Akutagawa

1. Introduction

In thispaper, we shallprove the following Theorem.

Theorem A. Let N be a complete Riemannian manifold with a compact

embedded unstable minimal hypersurface M. Suppose that there exists a positive

constant s0 such that along each unit speed geodesic y: [0, oo)-*N emanating from

each point in the tubular neighborhood USQ(M):={G<= N; distN(S, M)<s0} the

Ricci curvature satisfies

liminf[rRicN(dr/dt, dr/dt)dt^O.
r-*ooJo

Then N is compact.

The Myers' theorem [11] is one of the most well-known results relating

the curvature and the topology of a complete Riemannian manifold N, which

states that if the Ricci curvature has a positivelower bound then N is compact.

In [1], Ambrose proved a generalization of Myers' theorem, that is, if there is

a point 5e]V such that along each unit speed geodesic y. [0, oo)―>iVemanating

from Q the Ricci curvature satisfies

[^RicNidr/dt, dr/dt)dt= +
<*>

Jo

then N is compact. It should be pointed out that in this result the Ricci

curvature is not required to be everywhere nonnegative. Further developments

can be found in Galloway [9] and different sorts of extensions of Myers'

theorem can be found in Avez [3], Calabi [5] and Shiohama [12].

Theorem A is an Ambrose-type theorem for Riemannian manifolds with

compact embedded unstable hypersurfaces (see also Remark in section 3). It

should be also pointed out that in Theorem A the existence of the global unit

normal vector fieldon M is not required.
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§2. Definitions and formulas

Let N=(N, g) be a complete Riemannian manifold of dimension n^>2 with

a compact embedded hypersurface M. We choose a local orthonormal frame

field {gi,･･･,en) in N such that, restricted to M, the vectors {eu ･･･,en-1} are

tangent to M. Let denote the Levi-Civita connection of N by 7, the component

normal to M by ( ･ )x and the restriction of ere to M by v. The second funda-

mental form Am of M is defined by

AM(X, Y)v={lxYY,

where X and Y are local vector fields on M. M is called minimal if HM=

Trace AM is identically zero.

We shall derive the equation HM=0 by another elegant way. For a smooth

function /£C"(^(v)) with compact support in <D(v)and a small positive constant

5, let {M(s/; v)}Ee(-3;g)denote the one-parameter family of hypersurfaces

{S(s/; v)W{M― ^(v)}}Se(_5,5),where ^>(v) is the domain of v and S(e/; y)=

{expj£/(x)v£iV; xG^y)}. We then get a local deformation {M(e/; v)}£e<-3,≪

of M. Let
<J(

･ )denote the (n―l)-dimensional area functional of hypersurfaces.

Then JL(M(sf: v)) is class of C°°with respect to e and

-jUj(M(e/; *≫|,_a=-Lf'Hudv.

where dvg is the induced volume element of M. If M is a criticalpoint of J.

then Hx=0.

Suppose that M is minimal. Then

(1)
-£jJl(M(ef; v)) =f [|7VI2-(RiCiv(v, vj+l^jrl1)/1]^,,
Cic £=0 JM

where 7Jf/=S?-i10i(/>0i and lAu^HT-KAjiieu e^f. M is called unstable

if there exist a local unit normal vector fieldv on M and a smooth function

feC°S(0(v))such that

^^(M(s/;v))|

£=
<0.

0

For later references, we also give the second variational formula of arc

length functional of rays with respect to special variations. Let j: [0, oo)-≫Af

be a ray satisfying r(0)eM and d＼stN(M,r(O)=distiV(r(O),r(0) (=0 for all t^Q.

Let £( ･ ) denote the arc length functional. We note that for each r>0 Ylio.ri
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is a critical point of X. Choose a local orthonormal frame field {eu ･■･, en)

in N around y(0) such that, restricted to M, the vectors {eu ･■･, en-i) are

tangent to M and the vector v=en＼M satisfies v(7(0))=(dT/dt)(0). Let Tt.r'-

[0, rlxC―d, d)^N be a variation of rlro.ri satisfying Ti,r({0}X(―d, 8))<Z

M, 7t.r({r}X(-<5, 5))=T(r) and -Wi, r(t,s) =cos
OS £=0

~27

is the parallel translate vector of et(j(0)) along y

Chapter 111)

(2)

-rr
"S

^(n.r([O,r]X{£}))
as i=i s=o

=(n-l)7r2/8r-(rRic^(dr/^, ^r/^
Jo

Qiit),where each eS)

We then obtain (cf. [4,

/
TZt

＼C0S~2F

where HM is the mean curvature of M with respect to v

)2dt-HM(rm>

§3. Proof of Theorem A

Theorem A is an immediate consequence of the following.

Theorem B. Let N=(N, g) be a complete Riemannianman if old with a compact

embedded unstable minimal hypersurface M. Suppose that there exist positive

constants s0 and 6 such that along each unit speed geodesic J : [0, oo)―>JV satisfying

r(0)eM and ＼g((dr/dt)(O), V)＼^l―d, the Ricci curvature satisfies

(3) lim inf

r-≫oo

for allO^s<so, where V

compact.

r
RicN(dr/dt, dr/dt)dt^O

is a unit vector normal to M at 7(0). Then N is

To prove Theorem B, we will suppose that N is noncompact and, finally,

lead a contradiction.

Since N is noncompact, there exists a ray y: [0, oo)->jV satisfying [(0)gM

and

(4) dist*(M, r(O)-distJV(r(0),r(t))=t

for all t^O.

From the unstability of M, we will first construct C°-hypersurfaces

{M(eu; y)}£e(o,<r)near M, which are smooth and have positive mean curvature

around rr＼M(eu: v).

Lemma 1. There exist a continuous nonnegative function u^C(M), a local

unit normal vector field v on M and a positive constant a such that
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(i) r(0)G^(v)-={xeM; m(jc)>0},

(ii) u is smooth in 3){v),

(iii) M($u;v)ClUSo(M),

(iv) Hmsu;-p>>0 in {expJD^N; x^W, O^f<s0}

for all s(0<s<<;), where Pf=|i£M;≪(i)>-M(r(0))}C5)(iJ).

PROOF. From the unstability of M, there exist a local unit normal vector

field v on M and a function /gCW)) such that

(5) _^j(Af(s/;i>))
£ = 0

<0

We may assume that the closure <D(p)is contained in a coordinate neighborhood

of M. Let v be a local unit normal vector fieldon M around 7(0) satisfying

(dY/dt)(O)=v(Y(O)). Replacing y by ―y if necessary, we can choose a local unit

normal vector field y on M, which is an extension of v, v and satisfies that

£D(v)is connected with C°°-boundaryd£){v).

Consider the functional

W)=( [|7^|2-(Ric^, v)+＼AM＼*)p-＼dvK
jM.

and define A=inflv($) for all 0eC Cc(y)) satisfying 0=0 on M―W(v) and

＼$2dve=l. From (1) and (5) we then obtain a continuous function u^C(M)
JM.

satisfying X=h(u)<0, which u has the following properties(cf.[2], [7] and [8])

(6) w>0 in 3){v) and wlaaco―0,

(7) u is smooth in 3){v),

(8) Lu: =^-AMu-(RicN(u, v)+＼AM＼*)u=Xu ≪0) in 3){v),

where AMu = ^,iZig(ei,le^lMu). In particular,the property (6) is an immediate

consequence of Courant's nodal domain theorem for the linear ellipticoperator

of second order L (cf. [6, Chapter 1], [7, VI-§6]). From (6)-(8) and an easy

calculation we obtain

(9)
-5― HMilu;n =AMu+(RicN(v,v)+＼AM＼z)u=-Xu>0 in £)($).
0£ £=0

It follows from (6),(7) and (9) that there exists a positive constant a such that

for any e(0<e<a) M(eu ; D)(ZUSq(M) and HMi,u:n =
＼'( d ft

{expJD<=N; x<bW, O^t<so}. This completes the proof of Lemma 1.

)ds>0 in

Lemma 2. There exist positiveconstants 6o(O<eo<<7), ta(Q<.t0<s0)and a umt
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speed geodesic f: [0, <x>)->N' such that

(i) f(fo)eAf(6Ott ; v)f~＼{expxtv^N; x^W, O^t<so},

(ii) mczWCLSXp),

(iii) g((df/dt)(0),iKrmm-0,

(iv) distiv(M(£oM : v), f(t))=distN(f(t0), f(t))=t-t0 for all t^t0.
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Proof. Take s(0<s<<;) arbitrarilyand fix it. For each i<=N, there exist

a minimizing geodesic ySti,emanating from M(eu; v), between M(eu; v) and y(J]

Put W={x^M; u{x)^u(y(O))}(zWc:£)(v). Suppose that there exists j＼^N sue!

that

(10) y£,h(0)£M(eu; v)n{expxtv(=N; x(=W, 0^*<s0}.

From (4),(10) and Lemma l-(iii)we have

disw(M, r(/i))^dist*(M, ys,h(0))+x(ys,h)

<-f(rl[o.>13)=dist^(M, rO＼))-

This is a contradiction. Then we obtain for all z'eiV

(11) r..i(0)eM(eM; 5)n{expx≪eJV; xelW, 0^t<s0}dUSo(M).

We also note that for each i&N the vector (dySii/dt)(O) is perpendicular t(

TM(eu;v) and

(12) re>inM(sw;v)={rU0)}.

Suppose that there exists /2eiV such that

≪((dr..Vd')(0),(d(expf5)/d*Xr..i1(0)))<0.

From (11) and (12) that there exists c(Q<c<X(ye,h)) such that

(13) ye,h(c)tEW＼J{expxtveN; x^dW, 0^t<eu(y(0))} ■

It then follows from (4),(11) and (13) that

dist^M, r(/2))^dist*(M, y^h{c))-＼-X{ys,h＼u,xi7e,h^)

<distjv(M, ys,h(c))+X(ye,h)

<X(y＼l0,hi)=distN{M, rti*))>

This is a contradiction, too. Then we obtain for all i^N

(14) g(.(dr*.i/dW), (d(exp≪3)/dO(r..≪(0)))^0.

Let vB<={v(=TM(eu; v)x; ||y||= l} be an accumulation point of the sequence
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{(dr,,t/dt)(Q)}ieN. Let rs: [0, oo)-≫-iVbe the geodesic such that Te(0)=£B(vs) and

{dyJdt){0)=ve, where 3?: TN-+N is the bundle projection. Then ys is a ray

satisfying

(15) dist*(M(sw; v), r.(O)=distAr(r.(0), r.(0)

for all f^O. We say that ys is a limit ray of the sequence of minimizing

geodesies {TViheiv. It then follows from (11) and (14) that

(16) n(0)eM(sM ; v)n{expxtv^W, O£t<so},

(17) g{{drjdm＼ (d(expW)/dtX7s(0)))^0.

Let f be a limit ray of the sequence of rays {fi/ih2t0, where l/io<a. It

then follows from (15)-(17) that

(18) m)^ClWc.3){v)

(19) g((df/dt)(0), v(f(0)))^0,

(20) dist*(M, f(O)=dist^(f(0), fit))

for all t^O. Also from (19) and (20) (df/dt)(O)=p(f(O)) and then

(21) S((df/dO(0)f £Kf(0)))=l.

By the construction of f, (18) and (21) there exists a positive constant e0(so=l//,

i^io) such that

(22) So^or^nf^Ojrro'COeP^},

(23) ＼g(Hd77i/dtXU＼ v{nl(U)))＼^l-d,

where r701(0=expr,o(o)(-?(rfr.0/rf0(0)).

Let f: [0, oo)->N be the geodesic such that

{ Teoit-U) if t^U.

It then follows from (15), (16), (22) and (23) that f satisfies the properties (i>

(iv). This completes the proof of Lemma 2.

Let {elt ･･･, en-i＼ be a local orthonormal frame field on M(eou;v) arounc

f(fo) and each et(j;)be the parallel translate vector of ei(f(t0)) along f with th<

initial condition ei(to)=ei(f(tQ)). Let fi<r: [0, r]X(―<5, d)-*N be a variation o:

f＼ztn.tn+n satisfying 7t.M0}X(-d, 5))ClM(sou : y), n.r({r}X(-a, 3))=fao+r) anc

(dfi.r/de)(t, e)|,.,o=cos et(tQ+t). From (2) we then obtain
7tt_

2r
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"a
-r(f≪.r([O,r]X{≪}))

=(n-l)7T2/8r-J tt>+rmcN{df/dt, df/dt)(cos *(* U)

t0 ＼ uf

)dt-Hmsou;≫(f(to)).
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It follows from (3),(24),Lemma 1, Lemma 2 and Lemma 3 below thatthere

exists a large constantr0 such that

(n-l)ny8r0-[t0+r＼icN(df/dt>df/dt)(cos^~-^)2dt
Jt0 ＼ fro I

-#*(.,≪:≫(f('o))<O.

This contradicts that f|[{,.≫>is a ray. This completes the proof of Theorem B

Lemma 3. For each constant K

implies

lim inn

r-oo Jo
RicN(df/dt, df/dt)dt^K

lim inf
＼

r-.°o J

rR＼cN{df/dt,
df/dt)(cos-^-)2dt^K.

0 ＼ £41*

Corollary. Let N be a complete Riemannian manifold of nonnegative Ricci

curvature with a compact embedded minimal hypersurface M. Suppose that either

(i) M is unstable in N or

(ii) (N―M) is connected.

Then N is compact. In the case (ii)it is also establishedthat (N―M) is isometric

to a product Riemannian manifold Mx(0, /),where I is a suitablepositive constant.

Proof. In the case (ii),Corollary was proved by Ichida [10].

Remark. Without the unstability of M it follows immediately from (2) and

Lemma 3 that

"Let N be a completeRiemannian manifold with a compact embedded minimal

hypersurface M. Suppose that along each unit speed geodesic y: [0, oo)―>AT

emanating perpendicularlyfrom each pointin M the Riccicurvaturesatisfies

＼imird[rR＼zN{dr/dt,dy/dt)dt>0.
r-KxJo

Then N is compact."
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