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1. Introduction

In this paper, we shall prove the following Theorem.

THEOREM A. Let N be a complete Riemannian manifold with a compact
embedded unstable minimal hypersurface M. Suppose that there exists a positive
constant s, such that along each unit speed geodesic 7: [0, co)—N emanating from
each point in the tubular neighborhood Us(M):={G¢€N; disty(q, M)<s.} the
Ricci curvature satisfies

lim infS:RicN(dT/dt, dy/dbdt=0.

T-c0

Then N is compact.

The Myers’ theorem [11] is one of the most well-known results relating
the curvature and the topology of a complete Riemannian manifold N, which
states that if the Ricci curvature has a positive lower bound then N is compact.
In [1], Ambrose proved a generalization of Myers’ theorem, that is, if there is
a point ¢= N such that along each unit speed geodesic 7: [0, co)— N emanating
from ¢ the Ricci curvature satisfies

S?RicN(dr/dt, dy/dt)dt=+oo

then N is compact. It should be pointed out that in this result the Ricci
curvature is not required to be everywhere nonnegative. Further developments
can be found in Galloway [9] and different sorts of extensions of Myers’
theorem can be found in Avez [3], Calabi [5] and Shiochama [12].

Theorem A is an Ambrose-type theorem for Riemannian manifolds with
compact embedded unstable hypersurfaces (see also Remark in section 3). It
should be also pointed out that in Theorem A the existence of the global unit
normal vector field on M is not required.
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§2. Definitions and formulas

Let N=(N, g) be a complete Riemannian manifold of dimension n>2 with
a compact embedded hypersurface M. We choose a local orthonormal frame
field {e;, -+, e,} in N such that, restricted to M, the vectors {e,, :--, e,_,} are
tangent to M. Let denote the Levi-Civita connection of N by V, the component
normal to M by (- )* and the restriction of e, to M by ». The second funda-
mental form Ay of M is defined by

An(X, Yw=(xY)",

where X and Y are local vector fields on M. M is called minimal if Hy=
Trace Ay is identically zero.

We shall derive the equation Hy=0 by another elegant way. For a smooth
function feCH(D(v)) with compact support in 9(v) and a small positive constant
9, let {M(ef;v)}.ec-s,5» denote the one-parameter family of hypersurfaces
{SCef ; VI M—9D1)} b5, Where D(v) is the domain of v and S(ef; v)=
{exp:ef(xveN; x=9D(v)}. We then get a local deformation {M(ef ; v)}ecc-s.n
of M. Let J(-)denote the (n—1)-dimensional area functional of hypersurfaces.
Then A(M(ef ;v)) is class of C> with respect to ¢ and

—aM(sf ;)| _ = - Hudv,.

where dv, is the induced volume element of M. If M is a critical point of i,
then H,=0.
Suppose that M is minimal. Then

W s )| =] D9 Ricw, 1 Ad v,

where V¥ f=322e;(f) e; and | Ay 2= [Axles, e))]2. M is called unstable
if there exist a local unit normal vector ﬁeld v on M and a smooth function
f€C(D(v)) such that

dZ
d—EZJ(M(Ef, U)) E=o<0.

For later references, we also give the second variational formula of arc
length functional of rays with respect to special variations. Let 7: [0, )=N
be a ray satisfying r(0)eM and disty(M, 7(t))=disty(7(0), 7(¥)) (=t) for all t=0.
Let .£( - ) denote the arc length functional. We note that for each >0 7o, ,3
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is a critical point of .£. Choose a local orthonormal frame field {e;, :--, ¢,}
in N around 7(0) such that, restricted to M, the vectors {e,, ---, e¢,-1} are
tangent to M and the vector v=e,|) satisfies v(7(0))=(dr/dt)}0). Let 7;.:
[0, #r1X(—6, 8)—»N be a variation of 7|, -3 satisfying 7: ,.({0}x(—d, &)
M, T ({7} X(=8, D)=1() and 27,0, )] _=cos -2+

2: -¢;(t), where each e;(t)
is the parallel translate vector of e;(7(0)) along y. We then obtain (cf. [4,
Chapter 117)

@ S L0 x|

—(n— 1)x2/8r—S: Ricx(d7/dt, dy/dt)(cos —g—)zdt—HM(r(O)) ,

where H, is the mean curvature of M with respect to v.

§3. Proof of Theorem A

Theorem A is an immediate consequence of the following.

THEOREM B. Let N=(N, g) be a complete Riemannianman ifold with a compact
embedded unstable minimal hypersurface M. Suppose that there exist positive
constants s, and 6 such that along each unit speed geodesic 7 : [0, co)—N satisfying
rOYeM and |g((dy/di)0), V)| =1—8, the Ricci curvature satisfies

3) lim infSTRicN(dr/dt, dy/dt)dt =0

for all 0<s<s,, where V is a unit vector normal to M at y(0). Then N is
compact.

To prove Theorem B, we will suppose that N is noncompact and, finally,
lead a contradiction.

Since N is noncompact, there exists a ray 7: [0, o)—N satisfying y(0)eM
and
@ disty(M, r@)=distx(7(0), 7®)=t
for all 1=0.

From the unstability of M, we will first construct C°-hypersurfaces
{M(eu; D)}eeco, > near M, which are smooth and have positive mean curvature
around yNM(eu; D).

LEMMA 1. There exist a conitnuous nonnegative function ucC(M), a local
unit normal vector field © on M and a positive constant ¢ such that
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(1) rOe9@)={xeM; u(x)>0},

(il) wu is smooth in D),

(ili) M(eu; D)CU (M),

(V) Hyceus;5>0 in {expiveN; xeW, 0Zi<so}

for all e(0<e<a), where W={xeM;u(x)>%u(r(0))}C£D(D).

PrROOF. From the unstability of M, there exist a local unit normal vector

field ¥ on M and a function feC(D@F)) such that
d? -
%) FJ(M(Ef, ) E=0<0-

We may assume that the closure 9(P) is contained in a coordinate neighborhood
of M. Let v be a local unit normal vector field on M around 7(0) satisfying
(dy/dt)(0)=w(7(0)). Replacing & by —% if necessary, we can choose a local unit
normal vector field ¥ on M, which is an extension of ¥,y and satisfies that
PD(p) is connected with C=-boundary 09(D).

Consider the functional
I(g)=\  [19%6 |*~(Ricy(3, D)+ Axl*)g"1dv,

and define A=infIy(¢$) for all d=C5(D®)) satisfying ¢=0 on M—ID() and
SM¢2dvg=1. From (1) and (5) we then obtain a continuous function usC(M)
satisfying A=I;(u)<0, which » has the following properties (cf. [2], [7] and [8])
6) u>0 in 9(¥) and ul06=0,

(7) u is smooth in D),

®) Lu:=—Ayu—(Ricy(®, D)+ Ax|*)u=2u (<0) in (),

where Ayu=3"!gle;, V.,;¥”u). In particular, the property (6) is an immediate
consequence of Courant’s nodal domain theorem for the linear elliptic operator

of second order L (cf. [6, Chapter 1], [7, VI-§6]). From (6)-(8) and an easy
calculation we obtain

O o Huwwsn| =Bt Ricx(s, 5+ Ayl Ju=—2u>0 in 9().

It follows from (6), (7) and (9) that there exists a positive constant ¢ such that
for any e(0<e<¢) M(eu; 5)C U, (M) and HM<5u;;,:S£(iHM(Pu;;) )ds>0 in
[] ap e=s

{exp,tb=N; x€W, 0<t<s,}. This completes the proof of Lemma 1.

LEMMA 2. There exist positive constants &,(0<e,<a), t(0<ty<s,) and a umt
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speed geodesic T: [0, co)—N such that
(1) FUloEM(eou; D)N{exptieN; xeW, 05t <s,},
(ii) 7Oewca®m),
(iil) g((dF/dt)0), BFON=1—0,
(iv) disty(M(eou; 8), 7())=disty(F(ts), 7Tt))=t—t, for all i=t,.

ProoF. Take e(0<e<g) arbitrarily and fix it. For each /€N, there exists
a minimizing geodesic 7.,;, emanating from M(eu; ¥), between M(eu; D) and 7().
Put W={x=M; u(x)=u(O0)}CWCD(®). Suppose that there exists 71€ N such
that

(10) Te. 5, (O&EM(eu ; D)N{expatbeN; xeW, 0<t<so} .
From (4), (10) and Lemma 1-(iii) we have
disty(M, 7(G)=disty(M, 7e, 5, (O)+ L7, 5,)
<L Vo, 50 =disty(M, 7(j1)).
This is a contradiction. Then we obtain for all ;e N
1D 7. (0)eM(eu ; D)N{exp tiEN; xeW, 0=t <s,) CU(M).

We also note that for each ;=N the vector (d7.:/dt)0) is perpendicular to
TM(eu; v) and

(12) Te.iNM(eu ; D)={7:0)} .
Suppose that there exists j,&N such that
g((d7e. 3,/ d1)0), (d(expt D)/ dt)Te. ;,(00))<0.
From (11) and (12) that there exists c(0<e<.L(7..5,)) such that
(13) Te n(OEWUlexp.tpeN; xdW, 0=t <eu(O)}.
It then follows from (4), (11) and (13) that
disty(M, 7)< disty(M, Ve 1 (eN+ LT e sl te £ e, 399

<disty(M, 7e. i)+ L(Te5)

<L o, s =disty(M, 7(j2)).
This is a contradiction, too. Then we obtain for all ;€N
14 g((dr..+/dt)0), (d(exptD)/dt)r.,(0))=0.

Let v.e{veTM(eu; 9)*; |v]|=1} be an accumulation point of the sequence
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{(dr..+/dt)(0)}ien. Let 7.: [0, c0)—N be the geodesic such that 7.(0)=%(v.) and
(dr./dt)(0)=v., where #: TN—N is the bundle projection. Then 7, is a ray
satisfying

(15) disty(M(eu ; D), 7.(t)=distu(r(0), 7:(t))

for all £20. We say that 7. is a limit ray of the sequence of minimizing
geodesics {7.:}ien. It then follows from (11) and (14) that

(16) 7.0)E M(su ; 5)N{exp W, 0<t<s,},
a7 g((dr./dt)0), (d(expi)/dt)(r(0))=0.

Let 7 be a limit ray of the sequence of rays {ri/i}izs,, Where 1/i,<o. It
then follows from (15)-(17) that

(18) FOeWcwca®m)

19) g((d7/du)(0), 5(7(0)))=0,

(20) disty(M, 7()=dist¥(7(0), 7(1))

for all t=0. Also from (19) and (20) (d7/d)(0)=5((0)) and then
(21) &((d7/dt)0), 5(F0)))=1.

By the construction of 7, (18) and (21) there exists a positive constant so(eo=1/7,
i=1,) such that

(22) So>to: =inf{t>0; y: i)W},
23) l8((drzg/dt)ta), 5(rsi G 21—,

where 77 ()=exp;, «wX(—(d7.,/dt)(0)).
Let 7: [0, o) N be the geodesic:such that

~ Tilto—t)  if 0Zt<t,
Fty= .
r£o(t_t0> 1f tzto .

It then follows from (15), (16), (22) and (23) that 7 satisfies the properties (i)-
(iv). This completes the proof of Lemma 2.

Let {&,, --, &,-,} be a local orthonormal frame field on M(e,u; §) around
7(t,) and each &;() be the parallel translate vector of &,(7(¢,)) along ¥ with the
initial condition &,(t,)=&.(7(t,)). Let 7. ,:[0, r]x(—8, 8)=N be a variation of
7lteg to+ra satisfying 7i, ({0} X(—0, T M(eou ; 5), 71, . ({r} X(—3, 8))=7(t,+7) and

(07, +/0e)¢, s)|e=0=cos~7i—-éi(to+t). From (2) we then obtain

2r



Compactness criteria for Riemannian manifolds 511

@) LS 00, x|

, —_ 2
(D8 Ricy (d7/dt, d7/at(cos Y dt— Hrcpuisn ).
0
It follows from (3), (24), Lemma 1, Lemma 2 and Lemma 3 below that there
exists a large constant r, such that

(n—ymt/8ro— " Ricx (47, dF/do)(cos =51 Y ds

_HM(sou; i)(f(to)) <0.

This contradicts that 7|« is a ray. This completes the proof of Theorem B.

LEMMA 3. For each constant K

T-»00

lim infS:RicN(df/dt, 47/ dtdt=K
implies

lim in| Ric (d7/dt, d7/dt) cos—-) dtzK.
700 0 v
COROLLARY. Let N be a complete Riemannian manifold of nonnegative Ricci
curvature with a compact embedded minimal hypersurface M. Suppose that either
(1) M is unstable in N or
(ii) (N—M) is connected.
Then N is compact. In the case (ii) it is also established that (N—M) is isometric
to a product Riemannian manifold MX(0, [), where [ is a suitable positive constant.

Proor. In the case (ii), Corollary was proved by Ichida [10].

REMARK. Without the unstability of M it follows immediately from (2) and
Lemma 3 that

“Let N be a complete Riemannian manifold with a compact embedded minimal
hypersurface M. Suppose that along each unit speed geodesic 7:[0, c0)>N
emanating perpendicularly from each point in M the Ricci curvature satisfies

lim infS:RicN(dr/dt, dy/dD)dt>0.

Then N is compact.”
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