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ANR-RESOLUTIONS OF TRIADS

By

Sibe MARDESIC

1. Introduction.

By a triad of topological spaces (X, A, A’) we mean a topological space X
and two subsets A, A’S X such that AUA’=X. By an ANR-triad we mean a
triad (X, A, A’) such that A and A’ are closed subsets of X and X, A, A’ and
ANA’ are ANR’s (for metric spaces). A map of triads f:(X, A, A)—~{, B, B’)
is a map f:X—Y such that f(A)EB, f(A)EDL.

An inverse system of triads (X, 4, A)Y=(X, A, A"z, paz, A) consists of a
directed index set /4, of a collection of triads (X, A4, A")=(X,, A;, AY, 24,
and of maps triads paa (X, A, A2 — (X, 4, A");, A=, such that pi=1x,,
A=A and paapra=pii, ASASA.

By a morphism p=(p;): (X, 4, A)—(X, A, A’) of a triad into an inverse
system of triads we mean a collection of maps of triads p, : (X, 4, A")~(X, 4, A");,
2 A, such that paprr=pi, A=A

A resolution of a triad (X, 4, A’) is a morphism p=(p;) : (X, A, A")—(X, 4, A")
which satisfies the following two conditions :

(R1) Let (P, Q, Q) be an ANR-triad, let <V be an open covering of P and
Fi(X, A, A)—(P, Q, Q") a map of triads. Then there exist a 24 and a map
of triads g:(X, A, A’);—(P, @, @) such that the maps gp, and f are SV-near
maps.

(R2) Let (P, Q, Q') be an ANR-triad and let & be an open covering of P.
Then there exists an open covering <V’ of P such that whenever 14 and
g, g (X, A A");—(P, Q, Q) are maps such that the maps gp, and g’pa: are
cy’-near, then there exists a A’=2 such that the maps gp,: and g'pa are
C-near.

If all (X, A, A"),, A€ 4, are ANR-triads, p:(X, A, A")~(X, 4, A’) is called
an ANR-resolution of the triad (X, A, A").

Note that the definition of a resolution of triads given in the present paper
differs from the definition given in [3].

In an analogous way one defines resolutions and ANR-resolutions of pairs of
spaces (X, A)—(X, A)=((X, A), p1s, A) and of single spaces X—>X=(X3, pi, 4)
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(see [71, [8], [5], [6]). Note that an ANR-pair (X, A) consists of ANR’s (for
metric spaces) X, A such that A is a closed subset of X.

Resolutions for single spaces were introduced in [5] and [6] (also see [8])
and can be viewed as special inverse limits. K. Morita has recently shown [10]
that they coincide with the proper morphisms X—X introduced in his paper [9].
In [10] Morita also gave an internal characterization of resolutions, Another
internal characterization is due to T. Watanabe [11]. Resolutions for pairs were
introduced in [8] and studied and characterized in [7].

ANR-resolutions are essentially used in [1] in constructing the Steenrod-
Sitnikov homology for arbitrary spaces. In order to prove the excision axiom for
this homology theory, we need several facts concerning ANR-resolutions of triads.
To establish these facts is the main purpose of the present paper. The obtained
results, together with results in [4], show that our homology indeed satisfies the
excision axiom.

The main result of the paper is Theorem 3, which asserts that every triad
of topological spaces admits an ANR-resolution. Moreover, the ANR-resolution,
which we shall construct, will have some additional properties (see (4.1)), needed
in establishing the excision axiom.

2. A factorization theorem for maps of triads.

The least cardinal of subsets dense in a space X is called the density of X
and will be denoted by s(X). Note that for any map f:X—Y one has s(f(X))
<s(X). If (X, A, A’) is a triad, then

s(X)=s(A)+s(A)=max(s(A), s(A"), R,).

Moreover, for any metric pair (X, A) one has s(A)=s(A)<s(X).
Generalizing Lemma 3 of [7], we will now establish a factorization theorem
needed in §3.

THEOREM 1. Let f:(X, A, A")—~(Y, B, B") be a map of triads, where (Y, B, B’)
is an ANR-triad. Then there exists an ANR-triad (Z, C, C') and there exist maps
of triads g: (X, A, A)—~(Z, C, C"), h:(Z, C, C")—(Y, B, B') such that f=hg and
the following inequalities hold :

(1) s(Z)=<s(X),
(2) s(O)=s(A),
(3) s(C=s(AN.
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The proof repeatedly uses the following simple lemma.

LEMMA 1. Let M be a metric space, P an ANR and f : M—P a map. Then
there exist an ANR N and a map g:N—P such that M is a closed subset of N,
gIM=f and s(N)=s(M). Moreover, if M is finite, then N=M.

Proor. If M is finite, we put N=M and g=f. Now assume that M is
infinite. By the Kuratowsky-Wojdistawski embedding theorem (see [8], I, §3.1,
Theorem 2), one can assume that M is embedded in a normed vector space X
and is closed in the convex hull L of M. Note that s(L)=s(M) because M is
infinite. The map f:M—P extends to a map g:N—P, where N is an open
neighborhood of M in L. Since L is an AR, N is an ANR. M is closed in N.
Moreover, s(N)=s(M), because MSNZ L implies s(M)<s(N)<s(L).

PrOOF OF THEOREM 1. Let f(A4), f(A’) denote the closures in Y of the
sets f(A) and f(A’) respectively. Since B and B’ are closed sets, we have
F(AEB, f(A)SB’. By Lemma 1, there is an ANR D and there is a map
ho: D—BNB’ such that F(A)NF(A") is closed in D, h,| F(ANF(A) is the inclu
sion map and

(4) s(D)=s(FIANFAN=min(s(f(A)), s(f(A))).

Let £ be the metric space obtained from the topological sum DLif(A) by
identifying the two copies of f(A)Nf(A’). Note that D and f(A) are closed
subsets of £ and

(5) s(EY=s(D)+s(f(A)).

Since s(D)=<s(f(A)), we see that s(D)+s(f(A)=s(f(A)), whenever [f(A) is
infinite, and thus

(6) s(E)=s(f(A))=s(A)

(6) also holds if f(A) is finite because then also F(A)NF(A") is finite, D=f(A)
NfAY and E=f(A). Let h;: E—B be the only map such that h,|D=h, and
hi| f(A) is the inclusion map.

By Lemma 1, there is an ANR C and there is a map h,:C— B such that E
is a closed subset of C, h, extends hl\and

(7) s(C)=s(E).

Note that f(A) and D are closed subsets of C, h,|f(A) is the inclusion map and
hylD=h, If f(A) is finite, then C=E=f(A) and h,=h,.
In the same way we define an ANR C’ and a map hj:C'—B’ such that
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J(A") and D are closed subsets of C’, hi|f(A’) is the inclusion map, hi|D=h,
and

(8) s(C=s(f(AN=s(A).

Moreover, if f(A’) is finite, then C’'=f(A’).

We now form a new space Z. It is obtained from the topological sum CLIC’
by identifying the two copies of D). Note that C and C’ are closed in Z,
CNC’'=D and CUC'=Z. By the sum theorem for ANR’s we see that Z is an
ANR and therefore (Z, C, C’) is an ANR-triad.

We take for h:Z—Y the unique map such that A|C=h,, h|C’=h}. Clearly,
h is a map of triads h:(Z, C, C")—(Y, B, B'). We define the map g:X—Z by
requiring that

glA=flA: A-flA)SCsZ,

gl A =fA : A-TFANSCSZ .

Clearly, g is a map of triads g:(X, A, A)—(Z, C, C’) and hg=7.
By (6), (7) and (8), we have

(9) S(Z)=s(C)+s(C)=s(f(A)+s(f(A).

If at least one of the sets f(A), f(A’) is infinite, then s(f(A))+s(f(A4")=
max(s(f(4), s(fIAMEs(f(X)=Ss(X), and thus (1) holds. If both sets f(A),
f(A") are finite, then C=/f(A), C'=f(A’) and therefore Z=/f(X), which again
implies (1).

3. An approximate factorization theorem.
The following approximate factorization theorem will be used in §4. in the

proof of the main theorem (existence of ANR-resolutions).

THEOREM 2. Let f:(X, A, A)—=(Y, B, B’) be a map of triads, let (Y, B, B')
be an ANR-triad and let <V be an open covering of Y. Then there exists an
ANR-triad (Z, C, C') and there exist maps of triads

g: (X, A, AV=(Z,C, C), h:(Z,C C)=(Y, B, B
such that the maps hg and f are &V-near and the following relations hold :
(1) s(C)=max(s(A4), ]y, s(CH=max(s(4A), ¥,),
(2) s(Z)=max(s(X), R,),
(3) g(A)SInt(C), g(A)EInt,(C).
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PrOOF. In view of Theorem 1 there is no loss of generality in assuming
that

(4) s()=s(X),
(5) s(B)=s(A), s(BN=s(A).
We define (Z, C, C’) by putting
(6) C=({(BNB)XI)\UBX1)SY XI,
(7) C'=((BNB)XI)J(B'XO)SY X1,
where I=[0, 1],
(8) Z=CUC'SY XI.
Clearly, C, C’, CNC’ and Z are ANR’s and C, C'SZ are closed subsets, so
that (Z, C, C’) is an ANR-triad. Moreover,
(8) s(C)=s(Bx)=max(s(B), Reo=max(s(4), Vo),
(9) s(C=max(s(B"), ¥o)=max(s(4"), ¥o),
(10)  s(Z)=s(O)+s(C)=max(s(B), s(B"), ¥o)=max(s(Y), ¥,)=max(s(X), VR,).
Let 7 :Z—Y be the restriction to Z&Y X of the first projection ¥ X[->Y.
Note that # is a map of triads h:(Z, C, C)—=(Y, B, B).
We will also define a map ¢ :(Y, B, B)—=(Z, C, C') such that i¢ and the
identity 1y are <V-near maps and
(11 d(B)EIntz(C), ¢(B)ESInt,(C).
To complete the proof, it then suffices to put g=¢f :(X, 4, A)—~(Z, C, C)),
because hg=h¢f and f are <Y-near maps and (3) is a consequence of (11) and

(12) g(A)=¢f(ASYB), gAVSHDB).

In order to define ¢ we use the following lemma.

LEMMA 2. Let (B, D) be an ANR-pair and let U be an open covering of B.
Then there exists @ map ¢ : B=(DXD\U(BX0)ESBXI such that pp and lp are
U-near maps, where p denotes the first projection p : BXI—B. Moreover, ¢(x)=
(x, 1) for xD.

The map ¢:(Y, B, B)—(Z, C, C’) is constructed as follows. We apply
Lemma 2 to the ANR-pair (B, D), where D=BNB’, and to the open covering
Y=< |B. We obtain a map
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1

0 Ba((BmB’)x[f, IDU(BXD(;C

such that
1
(13) ga(x):(x, ?) , xeBNB’

and the maps h¢ and 1p are <V-near.
The same lemma, applied to (B’, BN\B’) yields a map
’ !’ ’ 1 ’ ’
¢ B'~((BNB )x[o, 7])U(B X0)=C

such that
oy, L ,
(14) o'0=(x,5), x=BNB.

and the maps h¢’ and lp are <V-near.

Because of (13) and (14), the two maps ¢, ¢’ extend to a unique magp
¢:Y—Z, which is a map of triads ¢:(Y, B, B)—~(Z, C, C’). Clearly, h¢ and
1y are CV-near maps. Moreover, ¢(B)=¢(B)SInt,(C), because

(15) (BB [% 1])u<B XD EInt,(C).

Similarly, ¢(B")SIntz(C’).
In order to prove Lemma 2, we need the following lemma (see [8], I, 6.5.
Lemma 4).

LEMMA 3. Let (B, D) be an ANR-pair and let U be an open covering of B.
Then there exists an open neighborhood V of D in B and a map k:B—B such
that k|\V is a retraction V—D and k is U-near 1p.

PrROOF OF LEMMA 2. We choose V and % according to Lemma 3. Let
Z:B—I be a map such that
(16) X|D=1, X|B\V=0.
We then define ¢ : B~+BXI by
17 o(x)=(k(x), 2(x)), x<EB.

If x&D, then (x)=(x, 1). If x&V, then p(x)eDxI and if xB\V, then
o(x)=(k(x), 00 Bx0. Consequently, o(B)S(DxI)\J(Bx0). Furthermore, 15 and
pe=F are U-near maps.
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4. Existence of ANR-resolutions of triads.

THEOREM 3. Every triad of topological spaces (X, A, A’) admits an ANR-
resolution p=(pz): (X, A, A)—(X, A, A’) indexed by a cofinite set and such that
for every A= A one has

(1) X}ZIntXZAjulntxlA}.

In [7, Theorem 6], it was shown that every pair of spaces admits an
ANR-resolution of pairs. Although the present proof proceeds along same general
plan, one must take into account the new additional requirements.

We say that two maps of triads ¢,:(X, A, A)—~(Y,, B, BY), ¢.:(X, A, A
—(Y,, B, B;) are equivalent provided there is a homeomorphism # :(Y,, By, B))
—(Y,, B,, Bj) such that

hay=s

Consider all maps of triads ¢: (X, A4, A")—(Y, B, B’) such that (Y, B, B’) is
an ANR-triad and

(2) s(Y)=max(s(X), R,),
(3) s(B)=max(s(4), R,), s(B)=max(s(4"), ¥,),
(4) g(A)EInty(B), ¢(A")SInty(B),

where Inty denotes interior with respect to Y. Note that (2) implies that the
weight w(Y)=s(Y)=<max(s(X), ¥,) and card(Y)<2%Y <max(2:‘¥, 2%). There-
fore, the equivalence classes of the maps ¢ form a set IT We choose for each
7€I’ a unique representative g,: (X, A, A)—~(, B, B), of the class 7.

Let 4 be the set of all finite subsets of I, ordered by inclusion. If =
{ri, -, ra} €4, we define a triad (X, B, B’); by putting

(5) By=B; X XB;,, Bj=BjX--XBj_,
(6) Yi=B;UB;SY, X XY, .
Since B;, B; are ANKR’s, which are closed in Y,, it follows that B; Bj are
ANR’s closed in Y; Moreover,
(7) BsN\Bj=(B;,N\Bj)x--x (B, ,NB},)
is an ANR, because B,,N\Bj, are ANR’s. Therefore, by the sum theorem for
ANR’s, Y; is also an ANR and (Y, B, B’); is an ANR-triad.
If 650'={ry, -+, 7w -, Tm}, we define gs5 : (V, B, B)s—(Y, B, B'); as the

restriction to Y of the projection Y, X--- XY, X XY, -V, >--XY,. We
also define ¢;: (X, A, A")—»(, B, B’) as the map
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Go=(y, X X Gy s XY X XY
Since gs(A)< B, - X B;,=B; and ¢;(A")< Bj, we see that g5 X)E Bs\UB§=Y5.
Clearly, (Y, B, B")=((Y, B, B")s, qs», 4) is an inverse system of ANR-triads and
q=(gs): (X, A, A)->(¥, B, B’) is a morphism.

We will now show that
(8) gs(A)SInty,(Bs), qa(A)SInty(Bj),
so that ¢; also satisfies (4). Indeed, if 6={ry, -+, 74}, then
(9) gl A) Eqy (A) XX gy (A) gIntYrgBh) 3 X Intyrn(f’,n) 5
Clearly, Inty;,l(B;.l) ><---><Inty;,n(B,n) is an open set of YV, X---XY,,, contained in
B;SY, and therefore it is an open set of Y; Consequently, (9) implies the
first of the formulas (8). The second one is established analogously. Note that
(8) implies
(10) g X)Elnty(Ba)\UInty (BHEY 5 .

We now define a new directed set M. Its elements are pairs p=(0, U),
where 64 and U is an open neighborhood of ¢s(X) in Y'; contained in Inty;(B5)
Ulnty;(B3).

We put 2=(3, U)S(¥, U')=y provided d=0" and ¢as(U")SU. The set M
is directed. Indeed, if =, UM, i=1, 2, we first choose 0=40,, 0,. Note
that

11 75:5(qs(X ) =q: (XDEU; , =1, 2.

Therefore, the open set

(12) U =05, UDM(Gap) UNEY s
satisfies

(13) gs(X)CU,

(14) NSV,  i=1,2,

so that (6;, U,))=(0, U), i=1, 2.
For p=(3, U) we put

(15) X,=U, A,=UNB;, A,=UNBj.

Note that X,, A,, A, and A,NA) are ANR’s because they are open sets of the
ANR's Y5, B., B} and By \Bj respectively. Furthermore, A, and Aj are closed
in X,=U, because B, and B are closed in Y, Also A JAL=X,, so that
(X, A, A", is an ANR-triad. This triad satisfies (1). Indeed, the set UNInty;Bs
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is open in U=X, and is contained in A,=UNB;. Therefore,
(16) UNinty;BsSInty Ay .

An analogous formula holds for Bj and Aj. Consequently,

an Xy=U=UN(Inty,Bs\Ulnty;Bj)Sntx , A, Ulnt ¢ A, .

We now define maps 1, : (X, 4, A)p—(X, A, A, p=y’, and r,: (X, 4, A)
—(X, A, A, as ¢ |U" and g¢s5: X—go(X)SU=X, respectively. Clearly, we
obtain an inverse system of ANR-triads (X, 4, A)=((X, A, A, ruw, M) and a
morphism r=(r,): (X, 4, A)—~(X, 4, 4°).

We will now show that r is a resolution. We first establish property (R2).
Let (P, Q, Q') be an ANR-triad and let <V be an open covering of P. Let p=
(6, U)eM and let g, g": (X, A, A"),—(P, Q, Q') be maps of triads such that gr,
and g'r, are “V-near maps. Since r,=¢; and ¢;(X)SU=X,, we see that g|gs(X)
and g’[¢gs(X) are <V-near maps. Therefore, every point z€¢s(X) admits a V(z)
€V such that g(z), g’(z)EV(z). By continuity, there exists an open neighbor-
hood U(z) of z in U such that for any z’U(z) the points g(z'), g’(z") eV (2).
Let U’ be the union of all U(z), when z ranges over ¢;(X). Then U’ is an open
neighborhood of ¢;(X) in UU. Moreover, the maps g|U’, g’'|U’ are ?V-near. Note
that U’ SInty,(B;s)\UInty(Bj) because U’SU. Consequently, p¢'=(6, U’) belongs to
M, p=p" and the maps gr,, =g|U’, g'r.»=g’|U’ are CY-near.

We will now establish property (R1). Let f:(X, 4, A)—(P, Q, Q) be a
map of triads, let (P, Q, Q') be an ANR-triad and let ¢V be an open covering
of P. It suffices to find an ANR-triad (Y, B, B’), which satisfies (2), (3) and (4),
and to find maps of triads ¢: (X, 4, A")—~(, B, B"), h:(Y, B, B)—~(P, @, Q")
such that ¢ satisfies (4) and the maps ig and f are CV-near. In that case ¢ is
equivalent to ¢, for some y=/” and we can assume that ¢g=¢,. If we now take
any p=(, U)eM such that 0= {y}, then h/=h|U:X,—P is a map such that
h'v,=hgq is <Y-near the map f.

That such an ANR-triad (Y, B, B’) and such a map ¢ exist follows from
Theorem 2.

In order to complete the proof of Theorem 3, we will now replace (X, 4, 4’)
by a new inverse system (Z, C, C*), which is indexed by the set .I of all finite
subsets of M and is therefore cofinite. We choose an increasing function ¢: /4
—M such that o({g})=p. We then put (Z, C, C'1=(X, 4, A)pr, A€4, s
=Topun, ASA, S1=rem, ASA. It is easy to see that s=(s;):(X, 4, A")—
(Z, C, €") is a resolution of triads with all the desired properties. This well-
known argument is described in more details in the case of pairs in [7].
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5. Induced resolutions of pairs.

Let p=(p,): (X, 4, A)—(X, 4, A") be a morphism of a triad into an inverse
system of triads. This morphism induces several morphisms of pairs into systems
of pairs. In particular, we have the morphisms

P (X, A=(X, 4), pPx.a: (X, A)—(X, 4)
and
purom (X, B)=(X, B),

where B=AN 4, B;=A:NAj} (X, B),=(X,, By) and (X, B)=((X, B)i, pax, 4.
We also have morphisms p s : (4, B)—(4, B) and py 5 : (4, B)—=(4', B),
where (4, B)=(A, B);, pix, A), (A, B),=(A;, B2).

- REMARK 1. If p is a resolution, then so are p(x,., and px,a». 1O verify
properties (R1) and (R2) it suffices to associate with every ANR-pair (P, Q) the
ANR-triad (P, Q, @), where Q'=P.

By imposing rather mild restrictions on (X, A, A’) we can show that the
analogous assertion holds also in the case of the induced morphism px, . The
argument uses some ideas from a proof presented in [3].

THEOREM 4. Let p:(X, A, ANV—~(X, A, A") be a resolution of triads. If the
spaces X, X;, i€ A, are normal and the sets A, A’S X are closed, then the induced

morphism px.p : (X, B)—(X, B) is a resolution of pairs.

COROLLARY 1. If p:(X, A, A)—(X, A, A’) is an ANR-resolution of triads,
X is a normal space and A, A’S X are closed sets, then px, s :(X, B)=(X, B) is

an ANR-resolution of pairs.

ProOF. First note that the induced morphism py : X—X is a resolution [7].
Therefore, the assertion of Theorem 4 will be proved if we show that pev m
satisfies the following condition (B1)** (see [7], Theorem 2):

For everv 1=/ and every normal covering U of X, there exists a A=A

such that
(1) PpaadBa)ESt(pa(B), U).

In order to verify this condition note that p;(B) is contained in G=
St(p(B), U). Therefore, there is an open neighborhood G, of pi(B) such that

(2) DABYSG =G SG6.

Note that @=={p7(G,), X\ A4, X\ A’} is an open covering of X, because B=
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ANA’Sp7Y(G,). This covering is normal because it is finite and X is a normal

space. By a well-known property of resolutions (see [87, I, §6.2, Theorem 4),

there exists a /=4 and a normal covering &’ of X} such that (p,;.)"'(<V) refines &.
We now put

(3) H=(p11)"Y(G),
(4) Hy=(p2)7(Gy) .
Note that

(5) H,CH.

Moreover, since

(6) Dar(pa(BYEPIBEGC,

we see that
(7) b1 (BYSH.

Clearly, the sets pi.(A\H and p;.(A")\H, are closed subsets of X;,. We claim
that they are disjoint. Assume to the contrary that there exists a point

(8) y e (A\NH)N(pa (ANH).

Let V be a member of &, which contains y. For any open neighborhood W of
vy, which is contained in V, there exist points e A4, a’ A’ such that

(9) {pr(a), pr(a"} EW.

The set
(D) (Ppa) (V)

must be contained in one of the sets X\A4, X\A’ or p7YG,). It cannot be con-
tained in X\A because ac(p;)"(W). Similarly, the point a’&(p; )W) rules
out the set X\A’. Hence, we must have

(10) (2 )M N E pTHGo)=(p 1) (H,y) .

However, (9) and (10) imply

(11) {pa(a), pr(a’) SHNW .

This shows that every sufficiently small open neighborhood W of y intersects H,
and therefore y<H,= H, which, however, contradicts (8).
We now choose disjoint open set K, LS X;., such that

(12) pr(ANHEK, pi(ANHSL.
We then put
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(13) K*=KUH, L*=LJUH,

These are open sets in X;: such that

as TTASK*, FRANS LY,
(15) K*A\L¥=H.

Therefore,

(16) p2(BYS par (MNP (A)SK*NL*=H.

Now consider an open set K¥S X;. such that
a7 P (ASKSK S K*.
ay={K* X\K¥ is a normal covering of X;.. Therefore, by property (BI)**
applied to pr. . ([7], Theorem 2), there is a 2”7=2" such that
(18) DparalAr)ESt(p2(A), W).
However, St(pi.(A), 9)=K* so that (18) becomes
19 para (A1 SK*

Similarly, we argue with A’ and L*. Therefore, we can assume that 4"

also satisfies
(20) PaalANE L*.
It now follows, by (16), that
21 p22A(B2)Spaw(K*NL*)=p;2:(H).
Consequently, (3) yields the desired result
(22) p22:(B:)EG .
In the next theorem we consider the induced morphism p4, -
THEOREM 5. Let p:(X, A, AV—~(X, A, A") be a resolution of iriads. Let
the spaces X, X;, A< A, be normal, let the sets A, A’SX be closed and let the

sets ASX and A, S X;, A€ A, be normally embedded. Then the induced morphism
P (4, By—(A, B) is a resolution of pairs.

COROLLARY 2. If p:(X, A, AV~(X, A, A") is an ANR-resolution of itriads,
X is a normal space, A, A’SX are closed sets and A is normally embedded in X,
then the induced morphism p 4. p : (A, B)—(A, B) is an ANR-resolution of pairs.

We say that ACX is normally embedded in X (or @-embedded) provided



ANR-resolutions of triads 365

every normal covering <V of A admits a normal covering U of X such that
U| A refines V.

PROOF OF THEOREM 5. By [7, Theorem 2], it suffices to prove that the
induced morphism p,: A—A is a resolution and p 4, 5 has property (B1)**, Since
Px.n I8 a resolution and also AS X and A;€X,;, A, are normally embedded,
[7, Theorem 3] implies that p, is a resolution.

In order to establish (B1)** for p, s, we apply Theorem 4 and conclude
that px.s is a resolution. Therefore, p(x,s has property (B1)**. Consequently,
for any 2= 4 and any normal covering U of X; there is a A”=4 such that €]
holds. Now let <V be a normal covering of A;. Since A; is normally embedded
in X;, we can choose ¥ such that U|A refines <. Then the star Sty,
(pa(B), V) (star with respect to A;) clearly contains A;NSt(pi(B), U), which,
by (1), contains pj:(Bz-). This establishes (B1)** for pu 5-
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