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1. Intreduction

Let X be a complete non-singular algebraic curve over an algebraically
closed field k2 of positive characteristic p. Let F:0Oy—Ox be the Frobenius
homomorphism F(a)=a?, and denote the induced p-linear map H¥X, Ox)-»
HY(X, 0x) again by F, which is called the Hasse-Witt map. The dimension of
the semi-simple subspace H'(X, Ox), of H'(X, Ox) is denoted by ¢(X) and called
the p-rank of a curve X, which is equal to the p-rank of the Jacobian variety
of X.

Let #: X—Y be a p-cyclic covering of complete non-singular curves over k.
Then the Deuring-Safarevi¢ formula is the following:

o(X)—1+r=p(a(Y)—1+r) (1.1)

where 7 is the number of the ramification points with respect to = (see Subrao
[10], Deuring [3], Safarevi¢ [8]).

An algebraic curve X, which is not birationally equivalent to P!, is called
an Artin-Schreier curve if there is a p-cyclic covering =: X—P'. Then the p-
rank ¢(X) of X is immediately known by the above formula, however the rank
of the Hasse-Witt map is not known. In this article, we shall prove the fol-
lowing.

THEOREM. Let X be an Artin-Schreier curve defined over an algebraically
closed field k, of positive characteristic p. Then the Hasse-Witt map of X is the
zero map if and only if X is birationally equivalent to the complete non-singular
algeraic curve defined by the equation

yP—y=x'
for some divisor | (1=2) of p+1.

The Jacobian variety of a curve X is isomorphic to the product of super-
singular ellitic curves if and only if the Cartier operator is the zero map
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(Nygaard [7]). Since the Cartier operator is the transpose of the Hasse-Witt
map, our theorem gives the Artin-Schreier curves whose Jacobian variety is
isomorphic to the product of super-singular elliptic curves.

2. Basic for H(X, Q%)

Let X be an Artin-Schreier curve, hence there is a p-cyclic coverning
n: X—P'. Let k(X) and k(P") denote the function fields, and we regard k(P?)
as contained in k(X). The fields k(X) and k(P*) can be expressed in the fol-
lowing :
k(X)=k(x, v) and k(PYH=Fk(x)
where
yP—y=f(x), [fx)Ek(x).

Moreover, we can assume that f(x) satisfies the following conditions:

G(x)

—a) - (x—ap)n 2.1)

flx)=

where

(1) G(x) is a polynomial in 2[x],

(2) e;’s are positive integers prime to p,

(3) as#a; if ¢#j and G(a))#0 for i=1, ---, n,

(4) deg G(x)—(e;+ -+ +e,)=e, is a positive integer relatively prime to .
Then the points of P! which ramify in =: X—P' are exactly {a,, -+, &y, o0},
If we denote by P, ---, P, and P, the points in X lying over ai, ---, a, and oo,
then the divisor of the differential dx on X is given by

div (dX):é‘i(eﬂrl)(zﬁ~1>Pi—(2p—(eo+1)(P~1))Po . (2.2
Hence the genus g(X) of X is given by the formula
2g(X)—2=deg (div (dx)= 2 (ei+1Np—1)—2p . 2.3)

In the sequel, for a real number, a, we denote by [a] the largest integer not
exceeding a. Further we denote by |S| the cardinality of a finite set S.
We define finite sets of differentials;
Hy={y"x"dx |(eo+1)Xp—1)—re,—(b+2)p =0,

0<b=<e,—2, 0=r=<p—1}

and for each /=1, ---, n,
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ydx
(x—a)*

Hi:{ e+ 1Xp—1)—rei—ap=0, 1<a<e,, ogrgp—z}.

Then we have the following;

LEMMA.

D 1Hol =3 (e—1Xp—D)

1
2) 111i|:§'(ei+1)(p'_l)
3) |Hy+H |+ +1H,|=g(X)
4) _QHi forms a basis for HYX, Qx).

PROOF. By the conditions defining the set | H,|, we have

(“’Lb;lil—lgrgo. 2.4)
0

For each b with 0<b<e,—2, the number of r satisfying (2.4) is given by

(bo—ewl)pmlJ .

@(b) :[

Hence we have

eo—2 €0—2 (eo—b’_‘l)p—l
J— —\
|Hol =3 ph)= 3| =P
Since (p, e,)=1, the set {(e,2—1)p, (ea—2)p, ---, 1-p, 0} gives a complete set of
representatives of Z modulo e¢,Z, hence so does {(e,—1)p—1, (e,—2)p—1, ---,
1.p—1,0—1}. Therefore we have

=2 0t ((eo—b—D)p—1 [ (ey—b—1)p—
0,1, e 2:2{@ b—1p _[(e b—1)p 1}}
@y () @y b=0 €y €y
:(eo-l)w _2e§2b,_1H‘)l.
(4 €y b=0

It follows that

|Hy|=(e,—1) (eo=Dp—1 w(p‘}‘l)(eo-—l)(eo_Z)
€o 200

=5 (e DiZee—Dp—2~(p+1Xer—2)}

=3 (e 1Xp—D).

This completes the proof of 1).
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As the equality in 2) is proved in the same way, we shall omit its proof.
3) is a direct consequence of 1), 2) and (2.3).

As is easily seen, the divisors of the rational functions x, vy and x—a; on
X, are given by

div (x)=(x)o—p P, ,
div (3)=(¥)o— i%esz

div(x—a)=p(P;—P,),
where (x), and (), are the divisors of zeros of x and y, respectively. It fol-

lows that

aiv (22 )=t 3} et 1Xp—D—rei—ap} P,

+{(eo+1)Xp—1)—res+(a—2)p} P,
and

div (372 d0)=r(y+b(x)et 33 {(eit1(p—1)—re ) P,

—|—{(eo+1)(17—1)—7’60—(b+2)15}Po .
Thus we see that every element in H; (0<i<n) is a holomorphic 1-form. The
elements in _Q)Hi are linearly independent over %, since otherwise [k(x, v):

k(x)] would be smaller than p. Thus, by 3), we get 4).

3. Proof of the theorem

We adopt the same notation as before. Let C: H X, Qx)—~HYX, 2%) be
the Cartier operator of X. (For the definition and properties of C, we refer
to Cartier [1], [2] and Seshadri [9].) Then it satisfies

CfP+fPx+ 4+ fpPxP N)dx)=f,1dx, 3.1
because x is a separable element of %(x, y) over £ and any element f in k(x, )
can be uniquely written in the form

F=faP o2 ey PP

Since the Cartier operator is the transpose of the Hasse-Witt map F: H(X, Ox)

—HY (X, Oy), it suffices to determine Artin-Schreier curves whose Cartier operator
is the zero map.

Now we shall prove the “if” part. Let X be the curve defined by

yP—y=x'
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where [ is a divisor of p-+1 and /=2. By the Lemma in the section 2, we can

write a basis for H(X, Q) in the following way;

dx, xdx, -, x%dx,

Since y"=(y?—x")", we have

C(yTxbdx)zC( 5 (’ )yw-M(—xl)kxbdx)

K=o\ h
1/p

— ¥ 1P yT—R Lh+bd
3(}) (hreyTrCEed),
where (;) is the binomial coefficient. To prove that C is the zero map, it is

sufficient to show
C(x"*0d x)=0
for all », b and A satisfying

0<r<p—1, 0<h<r and 0<b<s,.

By (3.1), C(x****dx)=+0 if and only if [A+b=—1 (mod p). Suppose there exist

h and b satisfying
0=hsr<p—1, 0<b=s,
and
lh+b=ip—1

for some 7>0. Let p+1=I/m. Then we have

Ih+b=i(lm—1)—1=ilm—i—1<ilm

and
. lh+b+1 _(p—1)+1-1
= < <l.
Ty T Ty ¢
hence
h<im—1 and Z/—1. (3.2)

If h=im—t, t=1, then r=im—t=h; hence
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b=lt—i—1£s,ZSim-1

:[1_1_W]§[,2_
y
By (3.2), we have t=1. Then,

Lh+b=(Gm—)+Sim1

:(im—l)l+[1~1—iml+1]

<OUm—DI+l—i—2=iml—1—2
<iml—i—1=ip—1.

This is a contradiction. Thus we have C(x'**dx)=0.

Next we shall prove the “only if” part. Let X be an Artin-Schreier curve
whose Hasse-Witt map is the zero map; hence the p-rank ¢(X) is zero. Then
by (1.1), we see that X is defined by an equation

yP—y=f(x),
where
fx)=x"+a, x" '+ - 4a,, for n=2 and (n, p)=1.

As above,
Hy={y"x"dx|(eo+1)Np—1)—re;—(b+2)p =0,

0<b<ey—2, 0r<p—1}
forms a basis for H%(X, 2x). Since
Cly™x*dx)y=C((y?—f) x"dx)
— z r\Y? —1\» e h 40
=31 (}) (=DMryTRC(f ),

we have
C(frxbdx)=0 (3.3)

for all 4, » and b satisfying 0<h<r<p—1, 0<bZn—2 and
(n+1)p—1)—(0b+2)p—rn=0. (3.4)
By (3.3) with »=0, we have
Cldx)=C(xdx)= - =C(x*dx)=0

where s,=[n—1—(n-+1)/p]. Since C(x?"*dx)=dx, we must have [n—1-—(n+1)/p]
<p—2. It follows that n<p-1 noticing that (p, n)=1. Assume n=p; hence
n<p—1. Then there exists /=1 such that
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In+1=p<+1)n+1.
Again by (p, n)=1, we have

In+1<p=({+1Dn—1.
Therefore we have

deg (fH=In,

U4+l

deg (flx8t)=1n+[n—1 ,

]:(1+1)n-3.
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(3.5

Suppose p—1l=in-+b, 0<b=<s,. Then we have f'x’=x?"'+g(x) where g(x) is

polynomial in ~[x] of degree <p—2; hence we have
C(f'x’dx)=dx.

This contradicts to (3.3). Therefore we have

p—1=in+s,+1=In+n—2.
By (3.5) and (3.6), we have

p—1=0U+n—-2, i.e p+l=(+Dn.
Thus in any case we have
p+1=in

for some /=1. Since (n, p)=1, we can write

. . f:x"+aixi+ e ay,
with 7<n—2 and

fz:xln+laixi-)-(l—1>n+ +(Zol.
(1) Assume n=3 and [=2. If 1</<n—2, then

_ (H—l)n—i—l}

0§n~z’——2§n43:3l_—_[n,m1 ;

and
i+({—n+n—i—2=In—2=p—1.
By (3.3), we have
C(fixm i 2dx)=a)V?dx=0.

Hence f must be of the form
fx)=x"+a,.
(2) Assume n=4 and /[=1. If 2</=n—2, then

Zn;—l:l

O§n~z¥2§n—4:s,:[n—l——

(3.6)

(3.7

(3.8
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and
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itn—i—2=n—2=p—1.

By the same reason as above, we have

fx)=x"+a;x+a,.
(3) If n=2, then we have
fx)=x"+a,.
(4) If n=3 and /=1, then we have p=2 and
flx)=x*+a,x+a,.

On the other hand, the curves defined by

are

are

(1]
[2]
[3]
[4]
(5]

[6]
L7]

£8]
£9]

[10]

yP—y=xPlbax+b, (a,besk),
isomorphic to each other and all the curves defined by
yP—y=x"+a, (ask),

isomorphic to each other. This completes the proof.

References

P. Cartier, Questions de rationalite des diviseurs én géometrie algbrique, Bull. Soc.
math. France 86 (1958), 177-251.

P. Cartier, Une nouvelle opération sur les formes différntials, Compt. Rend. Paris
244 (1957), 426-428.

M. Deuring, Automorphismen und Divisorenklassen der Ordnung 1 in algebraischen
Funktionenkérpern, Math. Ann. 113 (1936), 208-215.

H. Hasse, Theorie der relativ-zyklischen algebraischen Funktionen-Kérper, insbes-
ondere bei endlichem Konstantenkorper, J. reine angrew. Math. 172 (1935), 37-54.

H. Hasse and E. Witt, Zyklische unverzweigte Erweiterungskérper vom Primzahl-
grade p iiber einem algebraischen Funktionenkérper der Charakteristik p,
Mh. Math. Phys. 43 (1936), 477-492.

M.L. Madan, On a theorem of M. Deuring and L. R. Safarevi®, Manuscripta math.
23 (1977), 91-102.

N.O. Nygaard, Slopes of powers of frobenius on crystalline cohomology, Ann. Sci.
Ecole Norm. Sup. 14 (1981), 369-401.

. R. Safarevi&, On p-extensions, Amer. Math. Soc. Trans. Series Il vol. 4 (1954), 59-71.

C.J]. Seshadri, L’operation de Cartier. Applications, in “Séminaire C. Chevalley,
E.N.S. 1958/59”, Secrétariat Math. Paris 1960.

D. Subrao, The p-rank of Artin-Schreier curves, Manuscripta math. 16 (1975),

169-193.
Susumu Irokawa Ryuji Sasaki

Institute of Mathematics Department of Mathematics
University of Tsukuba College of Science and Technology,
Ibaraki 305 Nihon University

Japan Kanda, Tokyo 101

Japan



