ANR-RESOLUTIONS OF TRIADS

By

Sibe MARDEŠIĆ

1. Introduction.

By a triad of topological spaces (X, A, A') we mean a topological space Xand two subsets $A, A' \subseteq X$ such that $A \cup A' = X$. By an ANR-triad we mean a triad (X, A, A') such that A and A' are closed subsets of X and X, A, A' and $A \cap A'$ are ANR's (for metric spaces). A map of triads $f: (X, A, A') \rightarrow (Y, B, B')$ is a map $f: X \rightarrow Y$ such that $f(A) \subseteq B, f(A') \subseteq B'$.

An inverse system of triads $(X, A, A') = ((X, A, A')_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ consists of a directed index set Λ , of a collection of triads $(X, A, A')_{\lambda} = (X_{\lambda}, A_{\lambda}, A'_{\lambda}), \lambda \in \Lambda$, and of maps triads $p_{\lambda\lambda'}: (X, A, A')_{\lambda'} \to (X, A, A')_{\lambda}, \lambda \leq \lambda'$, such that $p_{\lambda\lambda} = 1_{X_{\lambda'}}, \lambda \in \Lambda$ and $p_{\lambda\lambda'}p_{\lambda'\lambda'} = p_{\lambda\lambda'}, \lambda \leq \lambda' \leq \lambda''$.

By a morphism $p = (p_{\lambda}) : (X, A, A') \to (X, A, A')$ of a triad into an inverse system of triads we mean a collection of maps of triads $p_{\lambda} : (X, A, A') \to (X, A, A')_{\lambda}$, $\lambda \in \Lambda$, such that $p_{\lambda\lambda'} p_{\lambda'} = p_{\lambda}$, $\lambda \leq \lambda'$.

A resolution of a triad (X, A, A') is a morphism $p = (p_{\lambda}) : (X, A, A') \rightarrow (X, A, A')$ which satisfies the following two conditions:

(R1) Let (P, Q, Q') be an ANR-triad, let \mathcal{V} be an open covering of P and $f:(X, A, A') \rightarrow (P, Q, Q')$ a map of triads. Then there exist a $\lambda \in A$ and a map of triads $g:(X, A, A')_{\lambda} \rightarrow (P, Q, Q')$ such that the maps gp_{λ} and f are \mathcal{V} -near maps.

(R2) Let (P, Q, Q') be an ANR-triad and let \mathcal{V} be an open covering of P. Then there exists an open covering \mathcal{V}' of P such that whenever $\lambda \in \Lambda$ and $g, g': (X, A, A')_{\lambda} \rightarrow (P, Q, Q')$ are maps such that the maps gp_{λ} and $g'p_{\lambda}$ are \mathcal{V}' -near, then there exists a $\lambda' \geq \lambda$ such that the maps $gp_{\lambda\lambda'}$ and $g'p_{\lambda\lambda'}$ are \mathcal{V} -near.

If all $(X, A, A')_{\lambda}$, $\lambda \in A$, are ANR-triads, $p: (X, A, A') \rightarrow (X, A, A')$ is called an ANR-resolution of the triad (X, A, A').

Note that the definition of a resolution of triads given in the present paper differs from the definition given in [3].

In an analogous way one defines resolutions and ANR-resolutions of pairs of spaces $(X, A) \rightarrow (X, A) = ((X, A)_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ and of single spaces $X \rightarrow X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ Received January 31, 1984. (see [7], [8], [5], [6]). Note that an ANR-pair (X, A) consists of ANR's (for metric spaces) X, A such that A is a closed subset of X.

Resolutions for single spaces were introduced in [5] and [6] (also see [8]) and can be viewed as special inverse limits. K. Morita has recently shown [10] that they coincide with the proper morphisms $X \rightarrow X$ introduced in his paper [9]. In [10] Morita also gave an internal characterization of resolutions. Another internal characterization is due to T. Watanabe [11]. Resolutions for pairs were introduced in [8] and studied and characterized in [7].

ANR-resolutions are essentially used in [1] in constructing the Steenrod-Sitnikov homology for arbitrary spaces. In order to prove the excision axiom for this homology theory, we need several facts concerning ANR-resolutions of triads. To establish these facts is the main purpose of the present paper. The obtained results, together with results in [4], show that our homology indeed satisfies the excision axiom.

The main result of the paper is Theorem 3, which asserts that every triad of topological spaces admits an ANR-resolution. Moreover, the ANR-resolution, which we shall construct, will have some additional properties (see (4.1)), needed in establishing the excision axiom.

2. A factorization theorem for maps of triads.

The least cardinal of subsets dense in a space X is called the density of X and will be denoted by s(X). Note that for any map $f: X \to Y$ one has $s(f(X)) \leq s(X)$. If (X, A, A') is a triad, then

$$s(X) \leq s(A) + s(A') \leq \max(s(A), s(A'), \aleph_0).$$

Moreover, for any metric pair (X, A) one has $s(A) = s(\overline{A}) \leq s(X)$.

Generalizing Lemma 3 of [7], we will now establish a factorization theorem needed in § 3.

THEOREM 1. Let $f:(X, A, A') \rightarrow (Y, B, B')$ be a map of triads, where (Y, B, B') is an ANR-triad. Then there exists an ANR-triad (Z, C, C') and there exist maps of triads $g:(X, A, A') \rightarrow (Z, C, C')$, $h:(Z, C, C') \rightarrow (Y, B, B')$ such that f = hg and the following inequalities hold:

- $(1) s(Z) \leq s(X),$
- $(2) s(C) \leq s(A),$
- $(3) s(C') \leq s(A').$

The proof repeatedly uses the following simple lemma.

LEMMA 1. Let M be a metric space, P an ANR and $f: M \rightarrow P$ a map. Then there exist an ANR N and a map $g: N \rightarrow P$ such that M is a closed subset of N, g|M=f and s(N)=s(M). Moreover, if M is finite, then N=M.

PROOF. If *M* is finite, we put N=M and g=f. Now assume that *M* is infinite. By the Kuratowsky-Wojdisławski embedding theorem (see [8], I, § 3.1, Theorem 2), one can assume that *M* is embedded in a normed vector space *X* and is closed in the convex hull *L* of *M*. Note that s(L)=s(M) because *M* is infinite. The map $f: M \rightarrow P$ extends to a map $g: N \rightarrow P$, where *N* is an open neighborhood of *M* in *L*. Since *L* is an *AR*, *N* is an *ANR*. *M* is closed in *N*. Moreover, s(N)=s(M), because $M \subseteq N \subseteq L$ implies $s(M) \leq s(L)$.

PROOF OF THEOREM 1. Let $\overline{f(A)}$, $\overline{f(A')}$ denote the closures in Y of the sets f(A) and f(A') respectively. Since B and B' are closed sets, we have $\overline{f(A)} \subseteq B$, $\overline{f(A')} \subseteq B'$. By Lemma 1, there is an ANR D and there is a map $h_0: D \rightarrow B \cap B'$ such that $\overline{f(A)} \cap \overline{f(A')}$ is closed in D, $h_0|\overline{f(A)} \cap \overline{f(A')}$ is the inclusion map and

(4)
$$s(D) = s(\overline{f(A)} \cap \overline{f(A')}) \leq \min(s(f(A)), s(f(A'))).$$

Let *E* be the metric space obtained from the topological sum $D \sqcup \overline{f(A)}$ by identifying the two copies of $\overline{f(A)} \cap \overline{f(A')}$. Note that *D* and $\overline{f(A)}$ are closed subsets of *E* and

$$(5) \qquad \qquad s(E) \leq s(D) + s(f(A)).$$

Since $s(D) \leq s(f(A))$, we see that s(D) + s(f(A)) = s(f(A)), whenever f(A) is infinite, and thus

$$(6) s(E) \leq s(f(A)) \leq s(A)$$

(6) also holds if f(A) is finite because then also $\overline{f(A)} \cap \overline{f(A')}$ is finite, $D = \overline{f(A)} \cap \overline{f(A')}$ and E = f(A). Let $h_1: E \to B$ be the only map such that $h_1 | D = h_0$ and $h_1 | \overline{f(A)}$ is the inclusion map.

By Lemma 1, there is an ANR C and there is a map $h_2: C \rightarrow B$ such that E is a closed subset of C, h_2 extends h_1 and

$$(7) s(C) = s(E).$$

Note that $\overline{f(A)}$ and D are closed subsets of C, $h_2|\overline{f(A)}$ is the inclusion map and $h_2|D=h_0$. If f(A) is finite, then C=E=f(A) and $h_2=h_1$.

In the same way we define an ANR C' and a map $h'_2: C' \rightarrow B'$ such that

S. MARDEŠIĆ

 $\overline{f(A')}$ and D are closed subsets of C', $h'_2|\overline{f(A')}$ is the inclusion map, $h'_2|D=h_0$ and

(8)
$$s(C') \leq s(f(A')) \leq s(A').$$

Moreover, if f(A') is finite, then C'=f(A').

We now form a new space Z. It is obtained from the topological sum $C \sqcup C'$ by identifying the two copies of D. Note that C and C' are closed in Z, $C \cap C' = D$ and $C \cup C' = Z$. By the sum theorem for ANR's we see that Z is an ANR and therefore (Z, C, C') is an ANR-triad.

We take for $h: Z \to Y$ the unique map such that $h | C = h_2$, $h | C' = h'_2$. Clearly, h is a map of triads $h: (Z, C, C') \to (Y, B, B')$. We define the map $g: X \to Z$ by requiring that

$$g | A = f | A : A \to \overline{f(A)} \subseteq C \subseteq Z ,$$

$$g | A' = f | A' : A' \to \overline{f(A')} \subseteq C' \subseteq Z .$$

Clearly, g is a map of triads $g:(X, A, A') \rightarrow (Z, C, C')$ and hg=f.

By (6), (7) and (8), we have

(9) $s(Z) \leq s(C) + s(C') \leq s(f(A)) + s(f(A')).$

If at least one of the sets f(A), f(A') is infinite, then $s(f(A))+s(f(A'))=\max(s(f(A))), s(f(A'))) \leq s(f(X)) \leq s(X)$, and thus (1) holds. If both sets f(A), f(A') are finite, then C=f(A), C'=f(A') and therefore Z=f(X), which again implies (1).

3. An approximate factorization theorem.

The following approximate factorization theorem will be used in 4. in the proof of the main theorem (existence of *ANR*-resolutions).

THEOREM 2. Let $f:(X, A, A') \rightarrow (Y, B, B')$ be a map of triads, let (Y, B, B') be an ANR-triad and let $\triangleleft V$ be an open covering of Y. Then there exists an ANR-triad (Z, C, C') and there exist maps of triads

$$g:(X, A, A') \rightarrow (Z, C, C'), h:(Z, C, C') \rightarrow (Y, B, B')$$

such that the maps hg and f are *V*-near and the following relations hold:

- (1) $s(C) \leq \max(s(A), \aleph_0), \quad s(C') \leq \max(s(A'), \aleph_0),$
- (2) $s(Z) \leq \max(s(X), \aleph_0),$
- (3) $g(A) \subseteq \operatorname{Int}_{Z}(C), \quad g(A') \subseteq \operatorname{Int}_{Z}(C').$

356

PROOF. In view of Theorem 1 there is no loss of generality in assuming that

$$(4) s(Y) \leq s(X),$$

(5) $s(B) \leq s(A), \quad s(B') \leq s(A').$

We define (Z, C, C') by putting

$$(6) \qquad C = ((B \cap B') \times I) \cup (B \times 1) \subseteq Y \times I,$$

(7)
$$C' = ((B \cap B') \times I) \cup (B' \times 0) \subseteq Y \times I,$$

where I = [0, 1],

Clearly, C, C', $C \cap C'$ and Z are ANR's and C, $C' \subseteq Z$ are closed subsets, so that (Z, C, C') is an ANR-triad. Moreover,

(8)
$$s(C) \leq s(B \times I) = \max(s(B), \aleph_0) \leq \max(s(A), \aleph_0),$$

(9) $s(C') \leq \max(s(B'), \aleph_0) \leq \max(s(A'), \aleph_0),$

(10)
$$s(Z) \leq s(C) + s(C') \leq \max(s(B), s(B'), \aleph_0) \leq \max(s(Y), \aleph_0) \leq \max(s(X), \aleph_0)$$
.

Let $h: Z \to Y$ be the restriction to $Z \subseteq Y \times I$ of the first projection $Y \times I \to Y$. Note that h is a map of triads $h: (Z, C, C') \to (Y, B, B')$.

We will also define a map $\psi: (Y, B, B') \rightarrow (Z, C, C')$ such that $h\psi$ and the identity 1_Y are CV-near maps and

(11)
$$\psi(B) \subseteq \operatorname{Int}_{Z}(C), \quad \psi(B') \subseteq \operatorname{Int}_{Z}(C').$$

To complete the proof, it then suffices to put $g=\phi f:(X, A, A')\to(Z, C, C')$, because $hg=h\phi f$ and f are \mathcal{C} -near maps and (3) is a consequence of (11) and

(12)
$$g(A) = \psi f(A) \subseteq \psi(B), \quad g(A') \subseteq \psi(B').$$

In order to define ϕ we use the following lemma.

LEMMA 2. Let (B, D) be an ANR-pair and let U be an open covering of B. Then there exists a map $\varphi: B \rightarrow (D \times I) \cup (B \times 0) \subseteq B \times I$ such that $p\varphi$ and 1_B are U-near maps, where p denotes the first projection $p: B \times I \rightarrow B$. Moreover, $\varphi(x) = (x, 1)$ for $x \in D$.

The map $\psi: (Y, B, B') \rightarrow (Z, C, C')$ is constructed as follows. We apply Lemma 2 to the ANR-pair (B, D), where $D=B \cap B'$, and to the open covering $\mathcal{U}=\mathcal{V}|B$. We obtain a map S. MARDEŠIĆ

$$\varphi: B \to \left((B \cap B') \times \left[\frac{1}{2}, 1\right] \right) \cup (B \times 1) \subseteq C$$

such that

(13)
$$\varphi(x) = \left(x, \frac{1}{2}\right), \qquad x \in B \cap B'$$

and the maps $h\varphi$ and 1_B are CV-near.

The same lemma, applied to $(B', B \cap B')$ yields a map

$$\varphi': B' \to \left((B \cap B') \times \left[0, \frac{1}{2} \right] \right) \cup (B' \times 0) \subseteq C'$$

such that

(14)
$$\varphi'(x) = \left(x, \frac{1}{2}\right), \qquad x \in B \cap B'.$$

and the maps $h\varphi'$ and $1_{B'}$ are CV-near.

Because of (13) and (14), the two maps φ , φ' extend to a unique map $\psi: Y \to Z$, which is a map of triads $\psi: (Y, B, B') \to (Z, C, C')$. Clearly, $h\psi$ and 1_Y are CV-near maps. Moreover, $\psi(B) = \varphi(B) \subseteq \operatorname{Int}_Z(C)$, because

(15)
$$((B \cap B') \times \left[\frac{1}{2}, 1\right]) \cup (B \times 1) \subseteq \operatorname{Int}_{Z}(C).$$

Similarly, $\phi(B') \subseteq \operatorname{Int}_{Z}(C')$.

In order to prove Lemma 2, we need the following lemma (see [8], I, 6.5. Lemma 4).

LEMMA 3. Let (B, D) be an ANR-pair and let U be an open covering of B. Then there exists an open neighborhood V of D in B and a map $k: B \rightarrow B$ such that k | V is a retraction $V \rightarrow D$ and k is U-near 1_B .

PROOF OF LEMMA 2. We choose V and k according to Lemma 3. Let $\chi: B \rightarrow I$ be a map such that

(16)
$$\chi | D=1, \chi | B \setminus V=0.$$

We then define $\varphi: B \rightarrow B \times I$ by

(17)
$$\varphi(x) = (k(x), \chi(x)), \qquad x \in B.$$

If $x \in D$, then $\varphi(x) = (x, 1)$. If $x \in V$, then $\varphi(x) \in D \times I$ and if $x \in B \setminus V$, then $\varphi(x) = (k(x), 0) \in B \times 0$. Consequently, $\varphi(B) \subseteq (D \times I) \cup (B \times 0)$. Furthermore, 1_B and $p\varphi = k$ are U-near maps.

358

4. Existence of ANR-resolutions of triads.

THEOREM 3. Every triad of topological spaces (X, A, A') admits an ANRresolution $\mathbf{p} = (p_{\lambda}) : (X, A, A') \rightarrow (X, A, A')$ indexed by a cofinite set and such that for every $\lambda \in \Lambda$ one has

(1)
$$X_{\lambda} = \operatorname{Int}_{X_{\lambda}} A_{\lambda} \cup \operatorname{Int}_{X_{\lambda}} A_{\lambda'}'.$$

In [7, Theorem 6], it was shown that every pair of spaces admits an ANR-resolution of pairs. Although the present proof proceeds along same general plan, one must take into account the new additional requirements.

We say that two maps of triads $q_1: (X, A, A') \rightarrow (Y_1, B_1, B'_1)$, $q_2: (X, A, A') \rightarrow (Y_2, B_2, B'_2)$ are equivalent provided there is a homeomorphism $h: (Y_1, B_1, B'_1) \rightarrow (Y_2, B_2, B'_2)$ such that

$$hq_1 = q_2$$
.

Consider all maps of triads $q:(X, A, A') \rightarrow (Y, B, B')$ such that (Y, B, B') is an ANR-triad and

(2)
$$s(Y) \leq \max(s(X), \aleph_0),$$

(3)
$$s(B) \leq \max(s(A), \aleph_0), \quad s(B') \leq \max(s(A'), \aleph_0),$$

$$(4) q(A) \subseteq \operatorname{Int}_Y(B), \quad q(A') \subseteq \operatorname{Int}_Y(B'),$$

where Int_{Y} denotes interior with respect to Y. Note that (2) implies that the weight $w(Y) = s(Y) \leq \max(s(X), \aleph_0)$ and $\operatorname{card}(Y) \leq 2^{w(Y)} \leq \max(2^{s(X)}, 2^{\aleph_0})$. Therefore, the equivalence classes of the maps q form a set Γ . We choose for each $\gamma \in \Gamma$ a unique representative $q_{\gamma}: (X, A, A') \to (Y, B, B')_{\gamma}$ of the class γ .

Let Δ be the set of all finite subsets of Γ , ordered by inclusion. If $\delta = \{\gamma_1, \dots, \gamma_n\} \in \Delta$, we define a triad $(X, B, B')_{\delta}$ by putting

$$(5) \qquad B_{\delta} = B_{r_1} \times \cdots \times B_{r_n}, \quad B'_{\delta} = B'_{r_1} \times \cdots \times B'_{r_n},$$

$$(6) Y_{\delta} = B_{\delta} \cup B'_{\delta} \subseteq Y_{\tau_1} \times \cdots \times Y_{\tau_n}.$$

Since B_{γ} , B'_{γ} are ANR's, which are closed in Y_{γ} , it follows that B_{δ} , B'_{δ} are ANR's closed in Y_{δ} . Moreover,

(7)
$$B_{\delta} \cap B'_{\delta} = (B_{\gamma_1} \cap B'_{\gamma_1}) \times \cdots \times (B_{\gamma_n} \cap B'_{\gamma_n})$$

is an ANR, because $B_{\gamma_i} \cap B'_{\gamma_i}$ are ANR's. Therefore, by the sum theorem for ANR's, Y_{δ} is also an ANR and $(Y, B, B')_{\delta}$ is an ANR-triad.

If $\delta \leq \delta' = \{\gamma_1, \dots, \gamma_n, \dots, \gamma_m\}$, we define $q_{\delta\delta'} : (Y, B, B')_{\delta'} \to (Y, B, B')_{\delta}$ as the restriction to $Y_{\delta'}$ of the projection $Y_{\tau_1} \times \dots \times Y_{\tau_n} \times \dots \times Y_{\tau_m} \to Y_{\tau_1} \times \dots \times Y_{\tau_n}$. We also define $q_{\delta} : (X, A, A') \to (Y, B, B')$ as the map

$$q_{\partial} = q_{\gamma_1} \times \cdots \times q_{\gamma_n} : X \to Y_{\gamma_1} \times \cdots \times Y_{\gamma_n}$$

Since $q_{\delta}(A) \subseteq B_{\tau_1} \times \cdots \times B_{\tau_n} = B_{\delta}$ and $q_{\delta}(A') \subseteq B'_{\delta}$, we see that $q_{\delta}(X) \subseteq B_{\delta} \cup B'_{\delta} = Y_{\delta}$. Clearly, $(Y, B, B') = ((Y, B, B')_{\delta}, q_{\delta\delta'}, \Delta)$ is an inverse system of ANR-triads and $q = (q_{\delta}) : (X, A, A') \to (Y, B, B')$ is a morphism.

We will now show that

(8)
$$q_{\delta}(A) \subseteq \operatorname{Int}_{Y_{\delta}}(B_{\delta}), \quad q_{\delta}(A') \subseteq \operatorname{Int}_{Y_{\delta}}(B'_{\delta}),$$

so that q_{δ} also satisfies (4). Indeed, if $\delta = \{\gamma_1, \dots, \gamma_n\}$, then

(9)
$$q_{\delta}(A) \subseteq q_{\gamma_1}(A) \times \cdots \times q_{\gamma_n}(A) \subseteq \operatorname{Int}_{F_{\gamma_1}}(B_{\gamma_1}) \times \cdots \times \operatorname{Int}_{F_{\gamma_n}}(B_{\gamma_n}).$$

Clearly, $\operatorname{Int}_{Y_{\tau_1}}(B_{\tau_1}) \times \cdots \times \operatorname{Int}_{Y_{\tau_n}}(B_{\tau_n})$ is an open set of $Y_{\tau_1} \times \cdots \times Y_{\tau_n}$, contained in $B_{\delta} \subseteq Y_{\delta}$, and therefore it is an open set of Y_{δ} . Consequently, (9) implies the first of the formulas (8). The second one is established analogously. Note that (8) implies

(10)
$$q_{\delta}(X) \subseteq \operatorname{Int}_{Y_{\delta}}(B_{\delta}) \cup \operatorname{Int}_{Y_{\delta}}(B'_{\delta}) \subseteq Y_{\delta}.$$

We now define a new directed set M. Its elements are pairs $\mu = (\delta, U)$, where $\delta \in \mathcal{A}$ and U is an open neighborhood of $q_{\delta}(X)$ in Y_{δ} contained in $\operatorname{Int}_{r_{\delta}}(B_{\delta})$ $\cup \operatorname{Int}_{r_{\delta}}(B'_{\delta})$.

We put $\mu = \langle \delta, U \rangle \leq \langle \delta', U' \rangle = \mu'$ provided $\delta \leq \delta'$ and $q_{\delta\delta'}(U') \leq U$. The set M is directed. Indeed, if $\mu_i = \langle \delta_i, U_i \rangle \in M$, i=1, 2, we first choose $\delta \geq \delta_1$, δ_2 . Note that

(11)
$$q_{\delta_i\delta}(q_{\delta}(X)) = q_{\delta_i}(X) \subseteq U_i, \quad i=1, 2.$$

Therefore, the open set

(12)
$$U = (q_{\delta_1 \delta})^{-1} (U_1) \cap (q_{\delta_2 \delta})^{-1} (U_2) \subseteq Y_{\delta_1 \delta_2}$$

satisfies

(13)
$$q_{\delta}(X) \subseteq U$$
,

(14)
$$q_{\delta_i\delta}(U) \subseteq U_i, \quad i=1, 2,$$

so that $(\delta_i, U_i) \leq (\hat{o}, U)$, i=1, 2.

For $\mu = (\delta, U)$ we put

(15)
$$X_{\mu} = U, \quad A_{\mu} = U \cap B_{\delta}, \quad A'_{\mu} = U \cap B'_{\delta}.$$

Note that X_{μ} , A_{μ} , A'_{μ} and $A_{\mu} \cap A'_{\mu}$ are ANR's because they are open sets of the ANR's Y_{δ} , B_{δ} , B'_{δ} and $B_{\delta} \cap B'_{\delta}$ respectively. Furthermore, A_{μ} and A'_{μ} are closed in $X_{\mu}=U$, because B_{μ} and B'_{μ} are closed in Y_{μ} . Also $A_{\mu} \cup A'_{\mu}=X_{\mu}$, so that $(X, A, A')_{\mu}$ is an ANR-triad. This triad satisfies (1). Indeed, the set $U \cap \operatorname{Int}_{Y_{\delta}} B_{\delta}$

360

is open in $U=X_{\mu}$ and is contained in $A_{\mu}=U\cap B_{\delta}$. Therefore,

(16)
$$U \cap \operatorname{Int}_{Y_{\delta}} B_{\delta} \subseteq \operatorname{Int}_{X_{\mu}} A_{\mu}.$$

An analogous formula holds for B'_{δ} and A'_{μ} . Consequently,

(17)
$$X_{\mu} = U = U \cap (\operatorname{Int}_{Y_{\delta}} B_{\delta} \cup \operatorname{Int}_{Y_{\delta}} B_{\delta}) \subseteq \operatorname{Int}_{X_{\mu}} A_{\mu} \cup \operatorname{Int}_{X_{\mu}} A_{\mu}'.$$

We now define maps $r_{\mu\mu'}: (X, A, A')_{\mu'} \to (X, A, A')_{\mu}$, $\mu \leq \mu'$, and $r_{\mu}: (X, A, A') \to (X, A, A')_{\mu}$ as $q_{\delta\delta'} \mid U'$ and $q_{\delta}: X \to q_{\delta}(X) \subseteq U = X_{\mu}$ respectively. Clearly, we obtain an inverse system of ANR-triads $(X, A, A') = ((X, A, A')_{\mu}, r_{\mu\mu'}, M)$ and a morphism $\mathbf{r} = (r_{\mu}): (X, A, A') \to (X, A, A')$.

We will now show that r is a resolution. We first establish property (R2). Let (P, Q, Q') be an ANR-triad and let \mathcal{V} be an open covering of P. Let $\mu = (\delta, U) \in M$ and let $g, g': (X, A, A')_{\mu} \to (P, Q, Q')$ be maps of triads such that gr_{μ} and $g'r_{\mu}$ are \mathcal{V} -near maps. Since $r_{\mu} = q_{\delta}$ and $q_{\delta}(X) \subseteq U = X_{\mu}$, we see that $g \mid q_{\delta}(X)$ and $g' \mid q_{\delta}(X)$ are \mathcal{V} -near maps. Therefore, every point $z \in q_{\delta}(X)$ admits a $V(z) \in \mathcal{V}$ such that $g(z), g'(z) \in V(z)$. By continuity, there exists an open neighborhood U(z) of z in U such that for any $z' \in U(z)$ the points $g(z'), g'(z') \in V(z)$. Let U' be the union of all U(z), when z ranges over $q_{\delta}(X)$. Then U' is an open neighborhood of $q_{\delta}(X)$ in U. Moreover, the maps $g \mid U', g' \mid U'$ are \mathcal{V} -near. Note that $U' \subseteq \operatorname{Int}_{r_{\delta}}(B_{\delta}) \cup \operatorname{Int}_{r_{\delta}}(B'_{\delta})$ because $U' \subseteq U$. Consequently, $\mu' = (\hat{o}, U')$ belongs to $M, \mu \leq \mu'$ and the maps $gr_{\mu\mu'} = g \mid U', g'r_{\mu\mu'} = g' \mid U'$ are \mathcal{V} -near.

We will now establish property (R1). Let $f:(X, A, A') \rightarrow (P, Q, Q')$ be a map of triads, let (P, Q, Q') be an ANR-triad and let \mathcal{O} be an open covering of P. It suffices to find an ANR-triad (Y, B, B'), which satisfies (2), (3) and (4), and to find maps of triads $q:(X, A, A') \rightarrow (Y, B, B')$, $h:(Y, B, B') \rightarrow (P, Q, Q')$ such that q satisfies (4) and the maps hq and f are \mathcal{O} -near. In that case q is equivalent to q_{τ} for some $\gamma \in \Gamma$ and we can assume that $q=q_{\tau}$. If we now take any $\mu=(\delta, U)\in M$ such that $\delta=\{\gamma\}$, then $h'=h|U: X_{\mu} \rightarrow P$ is a map such that $h'r_{\mu}=hq$ is \mathcal{O} -near the map f.

That such an ANR-triad (Y, B, B') and such a map q exist follows from Theorem 2.

In order to complete the proof of Theorem 3, we will now replace (X, A, A')by a new inverse system (Z, C, C'), which is indexed by the set A of all finite subsets of M and is therefore cofinite. We choose an increasing function $\varphi: A$ $\rightarrow M$ such that $\varphi(\{\mu\}) = \mu$. We then put $(Z, C, C')_{\lambda} = (X, A, A')_{\varphi(\lambda)}, \lambda \in A, s_{\lambda\lambda'}$ $= r_{\varphi(\lambda)\varphi(\lambda')}, \lambda \leq \lambda', s_{\lambda} = r_{\varphi(\lambda)}, \lambda \in A$. It is easy to see that $s = (s_{\lambda}): (X, A, A') \rightarrow$ (Z, C, C') is a resolution of triads with all the desired properties. This wellknown argument is described in more details in the case of pairs in [7].

5. Induced resolutions of pairs.

Let $p = (p_{\lambda}): (X, A, A') \rightarrow (X, A, A')$ be a morphism of a triad into an inverse system of triads. This morphism induces several morphisms of pairs into systems of pairs. In particular, we have the morphisms

$$p_{(X,A)}: (X, A) \rightarrow (X, A), \quad p_{(X,A')}: (X, A') \rightarrow (X, A')$$

and

$$p_{(X,B)}:(X, B) \rightarrow (X, B),$$

where $B = A \cap A'$, $B_{\lambda} = A_{\lambda} \cap A'_{\lambda}$, $(X, B)_{\lambda} = (X_{\lambda}, B_{\lambda})$ and $(X, B) = ((X, B)_{\lambda}, p_{\lambda\lambda'}, A)$. We also have morphisms $p_{(A,B)} : (A, B) \to (A, B)$ and $p_{(A',B)} : (A', B) \to (A', B)$, where $(A, B) = ((A, B)_{\lambda}, p_{\lambda\lambda'}, A)$, $(A, B)_{\lambda} = (A_{\lambda}, B_{\lambda})$.

- REMARK 1. If p is a resolution, then so are $p_{(X,A)}$ and $p_{(X,A')}$. To verify properties (R1) and (R2) it suffices to associate with every ANR-pair (P, Q) the ANR-triad (P, Q, Q'), where Q'=P.

By imposing rather mild restrictions on (X, A, A') we can show that the analogous assertion holds also in the case of the induced morphism $p_{(X,B)}$. The argument uses some ideas from a proof presented in [3].

THEOREM 4. Let $p:(X, A, A') \rightarrow (X, A, A')$ be a resolution of triads. If the spaces $X, X_{\lambda}, \lambda \in A$, are normal and the sets $A, A' \subseteq X$ are closed, then the induced morphism $p_{(X, B)}:(X, B) \rightarrow (X, B)$ is a resolution of pairs.

COROLLARY 1. If $p:(X, A, A') \rightarrow (X, A, A')$ is an ANR-resolution of triads, X is a normal space and A, $A' \subseteq X$ are closed sets, then $p_{(X,B)}:(X, B) \rightarrow (X, B)$ is an ANR-resolution of pairs.

PROOF. First note that the induced morphism $p_X: X \to X$ is a resolution [7]. Therefore, the assertion of Theorem 4 will be proved if we show that $p_{(X,B)}$ satisfies the following condition (B1)** (see [7], Theorem 2):

For every $\lambda \in \Lambda$ and every normal covering \mathcal{U} of X_{λ} there exists a $\lambda'' \geq \lambda$ such that

(1)
$$p_{\lambda\lambda'}(B_{\lambda'}) \subseteq \operatorname{St}(p_{\lambda}(B), U).$$

In order to verify this condition note that $\overline{p_{\lambda}(B)}$ is contained in $G = \operatorname{St}(p_{\lambda}(B), \mathcal{U})$. Therefore, there is an open neighborhood G_0 of $\overline{p_{\lambda}(B)}$ such that

(2)
$$\overline{p_{\lambda}(B)} \subseteq G_0 \subseteq \overline{G}_0 \subseteq G.$$

Note that $\mathcal{G} = \{ p_{\lambda}^{-1}(G_0), X \setminus A, X \setminus A' \}$ is an open covering of X, because B =

 $A \cap A' \subseteq p_{\lambda}^{-1}(G_0)$. This covering is normal because it is finite and X is a normal space. By a well-known property of resolutions (see [8], I, §6.2, Theorem 4), there exists a $\lambda' \geq \lambda$ and a normal covering \mathcal{V} of X'_{λ} such that $(p_{\lambda'})^{-1}(\mathcal{V})$ refines \mathcal{L} .

We now put

(3)
$$H=(p_{\lambda\lambda'})^{-1}(G),$$

(4)
$$H_0 = (p_{\lambda \lambda'})^{-1}(G_0).$$

Note that

$$(5)$$
 $\overline{H}_{0} \subseteq H$

Moreover, since

$$(6) \qquad \qquad p_{\lambda\lambda'}(\overline{p_{\lambda'}(B)}) \subseteq \overline{p_{\lambda}(B)} \subseteq G,$$

we see that

(7)
$$\overline{p_{\lambda'}(B)} \subseteq H$$
.

Clearly, the sets $\overline{p_{\lambda'}(A)} \setminus H$ and $\overline{p_{\lambda'}(A')} \setminus H$, are closed subsets of $X_{\lambda'}$. We claim that they are disjoint. Assume to the contrary that there exists a point

(8)
$$y \in (\overline{p_{\lambda'}(A)} \setminus H) \cap (\overline{p_{\lambda'}(A')} \setminus H).$$

Let V be a member of \Im , which contains y. For any open neighborhood W of y, which is contained in V, there exist points $a \in A$, $a' \in A'$ such that

$$(9) \qquad \qquad \{p_{\lambda'}(a), \ p_{\lambda'}(a')\} \subseteq W.$$

The set

$$(p_{\lambda'})^{-1}(W) \subseteq (p_{\lambda'})^{-1}(V)$$

must be contained in one of the sets $X \setminus A$, $X \setminus A'$ or $p_{\overline{\lambda}}^{-1}(G_0)$. It cannot be contained in $X \setminus A$ because $a \in (p_{\lambda'})^{-1}(W)$. Similarly, the point $a' \in (p_{\lambda'})^{-1}(W)$ rules out the set $X \setminus A'$. Hence, we must have

(10)
$$(p_{\lambda'})^{-1}(W) \subseteq p_{\lambda}^{-1}(G_0) = (p_{\lambda'})^{-1}(H_0).$$

However, (9) and (10) imply

(11)
$$\{p_{\lambda'}(a), p_{\lambda'}(a')\} \subseteq H_0 \cap W.$$

This shows that every sufficiently small open neighborhood W of y intersects H_0 and therefore $y \in \overline{H}_0 \subseteq H$, which, however, contradicts (8).

We now choose disjoint open set K, $L \subseteq X_{\lambda'}$, such that

(12)
$$\overline{p_{\lambda'}(A)} \setminus H \subseteq K, \quad \overline{p_{\lambda'}(A')} \setminus H \subseteq L.$$

We then put

$$K^* = K \cup H, \quad L^* = L \cup H.$$

These are open sets in $X_{\lambda'}$ such that

(14)
$$\overline{p_{\lambda'}(A)} \subseteq K^*, \quad \overline{p_{\lambda'}(A')} \subseteq L^*,$$

$$K^* \cap L^* = H.$$

Therefore,

(16)
$$\overline{p_{\lambda'}(B)} \subseteq \overline{p_{\lambda'}(A)} \cap \overline{p_{\lambda'}(A')} \subseteq K^* \cap L^* = H.$$

Now consider an open set $K_1^* \subseteq X_{\lambda'}$ such that

(17)
$$\overline{p_{\lambda'}(A)} \subseteq K_1^* \subseteq \overline{K}_1^* \subseteq K^*.$$

 $\mathcal{W} = \{K^*, X \setminus \overline{K}_1^*\}$ is a normal covering of $X_{\lambda'}$. Therefore, by property (B1)** applied to $p_{(X,A)}$ ([7], Theorem 2), there is a $\lambda'' \ge \lambda'$ such that

(18)
$$p_{\lambda'\lambda'}(A_{\lambda'}) \subseteq \operatorname{St}(p_{\lambda'}(A), \mathscr{W}).$$

However, $St(p_{\lambda'}(A), \mathcal{W}) = K^*$ so that (18) becomes

$$(19) \qquad \qquad p_{\lambda'\lambda'}(A_{\lambda'}) \subseteq K^*.$$

Similarly, we argue with A' and L^* . Therefore, we can assume that λ'' also satisfies

$$(20) \qquad \qquad p_{\lambda'\lambda'}(A'_{\lambda'}) \subseteq L^*.$$

It now follows, by (16), that

(21)
$$p_{\lambda\lambda'}(B_{\lambda'}) \subseteq p_{\lambda\lambda'}(K^* \cap L^*) = p_{\lambda\lambda'}(H).$$

Consequently, (3) yields the desired result

In the next theorem we consider the induced morphism $p_{(A,B)}$.

THEOREM 5. Let $p:(X, A, A') \rightarrow (X, A, A')$ be a resolution of triads. Let the spaces $X, X_{\lambda}, \lambda \in A$, be normal, let the sets $A, A' \subseteq X$ be closed and let the sets $A \subseteq X$ and $A_{\lambda} \subseteq X_{\lambda}, \lambda \in A$, be normally embedded. Then the induced morphism $p_{(A, B)}:(A, B) \rightarrow (A, B)$ is a resolution of pairs.

COROLLARY 2. If $p:(X, A, A') \rightarrow (X, A, A')$ is an ANR-resolution of triads, X is a normal space, $A, A' \subseteq X$ are closed sets and A is normally embedded in X, then the induced morphism $p_{(A,B)}:(A, B) \rightarrow (A, B)$ is an ANR-resolution of pairs.

We say that $A \subseteq X$ is normally embedded in X (or \mathcal{P} -embedded) provided

every normal covering \mathcal{V} of A admits a normal covering \mathcal{V} of X such that $\mathcal{U}|A$ refines \mathcal{V} .

PROOF OF THEOREM 5. By [7, Theorem 2], it suffices to prove that the induced morphism $p_A: A \to A$ is a resolution and $p_{(A,B)}$ has property (B1)**. Since $p_{(X,A)}$ is a resolution and also $A \subseteq X$ and $A_{\lambda} \subseteq X_{\lambda}$, $\lambda \in A$, are normally embedded, [7, Theorem 3] implies that p_A is a resolution.

In order to establish $(B1)^{**}$ for $p_{(A, B)}$, we apply Theorem 4 and conclude that $p_{(X,B)}$ is a resolution. Therefore, $p_{(X,B)}$ has property (B1)**. Consequently, for any $\lambda \in \Lambda$ and any normal covering U of X_{λ} there is a $\lambda'' \geq \lambda$ such that (1) holds. Now let \Im be a normal covering of A_{λ} . Since A_{λ} is normally embedded in X_{λ} , we can choose \mathcal{V} such that $\mathcal{U}|A$ refines \mathcal{V} . Then the star $St_{A_{\lambda}}$ $(p_{\lambda}(B), \mathcal{CV})$ (star with respect to A_{λ}) clearly contains $A_{\lambda} \cap St(p_{\lambda}(B), \mathcal{U})$, which, by (1), contains $p_{\lambda\lambda'}(B_{\lambda'})$. This establishes (B1)** for $p_{(A,B)}$.

References

- [1] Lisica, Ju. T. and Mardešić, S., Steenrod-Sitnikov homology for arbitrary spaces, Bulletin Amer. Math. Soc. 9 (1983), 207-210.
- and —, Coherent prohomotopy and strong shape, Glasnik Mat. (to [2] appear).
- [3]
- and _____, Pasting strong shape morphisms, Glasnik Mat. (to appear). _____ and _____, Strong homology of inverse systems, III, Topology and its $\begin{bmatrix} 4 \end{bmatrix}$ Appl. (to appear).
- [5] Mardešić, S., Approximate polyhedra, resolutions of maps and shape fibrations, Fund. Math. 114 (1981), 53-78.
- -, Inverse limits and resolutions, Shape theory and geometric topology [6] -----(Dubrovnik 1981), 239-252, Lecture Notes in Math. 870, Springer-Verlag, Berlin 1981.
- -, On resolutions for pairs of spaces, Tsukuba J. Math. 8 (1984), 81-93. [7]
- ----- and Segal, J., Shape theory, North-Holland, Amsterdam 1982. [8]
- [9] Morita, K., On shapes of topological spaces, Fund. Math. 86 (1975), 251-259.
- -----, Resolutions of spaces and proper inverse systems in shape theory (to [10]appear).
- [11] Watanabe, T., Approximative shape theory, University of Yamaguchi, Yamaguchi City 1982 (mimeographed notes).

Department of Mathematics University of Zagreb 41.001 Zagreb, p.o. box 187 Yugoslavia