A REMARK ON ARTIN-SCHREIER CURVES WHOSE HASSE-WITT MAPS ARE THE ZERO MAPS

By
Susumu Irokawa and Ryuji Sasaki

1. Introduction

Let X be a complete non-singular algebraic curve over an algebraically closed field k of positive characteristic p. Let $F: \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}$ be the Frobenius homomorphism $F(\alpha)=\alpha^{p}$, and denote the induced p-linear map $H^{1}\left(X, \mathcal{O}_{X}\right) \rightarrow$ $H^{1}\left(X, \mathcal{O}_{X}\right)$ again by F, which is called the Hasse-Witt map. The dimension of the semi-simple subspace $H^{1}\left(X, \mathcal{O}_{X}\right)_{s}$ of $H^{1}\left(X, \mathcal{O}_{X}\right)$ is denoted by $\sigma(X)$ and called the p-rank of a curve X, which is equal to the p-rank of the Jacobian variety of X.

Let $\pi: X \rightarrow Y$ be a p-cyclic covering of complete non-singular curves over k. Then the Deuring-Šafarevič formula is the following:

$$
\begin{equation*}
\sigma(X)-1+r=p(\sigma(Y)-1+r) \tag{1.1}
\end{equation*}
$$

where r is the number of the ramification points with respect to π (see Subrao [10], Deuring [3], Šafarevič [8]).

An algebraic curve X, which is not birationally equivalent to \boldsymbol{P}^{1}, is called an Artin-Schreier curve if there is a p-cyclic covering $\pi: X \rightarrow \boldsymbol{P}^{1}$. Then the p rank $\sigma(X)$ of X is immediately known by the above formula, however the rank of the Hasse-Witt map is not known. In this article, we shall prove the following.

Theorem. Let X be an Artin-Schreier curve defined over an algebraically closed field k, of positive characteristic p. Then the Hasse-Witt map of X is the zero map if and only if X is birationally equivalent to the complete non-singular algeraic curve defined by the equation

$$
y^{p}-y=x^{\imath}
$$

for some divisor $l(l \geqq 2)$ of $p+1$.

The Jacobian variety of a curve X is isomorphic to the product of supersingular ellitic curves if and only if the Cartier operator is the zero map

[^0](Nygaard [7]). Since the Cartier operator is the transpose of the Hasse-Witt map, our theorem gives the Artin-Schreier curves whose Jacobian variety is isomorphic to the product of super-singular elliptic curves.

2. Basic for $H^{0}\left(X, \Omega_{X}\right)$

Let X be an Artin-Schreier curve, hence there is a p-cyclic coverning $\pi: X \rightarrow \boldsymbol{P}^{1}$. Let $\mathbf{k}(X)$ and $\mathbf{k}\left(\boldsymbol{P}^{1}\right)$ denote the function fields, and we regard $\mathbf{k}\left(\boldsymbol{P}^{1}\right)$ as contained in $\mathbf{k}(X)$. The fields $\mathbf{k}(X)$ and $\mathbf{k}\left(\boldsymbol{P}^{1}\right)$ can be expressed in the following :

$$
\mathbf{k}(X)=k(x, y) \quad \text { and } \quad \mathbf{k}\left(\boldsymbol{P}^{1}\right)=k(x)
$$

where

$$
y^{p}-y=f(x), \quad f(x) \in k(x) .
$$

Moreover, we can assume that $f(x)$ satisfies the following conditions:

$$
\begin{equation*}
f(x)=\frac{G(x)}{\left(x-\alpha_{1}\right)^{e_{1}} \cdots\left(x-\alpha_{n}\right)^{e_{n}}} \tag{2.1}
\end{equation*}
$$

where
(1) $G(x)$ is a polynomial in $k[x]$,
(2) e_{i} 's are positive integers prime to p,
(3) $\alpha_{i} \neq \alpha_{j}$ if $i \neq j$ and $G\left(\alpha_{i}\right) \neq 0$ for $i=1, \cdots, n$,
(4) $\operatorname{deg} G(x)-\left(e_{1}+\cdots+e_{n}\right)=e_{0}$ is a positive integer relatively prime to p.

Then the points of P^{1} which ramify in $\pi: X \rightarrow \boldsymbol{P}^{1}$ are exactly $\left\{\alpha_{1}, \cdots, \alpha_{n}, \infty\right\}$. If we denote by P_{1}, \cdots, P_{n} and P_{0} the points in X lying over $\alpha_{1}, \cdots, \alpha_{n}$ and ∞, then the divisor of the differential $d x$ on X is given by

$$
\begin{equation*}
\operatorname{div}(d x)=\sum_{i=1}^{n}\left(e_{i}+1\right)(p-1) P_{i}-\left(2 p-\left(e_{0}+1\right)(p-1)\right) P_{0} . \tag{2.2}
\end{equation*}
$$

Hence the genus $g(X)$ of X is given by the formula

$$
\begin{equation*}
2 g(X)-2=\operatorname{deg}(\operatorname{div}(d x))=\sum_{i=1}^{n}\left(e_{i}+1\right)(p-1)-2 p \tag{2.3}
\end{equation*}
$$

In the sequel, for a real number, a, we denote by $[a]$ the largest integer not exceeding a. Further we denote by $|S|$ the cardinality of a finite set S.

We define finite sets of differentials;

$$
\begin{gathered}
H_{0}=\left\{y^{r} x^{b} d x \mid\left(e_{0}+1\right)(p-1)-r e_{0}-(b+2) p \geqq 0,\right. \\
\left.0 \leqq b \leqq e_{0}-2,0 \leqq r \leqq p-1\right\}
\end{gathered}
$$

and for each $i=1, \cdots, n$,

$$
H_{i}=\left\{\left.\frac{y^{r} d x}{\left(x-\alpha_{i}\right)^{a}} \right\rvert\,\left(e_{i}+1\right)(p-1)-r e_{i}--a p \geqq 0,1 \leqq a \leqq e_{i}, 0 \leqq r \leqq p-2\right\} .
$$

Then we have the following;
Lemma.

1) $\left|H_{0}\right|=\frac{1}{2}\left(e_{0}-1\right)(p-1)$
2) $\left|H_{i}\right|=\frac{1}{2}\left(e_{i}+1\right)(p-1)$
3) $\left|H_{0}\right|+\left|H_{1}\right|+\cdots+\left|H_{n}\right|=g(X)$
4) $\bigcup_{i=1}^{n} H_{i}$ forms a basis for $H^{0}\left(X, \Omega_{X}\right)$.

Proof. By the conditions defining the set $\left|H_{0}\right|$, we have

$$
\begin{equation*}
\frac{\left(e_{0}-b-1\right) p-1}{e_{0}}-1 \geqq r \geqq 0 . \tag{2.4}
\end{equation*}
$$

For each b with $0 \leqq b \leqq e_{0}--2$, the number of r satisfying (2.4) is given by

$$
\varphi(b)=\left[\frac{\left(b_{0}-e-1\right) p-1}{e_{0}}\right] .
$$

Hence we have

$$
\left|H_{0}\right|=\sum_{0=0}^{e_{0}-2} \varphi(b)=\sum_{b=0}^{e_{0}-2}\left[\frac{\left(e_{0}-b-1\right) p-1}{e_{0}}\right] .
$$

Since $\left(p, e_{0}\right)=1$, the set $\left\{\left(e_{0}-1\right) p,\left(e_{0}-2\right) p, \cdots, 1 \cdot p, 0\right\}$ gives a complete set of representatives of \boldsymbol{Z} modulo $e_{0} \boldsymbol{Z}$, hence so does $\left\{\left(e_{0}-1\right) p-1,\left(e_{0}-2\right) p-1, \cdots\right.$, $1 \cdot p-1,0-1\}$. Therefore we have

$$
\begin{aligned}
\frac{0}{e_{0}}+\frac{1}{e_{0}}+\cdots+\frac{e_{0}-2}{e_{0}} & =\sum_{b=0}^{e_{0}-2}\left\{\frac{\left(e_{0}-b-1\right) p-1}{e_{0}}-\left[\frac{\left(e_{0}-b-1\right) p-1}{e_{0}}\right]\right\} \\
& =\left(e_{0}-1\right) \frac{\left(e_{0}-1\right) p-1}{e_{0}}-\frac{p}{e_{0}} \sum_{b=0}^{e_{0}-2} b-\left|H_{0}\right| .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left|H_{0}\right| & =\left(e_{0}-1\right) \frac{\left(e_{0}-1\right) p-1}{e_{0}}-\frac{(p+1)\left(e_{0}-1\right)\left(e_{0}-2\right)}{2 e_{0}} \\
& =\frac{1}{2 e_{0}}\left(e_{0}-1\right)\left\{2\left(e_{0}-1\right) p-2-(p+1)\left(e_{0}-2\right)\right\} \\
& =\frac{1}{2}\left(e_{0}-1\right)(p-1) .
\end{aligned}
$$

This completes the proof of 1).

As the equality in 2) is proved in the same way, we shall omit its proof. 3) is a direct consequence of 1), 2) and (2.3).

As is easily seen, the divisors of the rational functions x, y and $x-\alpha_{i}$ on X, are given by

$$
\begin{aligned}
& \operatorname{div}(x)==(x)_{0}-p P_{0} \\
& \operatorname{div}(y)=(y)_{0}-\sum_{i=0}^{n} e_{i} P_{i}, \\
& \operatorname{div}\left(x-\alpha_{i}\right)=p\left(P_{i}-P_{0}\right),
\end{aligned}
$$

where $(x)_{0}$ and $(y)_{0}$ are the divisors of zeros of x and y, respectively. It follows that

$$
\begin{aligned}
\operatorname{div}\left(\frac{y^{r} d x}{\left(x-\alpha_{i}\right)^{a}}\right)=r(y)_{0} & +\sum_{i=1}^{n}\left\{\left(e_{i}+1\right)(p-1)-r e_{i}-a p\right\} P_{i} \\
& +\left\{\left(e_{0}+1\right)(p-1)-r e_{0}+(a-2) p\right\} P_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{div}\left(y^{r} x^{b} d x\right)=r(y)_{0}+b(x)_{0} & +\sum_{i=1}^{n}\left\{\left(e_{i}+1\right)(p-1)-r e_{i}\right\} P_{i} \\
& +\left\{\left(e_{0}+1\right)(p-1)-r e_{0}-(b+2) p\right\} P_{0} .
\end{aligned}
$$

Thus we see that every element in $H_{i}(0 \leqq i \leqq n)$ is a holomorphic 1-form. The elements in $\bigcup_{i=0}^{n} H_{i}$ are linearly independent over k, since otherwise $[k(x, y)$: $k(x)$] would be smaller than p. Thus, by 3), we get 4).

3. Proof of the theorem

We adopt the same notation as before. Let $C: H^{0}\left(X, \Omega_{X}\right) \rightarrow H^{0}\left(X, \Omega_{X}\right)$ be the Cartier operator of X. (For the definition and properties of C, we refer to Cartier [1], [2] and Seshadri [9].) Then it satisfies

$$
\begin{equation*}
C\left(\left(f_{0}^{p}+f_{1}{ }^{p} x+\cdots+f_{p-1}^{p} x^{p-1}\right) d x\right)=f_{p-1} d x \tag{3.1}
\end{equation*}
$$

because x is a separable element of $k(x, y)$ over k and any element f in $k(x, y)$ can be uniquely written in the form

$$
f=f_{0}{ }^{p}+f_{1}{ }^{p} x+\cdots+f_{p-1} x^{p-1} .
$$

Since the Cartier operator is the transpose of the Hasse-Witt map $F: H^{1}\left(X, \mathcal{O}_{X}\right)$ $\rightarrow H^{1}\left(X, \mathcal{O}_{X}\right)$, it suffices to determine Artin-Schreier curves whose Cartier operator is the zero map.

Now we shall prove the "if" part. Let X be the curve defined by

$$
y^{p}-y=x^{l}
$$

where l is a divisor of $p+1$ and $l \geqq 2$. By the Lemma in the section 2, we can write a basis for $H^{0}\left(X, \Omega_{X}\right)$ in the following way;

$$
\begin{gathered}
d x, x d x, \cdots, x^{s_{0}} d x \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
y^{r} d x, y^{r} x d x, \cdots, y^{r} x^{s_{r}} d x \\
\cdots \cdots \cdots \cdots \cdots \cdots
\end{gathered}
$$

where $0 \leqq r \leqq p-(r+1) / l-1$ and $s_{r}=[l-1-((r+1) l+1) / p]$. Then we have

$$
l-2 \geqq s_{0} \geqq s_{1} \geqq \cdots
$$

Since $y^{r}=\left(y^{p}-x^{l}\right)^{r}$, we have

$$
\begin{aligned}
C\left(y^{r} x^{b} d x\right) & =C\left(\sum_{k=0}^{r}\binom{r}{h} y^{p(r-h)}\left(-x^{l}\right)^{k} x^{b} d x\right) \\
& =\sum_{h=0}^{r}\binom{r}{h}^{1 / p}(-1)^{h / p} y^{r-h} C\left(x^{l h+b} d x\right),
\end{aligned}
$$

where $\binom{r}{h}$ is the binomial coefficient. To prove that C is the zero map, it is sufficient to show

$$
C\left(x^{l n+b} d x\right)=0
$$

for all r, b and h satisfying

$$
0 \leqq r \leqq p-1, \quad 0 \leqq h \leqq r \quad \text { and } \quad 0 \leqq b \leqq s_{r} .
$$

By (3.1), $C\left(x^{l^{h+b}} d x\right) \neq 0$ if and only if $l h+b \equiv-1(\bmod p)$. Suppose there exist h and b satisfying

$$
0 \leqq h \leqq r \leqq p-1, \quad 0 \leqq b \leqq s_{r}
$$

and

$$
l h+b=i p-1
$$

for some $i>0$. Let $p+1=l m$. Then we have

$$
l h+b=i(l m-1)-1=i l m-i-1<i l m
$$

and

$$
i=\frac{l h+b+1}{p} \leqq \frac{l(p-1)+l-1}{p}<l
$$

hence

$$
\begin{equation*}
h \leqq i m-1 \quad \text { and } \quad i \leqq l-1 \tag{3.2}
\end{equation*}
$$

If $h=i m-t, t \geqq 1$, then $r \geqq i m-t=h$; hence

$$
\begin{aligned}
b & =l t-i-1 \leqq s_{r} \leqq s_{i m-1} \\
& =\left[l-1-\frac{(i m-t+1) l+1}{p}\right] \leqq l-2 .
\end{aligned}
$$

By (3.2), we have $t=1$. Then,

$$
\begin{aligned}
l h+b & \leqq(i m-1) l+s_{i m-1} \\
& =(i m-1) l+\left[l-1-\frac{i m l+1}{p}\right] \\
& \leqq(i m-1) l+l-i-2=i m l-i-2 \\
& <i m l-i-1=i p-1 .
\end{aligned}
$$

This is a contradiction. Thus we have $C\left(x^{l h+b} d x\right)=0$.
Next we shall prove the "only if" part. Let X be an Artin-Schreier curve whose Hasse-Witt map is the zero map; hence the p-rank $\sigma(X)$ is zero. Then by (1.1), we see that X is defined by an equation

$$
y^{p}-y=f(x)
$$

where

$$
f(x)=x^{n}+a_{n} x_{1} x^{n-1}+\cdots+a_{0}, \quad \text { for } n \geqq 2 \text { and }(n, p)=1
$$

As above,

$$
\begin{gathered}
H_{0}=\left\{y^{r} x^{b} d x \mid\left(e_{0}+1\right)(p-1)-r e_{0}-(b+2) p \geqq 0\right. \\
\left.0 \leqq b \leqq e_{0}-2,0 \leqq r \leqq p-1\right\}
\end{gathered}
$$

forms a basis for $H^{0}\left(X, \Omega_{X}\right)$. Since

$$
\begin{aligned}
C\left(y^{r} x^{b} d x\right) & =C\left(\left(y^{p}-f\right)^{r} x^{b} d x\right) \\
& =\sum_{h=0}^{r}\binom{r}{h}^{1 / p}(-1)^{h / p} y^{r-h} C\left(f^{h} x^{b} d x\right)
\end{aligned}
$$

we have

$$
\begin{equation*}
C\left(f^{h} x^{b} d x\right)=0 \tag{3.3}
\end{equation*}
$$

for all h, r and b satisfying $0 \leqq h \leqq r \leqq p-1,0 \leqq b \leqq n-2$ and

$$
\begin{equation*}
(n+1)(p-1)-(b+2) p-r n \geqq 0 \tag{3.4}
\end{equation*}
$$

By (3.3) with $r=0$, we have

$$
C(d x)=C(x d x)=\cdots=C\left(x^{s_{0}} d x\right)=0
$$

where $s_{0}=[n-1-(n+1) / p]$. Since $C\left(x^{p-1} d x\right)=d x$, we must have $[n-1-(n+1) / p]$ $\leqq p-2$. It follows that $n \leqq p+1$ noticing that $(p, n)=1$. Assume $n \leqq p$; hence $n \leqq p-1$. Then there exists $l \geqq 1$ such that

$$
l n+1 \leqq p<(l+1) n+1 .
$$

Again by $(p, n)=1$, we have

$$
\begin{equation*}
l n+1 \leqq p \leqq(l+1) n-1 \tag{3.5}
\end{equation*}
$$

Therefore we have

$$
\begin{aligned}
& \operatorname{deg}\left(f^{l}\right)=l n \\
& \quad \cdots \cdots \cdots \cdots, \\
& \operatorname{deg}\left(f^{l} x^{s l}\right)=l n+\left[n-1-\frac{(l+1) n+1}{p}\right]=(l+1) n-3 .
\end{aligned}
$$

Suppose $p-1=l n+b, 0 \leqq b \leqq s_{l}$. Then we have $f^{l} x^{b}=x^{p-1}+g(x)$ where $g(x)$ is polynomial in $k[x]$ of degree $\leqq p-2$; hence we have

$$
C\left(f^{l} x^{b} d x\right)=d x .
$$

This contradicts to (3.3). Therefore we have

$$
\begin{equation*}
p-1 \geqq \ln +s_{l}+1=\ln +n-2 . \tag{3.6}
\end{equation*}
$$

By (3.5) and (3.6), we have

$$
p-1=(l+1) n-2, \quad \text { i.e. } p+1=(l+1) n \text {. }
$$

Thus in any case we have

$$
\begin{equation*}
p+1=\ln \tag{3.7}
\end{equation*}
$$

for some $l \geqq 1$. Since ($n, p)=1$, we can write

$$
f=x^{n}+a_{i} x^{i}+\cdots+a_{0}
$$

with $i \leqq n-2$ and

$$
\begin{equation*}
f^{l}=x^{l n}+l a_{i} x^{i+(l-1) n}+\cdots+a_{0}{ }^{l} . \tag{3.8}
\end{equation*}
$$

(1) Assume $n \geqq 3$ and $l \geqq 2$. If $1 \leqq i \leqq n-2$, then

$$
0 \leqq n-i-2 \leqq n-3=s_{l}=\left[n--1-\frac{(l+1) n+1}{p}\right]
$$

and

$$
i+(l-1) n+n-i-2=\ln -2=p-1 .
$$

By (3.3), we have

$$
C\left(f^{l} x^{n-i-2} d x\right)=\left(l a_{i}\right)^{1 / p} d x=0 .
$$

Hence f must be of the form

$$
f(x)=x^{n}+a_{0} .
$$

(2) Assume $n \geqq 4$ and $l=1$. If $2 \leqq i \leqq n-2$, then

$$
0 \leqq n-i-2 \leqq n-4=s_{l}=\left[n-1-\frac{2 n+1}{p}\right]
$$

and

$$
i+n-i-2=n-2=p-1
$$

By the same reason as above, we have

$$
f(x)=x^{n}+a_{l} x+a_{0} .
$$

(3) If $n=2$, then we have

$$
f(x)=x^{2}+a_{0}
$$

(4) If $n=3$ and $l=1$, then we have $p=2$ and

$$
f(x)=x^{3}+a_{1} x+a_{0}
$$

On the other hand, the curves defined by

$$
y^{p}-y=x^{p+1}+a x+b, \quad(a, b \in k)
$$

are isomorphic to each other and all the curves defined by

$$
y^{p}-y=x^{n}+a, \quad(a \in k)
$$

are isomorphic to each other. This completes the proof.

References

[1] P. Cartier, Questions de rationalite des diviseurs én géometrie algbrique, Bull. Soc. math. France 86 (1958), 177-251.
[2] P. Cartier, Une nouvelle opération sur les formes différntials, Compt. Rend. Paris 244 (1957), 426-428.
[3] M. Deuring, Automorphismen und Divisorenklassen der Ordnung 1 in algebraischen Funktionenkörpern, Math. Ann. 113 (1936), 208-215.
[4] H. Hasse, Theorie der relativ-zyklischen algebraischen Funktionen-Körper, insbesondere bei endlichem Könstantenkörper, J. reine angrew. Math. 172 (1935), 37-54.
[5] H. Hasse and E. Witt, Zyklische unverzweigte Erweiterungskörper vom Primzahlgrade p über einem algebraischen Funktionenkörper der Charakteristik p, Mh. Math. Phys. 43 (1936), 477-492.
[6] M. L. Madan, On a theorem of M. Deuring and I. R. Šafarevič, Manuscripta math. 23 (1977), 91-102.
[7] N.O. Nygaard, Slopes of powers of frobenius on crystalline cohomology, Ann. Sci. Ecole Norm. Sup. 14 (1981), 369-401.
[8] I. R. Šafarevič, On p-extensions, Amer. Math. Soc. Trans. Series II vol. 4 (1954), 59-71.
[9] C. J. Seshadri, L'operation de Cartier. Applications, in "Séminaire C. Chevalley, E. N. S. 1958/59", Secrétariat Math. Paris 1960.
[10] D. Subrao, The p-rank of Artin-Schreier curves, Manuscripta math. 16 (1975), 169-193.
Susumu Irokawa
Institute of Mathematics
University of Tsukuba
Ibaraki 305
Japan

Ryuji Sasaki
Department of Mathematics
College of Science and Technology, Nihon University
Kanda, Tokyo 101
Japan

[^0]: Received March 1, 1990. Revised May 8, 1990.

