ANR-RESOLUTIONS OF TRIADS

By
Sibe Mardešić

1. Introduction.

By a triad of topological spaces $\left(X, A, A^{\prime}\right)$ we mean a topological space X and two subsets $A, A^{\prime} \subseteq X$ such that $A \cup A^{\prime}=X$. By an $A N R$-triad we mean a triad $\left(X, A, A^{\prime}\right)$ such that A and A^{\prime} are closed subsets of X and X, A, A^{\prime} and $A \cap A^{\prime}$ are $A N R^{\prime}$ s (for metric spaces). A map of triads $f:\left(X, A, A^{\prime}\right) \rightarrow\left(Y, B, B^{\prime}\right)$ is a map $f: X \rightarrow Y$ such that $f(A) \cong B, f\left(A^{\prime}\right) \cong B^{\prime}$.

An inverse system of triads $\left(\boldsymbol{X}, \boldsymbol{A}, \boldsymbol{A}^{\prime}\right)=\left(\left(X, A, A^{\prime}\right)_{\lambda}, p_{\lambda \lambda^{\prime}}, \Lambda\right)$ consists of a directed index set Λ, of a collection of triads $\left(X, A, A^{\prime}\right)_{\lambda}=\left(X_{\lambda}, A_{\lambda}, A_{\lambda}^{\prime}\right), \lambda \in \Lambda$, and of maps triads $p_{\lambda \lambda^{\prime}}:\left(X, A, A^{\prime}\right)_{\lambda^{\prime}} \rightarrow\left(X, A, A^{\prime}\right)_{\lambda}, \lambda \leqq \lambda^{\prime}$, such that $p_{\lambda \lambda}=1_{X_{\lambda}}$, $\lambda \in \Lambda$ and $p_{\lambda \lambda^{\prime}} p_{\lambda^{\prime} \lambda^{\prime}}=p_{\lambda \lambda^{\prime \prime}}, \lambda \leqq \lambda^{\prime} \leqq \lambda^{\prime \prime}$.

By a morphism $p=\left(p_{\lambda}\right):\left(X, A, A^{\prime}\right) \rightarrow\left(X, A, A^{\prime}\right)$ of a triad into an inverse system of triads we mean a collection of maps of triads $p_{\lambda}:\left(X, A, A^{\prime}\right) \rightarrow\left(X, A, A^{\prime}\right)_{\lambda}$, $\lambda \in \Lambda$, such that $p_{\lambda \lambda^{\prime}} p_{\lambda^{\prime}}=p_{\lambda}, \lambda \leqq \lambda^{\prime}$.

A resolution of a $\operatorname{triad}\left(X, A, A^{\prime}\right)$ is a morphism $p=\left(p_{\lambda}\right):\left(X, A, A^{\prime}\right) \rightarrow\left(X, A, A^{\prime}\right)$ which satisfies the following two conditions:
(R1) Let $\left(P, Q, Q^{\prime}\right)$ be an $A N R$-triad, let $C V$ be an open covering of P and $f:\left(X, A, A^{\prime}\right) \rightarrow\left(P, Q, Q^{\prime}\right)$ a map of triads. Then there exist a $\lambda \in \Lambda$ and a map of triads $g:\left(X, A, A^{\prime}\right)_{\lambda} \rightarrow\left(P, Q, Q^{\prime}\right)$ such that the maps $g p_{\lambda}$ and f are C_{V}-near maps.
(R2) Let $\left(P, Q, Q^{\prime}\right)$ be an $A N R$-triad and let Q be an open covering of P. Then there exists an open covering $Q V^{\prime}$ of P such that whenever $\lambda \in \Lambda$ and $g, g^{\prime}:\left(X, A, A^{\prime}\right)_{\lambda} \rightarrow\left(P, Q, Q^{\prime}\right)$ are maps such that the maps $g p_{\lambda}$ and $g^{\prime} p_{\lambda}$ are $C V^{\prime}$-near, then there exists a $\lambda^{\prime} \geqq \lambda$ such that the maps $g p_{\lambda \lambda^{\prime}}$ and $g^{\prime} p_{\lambda \lambda^{\prime}}$ are a $)$-near.

If all $\left(X, A, A^{\prime}\right)_{\lambda}, \lambda \in \Lambda$, are $A N R$-triads, $p:\left(X, A, A^{\prime}\right) \rightarrow\left(X, A, A^{\prime}\right)$ is called an $A N R$-resolution of the $\operatorname{triad}\left(X, A, A^{\prime}\right)$.

Note that the definition of a resolution of triads given in the present paper differs from the definition given in [3].

In an analogous way one defines resolutions and $A N R$-resolutions of pairs of spaces $(X, A) \rightarrow(\boldsymbol{X}, \boldsymbol{A})=\left((X, A)_{\lambda}, p_{\lambda \lambda^{\prime}}, \Lambda\right)$ and of single spaces $X \rightarrow \boldsymbol{X}=\left(X_{\lambda}, p_{\lambda \lambda^{\prime}}, \Lambda\right)$

[^0](see [7], [8], [5], [6]). Note that an $A N R$-pair (X, A) consists of $A N R$'s (for metric spaces) X, A such that A is a closed subset of X.

Resolutions for single spaces were introduced in [5] and [6] (also see [8]) and can be viewed as special inverse limits. K. Morita has recently shown [10] that they coincide with the proper morphisms $X \rightarrow \boldsymbol{X}$ introduced in his paper [9]. In [10] Morita also gave an internal characterization of resolutions. Another internal characterization is due to T. Watanabe [11]. Resolutions for pairs were introduced in [8] and studied and characterized in [7].
$A N R$-resolutions are essentially used in [1] in constructing the SteenrodSitnikov homology for arbitrary spaces. In order to prove the excision axiom for this homology theory, we need several facts concerning $A N R$-resolutions of triads. To establish these facts is the main purpose of the present paper. The obtained results, together with results in [4], show that our homology indeed satisfies the excision axiom.

The main result of the paper is Theorem 3, which asserts that every triad of topological spaces admits an $A N R$-resolution. Moreover, the $A N R$-resolution, which we shall construct, will have some additional properties (see (4.1)), needed in establishing the excision axiom.

2. A factorization theorem for maps of triads.

The least cardinal of subsets dense in a space X is called the density of X and will be denoted by $s(X)$. Note that for any map $f: X \rightarrow Y$ one has $s(f(X))$ $\leqq s(X)$. If (X, A, A^{\prime}) is a triad, then

$$
s(X) \leqq s(A)+s\left(A^{\prime}\right) \leqq \max \left(s(A), s\left(A^{\prime}\right), \aleph_{\theta}\right) .
$$

Moreover, for any metric pair (X, A) one has $s(A)=s(\bar{A}) \leqq s(X)$.
Generalizing Lemma 3 of [7], we will now establish a factorization theorem needed in $\S 3$.

Theorem 1. Let $f:\left(X, A, A^{\prime}\right) \rightarrow\left(Y, B, B^{\prime}\right)$ be a map of triads, where $\left(Y, B, B^{\prime}\right)$ is an ANR-triad. Then there exists an $A N R$-triad $\left(Z, C, C^{\prime}\right)$ and there exist maps of triads $g:\left(X, A, A^{\prime}\right) \rightarrow\left(Z, C, C^{\prime}\right), h:\left(Z, C, C^{\prime}\right) \rightarrow\left(Y, B, B^{\prime}\right)$ such that $f=h g$ and the following inequalities hold:

$$
\begin{align*}
& s(Z) \leqq s(X), \tag{1}\\
& s(C) \leqq s(A) \tag{2}\\
& s\left(C^{\prime}\right) \leqq s\left(A^{\prime}\right) \tag{3}
\end{align*}
$$

The proof repeatedly uses the following simple lemma.
Lemma 1. Let M be a metric space, P an $A N R$ and $f: M \rightarrow P$ a map. Then there exist an $A N R N$ and a map $g: N \rightarrow P$ such that M is a closed subset of N, $g \mid M=f$ and $s(N)=s(M)$. Moreover, if M is finite, then $N=M$.

Proof. If M is finite, we put $N=M$ and $g=f$. Now assume that M is infinite. By the Kuratowsky-Wojdisławski embedding theorem (see [8], I, §3.1, Theorem 2), one can assume that M is embedded in a normed vector space X and is closed in the convex hull L of M. Note that $s(L)=s(M)$ because M is infinite. The map $f: M \rightarrow P$ extends to a map $g: N \rightarrow P$, where N is an open neighborhood of M in L. Since L is an $A R, N$ is an $A N R . \quad M$ is closed in N. Moreover, $s(N)=s(M)$, because $M \subseteq N \subseteq L$ implies $s(M) \leqq s(N) \leqq s(L)$.

Proof of Theorem 1. Let $\overline{f(A)}, \overline{f\left(A^{\prime}\right)}$ denote the closures in Y of the sets $f(A)$ and $f\left(A^{\prime}\right)$ respectively. Since B and B^{\prime} are closed sets, we have $\overline{f(A)} \subseteq B, \overline{f\left(A^{\prime}\right)} \subseteq B^{\prime}$. By Lemma 1 , there is an $A N R D$ and there is a map $h_{0}: D \rightarrow B \cap B^{\prime}$ such that $\overline{f(A)} \cap \overline{f\left(A^{\prime}\right)}$ is closed in $D, h_{0} \mid \overline{f(A)} \cap \overline{f\left(A^{\prime}\right)}$ is the inclu sion map and

$$
\begin{equation*}
s(D)=s\left(\overline{f(A)} \cap \overline{f\left(A^{\prime}\right)}\right) \leqq \min \left(s(f(A)), s\left(f\left(A^{\prime}\right)\right)\right) . \tag{4}
\end{equation*}
$$

Let E be the metric space obtained from the topological sum $D \sqcup \overline{f(A)}$ by identifying the two copies of $\overline{f(A)} \cap \overline{f\left(A^{\prime}\right)}$. Note that D and $\overline{f(A)}$ are closed subsets of E and

$$
\begin{equation*}
s(E) \leqq s(D)+s(f(A)) . \tag{5}
\end{equation*}
$$

Since $s(D) \leqq s(f(A))$, we see that $s(D)+s(f(A))=s(f(A))$, whenever $f(A)$ is infinite, and thus

$$
\begin{equation*}
s(E) \leqq s(f(A)) \leqq s(A) \tag{6}
\end{equation*}
$$

(6) also holds if $f(A)$ is finite because then also $\overline{f(A)} \cap \overline{f\left(A^{\prime}\right)}$ is finite, $D=\overline{f(A)}$ $\cap \overline{f\left(A^{\prime}\right)}$ and $E=f(A)$. Let $h_{1}: E \rightarrow B$ be the only map such that $h_{1} \mid D=h_{0}$ and $h_{1} \mid \overline{f(A)}$ is the inclusion map.

By Lemma 1, there is an $A N R C$ and there is a map $h_{2}: C \rightarrow B$ such that E is a closed subset of C, h_{2} extends h_{1} and

$$
\begin{equation*}
s(C)=s(E) \tag{7}
\end{equation*}
$$

Note that $\overline{f(A)}$ and D are closed subsets of $C, h_{2} \mid \overline{f(A)}$ is the inclusion map and $h_{2} \mid D=h_{0}$. If $f(A)$ is finite, then $C=E=f(A)$ and $h_{2}=h_{1}$.

In the same way we define an $A N R C^{\prime}$ and a map $h_{2}^{\prime}: C^{\prime} \rightarrow B^{\prime}$ such that
$\overline{f\left(A^{\prime}\right)}$ and D are closed subsets of $C^{\prime}, h_{2}^{\prime} \mid \overline{f\left(A^{\prime}\right)}$ is the inclusion map, $h_{2}^{\prime} \mid D=h_{0}$ and

$$
\begin{equation*}
s\left(C^{\prime}\right) \leqq s\left(f\left(A^{\prime}\right)\right) \leqq s\left(A^{\prime}\right) \tag{8}
\end{equation*}
$$

Moreover, if $f\left(A^{\prime}\right)$ is finite, then $C^{\prime}=f\left(A^{\prime}\right)$.
We now form a new space Z. It is obtained from the topological sum $C \sqcup C^{\prime}$ by identifying the two copies of D. Note that C and C^{\prime} are closed in Z, $C \cap C^{\prime}=D$ and $C \cup C^{\prime}=Z$. By the sum theorem for $A N R$'s we see that Z is an $A N R$ and therefore (Z, C, C^{\prime}) is an $A N R$-triad.

We take for $h: Z \rightarrow Y$ the unique map such that $h\left|C=h_{2}, h\right| C^{\prime}=h_{2}^{\prime}$. Clearly, h is a map of triads $h:\left(Z, C, C^{\prime}\right) \rightarrow\left(Y, B, B^{\prime}\right)$. We define the map $g: X \rightarrow Z$ by requiring that

$$
\begin{aligned}
& g|A=f| A: A \rightarrow \overline{f(A)} \cong C \subseteq Z \\
& g\left|A^{\prime}=f\right| A^{\prime}: A^{\prime} \rightarrow \overline{f\left(A^{\prime}\right)} \cong C^{\prime} \subseteq Z .
\end{aligned}
$$

Clearly, g is a map of triads $g:\left(X, A, A^{\prime}\right) \rightarrow\left(Z, C, C^{\prime}\right)$ and $h g=f$.
By (6), (7) and (8), we have

$$
\begin{equation*}
s(Z) \leqq s(C)+s\left(C^{\prime}\right) \leqq s(f(A))+s\left(f\left(A^{\prime}\right)\right) . \tag{9}
\end{equation*}
$$

If at least one of the sets $f(A), f\left(A^{\prime}\right)$ is infinite, then $s(f(A))+s\left(f\left(A^{\prime}\right)\right)=$ $\max \left(s(f(A)), s\left(f\left(A^{\prime}\right)\right)\right) \leqq s(f(X)) \leqq s(X)$, and thus (1) holds. If both sets $f(A)$, $f\left(A^{\prime}\right)$ are finite, then $C=f(A), C^{\prime}=f\left(A^{\prime}\right)$ and therefore $Z=f(X)$, which again implies (1).

3. An approximate factorization theorem.

The following approximate factorization theorem will be used in $\S 4$. in the proof of the main theorem (existence of $A N R$-resolutions).

Theorem 2. Let $f:\left(X, A, A^{\prime}\right) \rightarrow\left(Y, B, B^{\prime}\right)$ be a map of triads, let $\left(Y, B, B^{\prime}\right)$ be an ANR-triad and let $C V$ be an open covering of Y. Then there exists an ANR-triad (Z, C, C^{\prime}) and there exist maps of triads

$$
g:\left(X, A, A^{\prime}\right) \rightarrow\left(Z, C, C^{\prime}\right), \quad h:\left(Z, C, C^{\prime}\right) \rightarrow\left(Y, B, B^{\prime}\right)
$$

such that the maps hg and f are $\mathcal{C V}$-near and the following relations hold:

$$
\begin{gather*}
s(C) \leqq \max \left(s(A), \aleph_{0}\right), \quad s\left(C^{\prime}\right) \leqq \max \left(s\left(A^{\prime}\right), \aleph_{0}\right), \tag{1}\\
s(Z) \leqq \max \left(s(X), \aleph_{0}\right), \tag{2}
\end{gather*}
$$

$$
\begin{equation*}
g(A) \subseteq \operatorname{Int}_{Z}(C), \quad g\left(A^{\prime}\right) \leqq \operatorname{Int}_{z}\left(C^{\prime}\right) \tag{3}
\end{equation*}
$$

Proof. In view of Theorem 1 there is no loss of generality in assuming that

$$
\begin{gather*}
s(Y) \leqq s(X), \tag{4}\\
s(B) \leqq s(A), \quad s\left(B^{\prime}\right) \leqq s\left(A^{\prime}\right) . \tag{5}
\end{gather*}
$$

We define $\left(Z, C, C^{\prime}\right)$ by putting

$$
\begin{align*}
& C=\left(\left(B \cap B^{\prime}\right) \times I\right) \cup(B \times 1) \subseteq Y \times I, \tag{6}\\
& C^{\prime}=\left(\left(B \cap B^{\prime}\right) \times I\right) \cup\left(B^{\prime} \times 0\right) \subseteq Y \times I, \tag{7}
\end{align*}
$$

where $I=[0,1]$,

$$
\begin{equation*}
Z=C \cup C^{\prime} \subseteq Y \times I \tag{8}
\end{equation*}
$$

Clearly, $C, C^{\prime}, C \cap C^{\prime}$ and Z are $A N R^{\prime}$ s and $C, C^{\prime} \subseteq Z$ are closed subsets, so that (Z, C, C^{\prime}) is an $A N R$-triad. Moreover,

$$
\begin{gather*}
s(C) \leqq s(B \times I)=\max \left(s(B), \aleph_{0}\right) \leqq \max \left(s(A), \aleph_{0}\right), \tag{8}\\
s\left(C^{\prime}\right) \leqq \max \left(s\left(B^{\prime}\right), \aleph_{0}\right) \leqq \max \left(s\left(A^{\prime}\right), \aleph_{0}\right), \tag{9}
\end{gather*}
$$

Let $h: Z \rightarrow Y$ be the restriction to $Z \subseteq Y \times I$ of the first projection $Y \times I \rightarrow Y$. Note that h is a map of triads $h:\left(Z, C, C^{\prime}\right) \rightarrow\left(Y, B, B^{\prime}\right)$.

We will also define a map $\psi:\left(Y, B, B^{\prime}\right) \rightarrow\left(Z, C, C^{\prime}\right)$ such that $h \psi$ and the identity 1_{Y} are \mathcal{C}-near maps and

$$
\begin{equation*}
\psi(B) \subseteq \operatorname{Int}_{z}(C), \quad \psi\left(B^{\prime}\right) \subseteq \operatorname{Int}_{z}\left(C^{\prime}\right) \tag{11}
\end{equation*}
$$

To complete the proof, it then suffices to put $g=\phi f:\left(X, A, A^{\prime}\right) \rightarrow\left(Z, C, C^{\prime}\right)$, because $h g=h \phi f$ and f are $C V$-near maps and (3) is a consequence of (11) and

$$
\begin{equation*}
g(A)=\psi f(A) \subseteq \psi(B), \quad g\left(A^{\prime}\right) \cong \psi\left(B^{\prime}\right) \tag{12}
\end{equation*}
$$

In order to define ψ we use the following lemma.
Lemma 2. Let (B, D) be an $A N R$-pair and let U be an open covering of B. Then there exists a map $\varphi: B \rightarrow(D \times I) \cup(B \times 0) \cong B \times I$ such that $p \varphi$ and 1_{B} are U-near maps, where p denotes the first projection $p: B \times I \rightarrow B$. Moreover, $\varphi(x)=$ $(x, 1)$ for $x \in D$.

The map $\psi:\left(Y, B, B^{\prime}\right) \rightarrow\left(Z, C, C^{\prime}\right)$ is constructed as follows. We apply Lemma 2 to the $A N R$-pair (B, D), where $D=B \cap B^{\prime}$, and to the open covering $Q=C \mid B$. We obtain a map

$$
\varphi: B \rightarrow\left(\left(B \cap B^{\prime}\right) \times\left[\frac{1}{2}, 1\right]\right) \cup(B \times 1) \cong C
$$

such that

$$
\begin{equation*}
\varphi(x)=\left(x, \frac{1}{2}\right), \quad x \in B \cap B^{\prime} \tag{13}
\end{equation*}
$$

and the maps $h \varphi$ and 1_{B} are $C V$-near.
The same lemma, applied to ($B^{\prime}, B \cap B^{\prime}$) yields a map

$$
\varphi^{\prime}: B^{\prime} \rightarrow\left(\left(B \cap B^{\prime}\right) \times\left[0, \frac{1}{2}\right]\right) \cup\left(B^{\prime} \times 0\right) \cong C^{\prime}
$$

such that

$$
\begin{equation*}
\varphi^{\prime}(x)=\left(x, \frac{1}{2}\right), \quad x \in B \cap B^{\prime} . \tag{14}
\end{equation*}
$$

and the maps $h \varphi^{\prime}$ and $1_{B^{\prime}}$ are $C V$-near.
Because of (13) and (14), the two maps $\varphi, \varphi^{\prime}$ extend to a unique map, $\phi: Y \rightarrow Z$, which is a map of triads $\psi:\left(Y, B, B^{\prime}\right) \rightarrow\left(Z, C, C^{\prime}\right)$. Clearly, $h \psi$ and 1_{Y} are Q-near maps. Moreover, $\psi(B)=\varphi(B) \subseteq \operatorname{Int}_{Z}(C)$, because

$$
\begin{equation*}
\left(\left(B \cap B^{\prime}\right) \times\left[\frac{1}{2}, 1\right]\right) \cup(B \times 1) \subseteq \operatorname{lnt}_{Z}(C) . \tag{15}
\end{equation*}
$$

Similarly, $\psi\left(B^{\prime}\right) \subseteq \operatorname{Int}_{Z}\left(C^{\prime}\right)$.
In order to prove Lemma 2, we need the following lemma (see [8], I, 6.5. Lemma 4).

Lemma 3. Let (B, D) be an $A N R$-pair and let \mathcal{U} be an open covering of B. Then there exists an open neighborhood V of D in B and a map $k: B \rightarrow B$ such that $k \mid V$ is a retraction $V \rightarrow D$ and k is U-near 1_{B}.

Proof of Lemma 2. We choose V and k according to Lemma 3. Let $\chi: B \rightarrow I$ be a map such that

$$
\begin{equation*}
\chi|D=1, \chi| B \backslash V=0 . \tag{16}
\end{equation*}
$$

We then define $\varphi: B \rightarrow B \times I$ by

$$
\begin{equation*}
\varphi(x)=(k(x), \chi(x)), \quad x \in B . \tag{17}
\end{equation*}
$$

If $x \in D$, then $\varphi(x)=(x, 1)$. If $x \in V$, then $\varphi(x) \in D \times I$ and if $x \in B \backslash V$, then $\varphi(x)=(k(x), 0) \in B \times 0$. Consequently, $\varphi(B) \subseteq(D \times I) \cup(B \times 0)$. Furthermore, 1_{B} and $p \varphi=k$ are U-near maps.

4. Existence of $A N R$-resolutions of triads.

Theorem 3. Every triad of topological spaces (X, A, A^{\prime}) admits an $A N R$ resolution $\boldsymbol{p}=\left(p_{\lambda}\right):\left(X, A, A^{\prime}\right) \rightarrow\left(\boldsymbol{X}, \boldsymbol{A}, \boldsymbol{A}^{\prime}\right)$ indexed by a cofnite set and such that for every $\lambda \in \Lambda$ one has

$$
\begin{equation*}
X_{\lambda}=\operatorname{Int}_{X_{\lambda}} A_{\lambda} \cup \operatorname{Int}_{X_{\lambda}} A_{\lambda}^{\prime} . \tag{1}
\end{equation*}
$$

In [7, Theorem 6], it was shown that every pair of spaces admits an $A N R$-resolution of pairs. Although the present proof proceeds along same general plan, one must take into account the new additional requirements.

We say that two maps of triads $q_{1}:\left(X, A, A^{\prime}\right) \rightarrow\left(Y_{1}, B_{1}, B_{1}^{\prime}\right), q_{2}:\left(X, A, A^{\prime}\right)$ $\rightarrow\left(Y_{2}, B_{2}, B_{2}^{\prime}\right)$ are equivalent provided there is a homeomorphism $h:\left(Y_{1}, B_{1}, B_{1}^{\prime}\right)$ $\rightarrow\left(Y_{2}, B_{2}, B_{2}^{\prime}\right)$ such that

$$
h q_{1}=q_{2} .
$$

Consider all maps of triads $q:\left(X, A, A^{\prime}\right) \rightarrow\left(Y, B, B^{\prime}\right)$ such that $\left(Y, B, B^{\prime}\right)$ is an $A N R$-triad and

$$
\begin{gather*}
s(Y) \leqq \max \left(s(X), \aleph_{0}\right), \tag{2}\\
s(B) \leqq \max \left(s(A), \aleph_{0}\right), \quad s\left(B^{\prime}\right) \leqq \max \left(s\left(A^{\prime}\right), \aleph_{0}\right), \tag{3}\\
q(A) \leqq \operatorname{lnt}_{Y}(B), \quad q\left(A^{\prime}\right) \leqq \operatorname{Int}_{Y}\left(B^{\prime}\right), \tag{4}
\end{gather*}
$$

where Int_{Y} denotes interior with respect to Y. Note that (2) implies that the weight $w(Y)=s(Y) \leqq \max \left(s(X), \aleph_{0}\right)$ and $\operatorname{card}(Y) \leqq 2^{w(Y)} \leqq \max \left(2^{s(X)}, 2^{\aleph_{0}}\right)$. Therefore, the equivalence classes of the maps q form a set Γ. We choose for each $\gamma \in \Gamma^{\prime}$ a unique representative $q_{\gamma}:\left(X, A, A^{\prime}\right) \rightarrow\left(Y, B, B^{\prime}\right)_{\gamma}$ of the class γ.

Let Δ be the set of all finite subsets of Γ, ordered by inclusion. If $\delta=$ $\left\{\gamma_{1}, \cdots, \gamma_{n}\right\} \in \Delta$, we define a triad $\left(X, B, B^{\prime}\right)_{\dot{d}}$ by putting

$$
\begin{gather*}
B_{\hat{\delta}}=B_{r_{1}} \times \cdots \times B_{\gamma_{n}}, \quad B_{\dot{\delta}}^{\prime}=B_{r_{1}}^{\prime} \times \cdots \times B_{\gamma_{n}}^{\prime}, \tag{5}\\
Y_{\dot{\delta}}=B_{\dot{\delta}} \cup B_{\dot{\delta}}^{\prime} \subseteq Y_{r_{1}} \times \cdots \times Y_{\gamma_{n}} . \tag{6}
\end{gather*}
$$

Since $B_{\gamma}, B_{\gamma}^{\prime}$ are $A N R$'s, which are closed in Y_{γ}, it follows that $B_{\dot{o}}, B_{o}^{\prime}$ are ANR's closed in $Y_{\grave{j}}$. Moreover,

$$
\begin{equation*}
B_{\grave{o}} \cap B_{o}^{\prime}=\left(B_{\gamma_{1}} \cap B_{r_{1}}^{\prime}\right) \times \cdots \times\left(B_{\ddot{r}_{n}} \cap B_{r_{n}}^{\prime}\right) \tag{7}
\end{equation*}
$$

is an $A N R$, because $B_{\gamma_{i}} \cap B_{\gamma_{i}}^{\prime}$ are $A N R$'s. Therefore, by the sum theorem for $A N R$'s, $Y_{\dot{j}}^{-}$is also an $A N R$ and $\left(Y, B, B^{\prime}\right)_{\dot{j}}$ is an $A N R$-triad.

If $\delta \leqq \delta^{\prime}=\left\{\gamma_{1}, \cdots, \gamma_{n}, \cdots, \gamma_{m}\right\}$, we define $q_{\partial \dot{o}^{\prime}}:\left(Y, B, B^{\prime}\right)_{i^{\prime}} \rightarrow\left(Y, B, B^{\prime}\right)_{\delta}$ as the restriction to $Y_{\hat{\partial}^{\prime}}$ of the projection $Y_{r_{1}} \times \cdots \times Y_{\gamma_{n}} \times \cdots \times Y_{\gamma_{m}} \rightarrow Y_{r_{1}} \times \cdots \times Y_{\gamma_{n}}$. We also define $q_{\hat{o}}:\left(X, A, A^{\prime}\right) \rightarrow\left(Y, B, B^{\prime}\right)$ as the map

$$
q_{\overline{0}}=q_{r_{1}} \times \cdots \times q_{\gamma_{n}}: X \rightarrow Y_{r_{1}} \times \cdots \times Y_{i_{n}} .
$$

Since $q_{\hat{\delta}}(A) \subseteq B_{\gamma_{1}} \times \cdots \times B_{\gamma_{n}}=B_{\hat{\delta}}$ and $q_{\hat{\delta}}\left(A^{\prime}\right) \subseteq B_{\hat{\delta}}^{\prime}$, we see that $q_{\hat{\delta}}(X) \subseteq B_{\hat{\delta}} \cup B_{\hat{o}}^{\prime}=Y_{\hat{\delta}}$. Clearly, $\left(\boldsymbol{Y}, \boldsymbol{B}, \boldsymbol{B}^{\prime}\right)=\left(\left(Y, B, B^{\prime}\right)_{\dot{\sigma}}, q_{\partial \dot{o}^{\prime}}, \Delta\right)$ is an inverse system of $A N R$-triads and $q=\left(q_{\bar{\delta}}\right):\left(X, A, A^{\prime}\right) \rightarrow\left(\boldsymbol{Y}, \boldsymbol{B}, \boldsymbol{B}^{\prime}\right)$ is a morphism.

We will now show that

$$
\begin{equation*}
q_{\hat{\delta}}(A) \cong \operatorname{Int}_{Y_{\hat{\delta}}}\left(B_{\partial}\right), \quad q_{\hat{\delta}}\left(A^{\prime}\right) \subseteq \operatorname{Int}_{Y_{\hat{\delta}}}\left(B_{\hat{\delta}}^{\prime}\right), \tag{8}
\end{equation*}
$$

so that $q_{\bar{\theta}}$ also satisfies (4). Indeed, if $\delta=\left\{\gamma_{1}, \cdots, \gamma_{n}\right\}$, then

$$
\begin{equation*}
q_{r_{1}}(A) \cong q_{\gamma_{1}}(A) \times \cdots \times q_{r_{n}}(A) \subseteq \operatorname{Int}_{Y_{\gamma_{1}}}\left(B_{\gamma_{1}}\right) \times \cdots \times \operatorname{Int}_{r_{\gamma_{n}}}\left(B_{\gamma_{n}}\right) . \tag{9}
\end{equation*}
$$

Clearly, $\operatorname{Int}_{Y_{\gamma_{1}}}\left(B_{\gamma_{1}}\right) \times \cdots \times \operatorname{Int}_{Y_{\gamma_{n}}}\left(B_{\gamma_{n}}\right)$ is an open set of $Y_{\gamma_{1}} \times \cdots \times Y_{\gamma_{n}}$, contained in $B_{\delta} \subseteq Y_{\delta}$, and therefore it is an open set of Y_{δ}. Consequently, (9) implies the first of the formulas (8). The second one is established analogously. Note that (8) implies

$$
\begin{equation*}
q_{\hat{o}}(X) \cong \operatorname{Int}_{Y_{\hat{\delta}}}\left(B_{\hat{\partial}}\right) \cup \operatorname{Int}_{Y_{\hat{o}}}\left(B_{\hat{\delta}}^{\prime}\right) \subseteq Y_{\hat{j}} . \tag{10}
\end{equation*}
$$

We now define a new directed set M. Its elements are pairs $\mu=(\delta, U)$, where $\delta \in \Delta$ and U is an open neighborhood of $q_{\hat{\delta}}(X)$ in $Y_{\hat{\delta}}$ contained in $\operatorname{Int}_{Y_{\hat{\delta}}}\left(B_{\bar{\partial}}\right)$ $\cup \operatorname{Int}_{Y_{\dot{\delta}}}\left(B_{\dot{\partial}}^{\prime}\right)$.

We put $\mu^{\prime}=(\hat{o}, U) \leqq\left(\delta^{\prime}, U^{\prime}\right)=\mu^{\prime}$ provided $\delta \leqq \delta^{\prime}$ and $q_{\partial \grave{o}^{\prime}}\left(U^{\prime}\right) \subseteq U$. The set M is directed. Indeed, if $\mu_{i}=\left(\delta_{i}, U_{i}\right) \in M, i=1,2$, we first choose $\delta \geqq \delta_{1}, \delta_{2}$. Note that

$$
\begin{equation*}
q_{\hat{\sigma}_{i} \bar{\delta}}\left(q_{\hat{o}}(X)\right)=q_{\dot{\sigma}_{i}}(X) \cong U_{i}, \quad i=1,2 . \tag{11}
\end{equation*}
$$

Therefore, the open set

$$
\begin{equation*}
U=\left(q_{\dot{\partial}_{1} \hat{\partial}}\right)^{-1}\left(U_{1}\right) \cap\left(q_{\dot{\partial}_{2} \hat{o}}\right)^{-1}\left(U_{2}\right) \cong Y_{\dot{\delta}} \tag{12}
\end{equation*}
$$

satisfies

$$
\begin{gather*}
q_{\hat{\delta}}(X) \cong U, \tag{13}\\
q_{\hat{i}_{i} \bar{\delta}}(U) \cong U_{i}, \quad i=1,2, \tag{14}
\end{gather*}
$$

So that $\left(\delta_{i}, U_{i}\right) \leqq(\hat{o}, U), i=1,2$.
For $\mu=(\delta, U)$ we put

$$
\begin{equation*}
X_{\mu}=U, \quad A_{\mu}=U \cap B_{\bar{o}}, \quad A_{\mu}^{\prime}=U \cap B_{o}^{\prime} . \tag{15}
\end{equation*}
$$

Note that $X_{\mu}, A_{\mu}, A_{\mu}^{\prime}$ and $A_{\mu} \cap A_{\mu}^{\prime}$ are $A N R$'s because they are open sets of the $A N R$'s $Y_{\dot{\delta}}, B_{i}, B_{\bar{o}}^{\prime}$ and $B_{\delta} \cap B_{\delta}^{\prime}$ respectively. Furthermore, A_{μ} and A_{μ}^{\prime} are closed in $X_{\mu}=U$, because B_{μ} and B_{μ}^{\prime} are closed in Y_{μ}. Also $A_{\mu} \cup A_{\mu}^{\prime}=X_{\mu}$, so that $\left(X, A, A^{\prime}\right)_{\mu}$ is an $A N R$-triad. This triad satisfies (1). Indeed, the set $U \cap \operatorname{Int}_{Y_{\dot{\delta}}} B_{\dot{\delta}}$
is open in $U=X_{\mu}$ and is contained in $A_{\mu}=U \cap B_{\delta}$. Therefore,

$$
\begin{equation*}
U \cap \operatorname{Int}_{Y_{\hat{\partial}}} B_{\bar{\delta}} \subseteq \operatorname{Int}_{X_{\mu}} A_{\mu} \tag{16}
\end{equation*}
$$

An analogous formula holds for B_{o}^{\prime} and A_{μ}^{\prime}. Consequently,

$$
\begin{equation*}
X_{\mu}=U=U \cap\left(\operatorname{Int}_{Y_{\hat{\delta}}} B_{\bar{o}} \cup \operatorname{Int}_{Y_{\hat{o}}} B_{\hat{\delta}}^{\prime}\right) \subseteq \operatorname{Int}_{x_{\mu}} A_{\mu} \cup \operatorname{Int}_{x_{\mu}} A_{\mu_{\mu}}^{\prime} \tag{17}
\end{equation*}
$$

We now define maps $r_{\mu \mu^{\prime}}:\left(X, A, A^{\prime}\right)_{\mu^{\prime}} \rightarrow\left(X, A, A^{\prime}\right)_{\mu}, \mu \leqq \mu^{\prime}$, and $r_{\mu}:\left(X, A, A^{\prime}\right)$ $\rightarrow\left(X, A, A^{\prime}\right)_{\mu}$ as $q_{\partial o^{\prime}} \mid U^{\prime}$ and $q_{\delta}: X \rightarrow q_{\delta}(X) \cong U=X_{\mu}$ respectively. Clearly, we obtain an inverse system of $A N R$-triads $\left(\boldsymbol{X}, \boldsymbol{A}, \boldsymbol{A}^{\prime}\right)=\left(\left(X, A, A^{\prime}\right)_{\mu}, r_{\mu \mu^{\prime}}, M\right)$ and a morphism $\boldsymbol{r}=\left(r_{\mu}\right):\left(X, A, A^{\prime}\right) \rightarrow\left(\boldsymbol{X}, \boldsymbol{A}, \boldsymbol{A}^{\prime}\right)$.

We will now show that \boldsymbol{r} is a resolution. We first establish property (R2). Let $\left(P, Q, Q^{\prime}\right)$ be an $A N R$-triad and let \mathcal{V} be an open covering of P. Let $\mu=$ $(\delta, U) \in M$ and let $g, g^{\prime}:\left(X, A, A^{\prime}\right)_{\mu} \rightarrow\left(P, Q, Q^{\prime}\right)$ be maps of triads such that $g r_{\mu}$ and $g^{\prime} r_{\mu}$ are ϑ-near maps. Since $r_{\mu}=q_{\dot{\partial}}$ and $q_{\delta}(X) \cong U=X_{\mu}$, we see that $g \mid q_{\hat{\theta}}(X)$ and $g^{\prime} \mid q_{\dot{\delta}}(X)$ are \mathbb{Q}-near maps. Therefore, every point $z \in q_{\dot{\delta}}(X)$ admits a $V(z)$ $\in \mathscr{V}$ such that $g(z), g^{\prime}(z) \in V(z)$. By continuity, there exists an open neighborhood $U(z)$ of z in U such that for any $z^{\prime} \in U(z)$ the points $g\left(z^{\prime}\right), g^{\prime}\left(z^{\prime}\right) \in V(z)$. Let U^{\prime} be the union of all $U(z)$, when z ranges over $q_{\dot{\theta}}(X)$. Then U^{\prime} is an open neighborhood of $q_{\dot{\delta}}(X)$ in U. Moreover, the maps $g\left|U^{\prime}, g^{\prime}\right| U^{\prime}$ are Q^{\prime}-near. Note that $U^{\prime} \cong \operatorname{Int}_{Y_{\bar{\delta}}}\left(B_{\bar{\delta}}\right) \cup \operatorname{Int}_{Y_{\bar{\delta}}}\left(B_{\hat{\partial}}^{\prime}\right)$ because $U^{\prime} \cong U$. Consequently, $\mu^{\prime}=\left(\hat{o}, U^{\prime}\right)$ belongs to $M, \mu \leqq \mu^{\prime}$ and the maps $g r_{\mu \mu^{\prime}}=g\left|U^{\prime}, g^{\prime} r_{\mu \mu^{\prime}}=g^{\prime}\right| U^{\prime}$ are \mathcal{V}-near.

We will now establish property (R1). Let $f:\left(X, A, A^{\prime}\right) \rightarrow\left(P, Q, Q^{\prime}\right)$ be a map of triads, let $\left(P, Q, Q^{\prime}\right)$ be an $A N R$-triad and let Q be an open covering of P. It suffices to find an $A N R-\operatorname{triad}\left(Y, B, B^{\prime}\right)$, which satisfies (2), (3) and (4), and to find maps of triads $q:\left(X, A, A^{\prime}\right) \rightarrow\left(Y, B, B^{\prime}\right), h:\left(Y, B, B^{\prime}\right) \rightarrow\left(P, Q, Q^{\prime}\right)$ such that q satisfies (4) and the maps $h q$ and f are Q-near. In that case q is equivalent to q_{γ} for some $\gamma \in \Gamma$ and we can assume that $q=q_{i}$. If we now take any $\mu=(\delta, U) \in M$ such that $\delta=\{\gamma\}$, then $h^{\prime}=h \mid U: X_{\mu} \rightarrow P$ is a map such that

That such an $A N R-\operatorname{triad}\left(Y, B, B^{\prime}\right)$ and such a map q exist follows from Theorem 2.

In order to complete the proof of Theorem 3, we will now replace ($\boldsymbol{X}, \boldsymbol{A}, \boldsymbol{A}^{\prime}$) by a new inverse system ($\boldsymbol{Z}, \boldsymbol{C}, \boldsymbol{C}^{\prime}$), which is indexed by the set A of all finite subsets of M and is therefore cofinite. We choose an increasing function $\varphi: \Lambda$ $\rightarrow M$ such that $\varphi(\{\mu\})=\mu$. We then put $\left(Z, C, C^{\prime}\right)_{\lambda}=\left(X, A, A^{\prime}\right)_{\varphi(\lambda)}, \lambda \in \Lambda, s_{\lambda i}$, $=r_{\varphi(\lambda) \varphi\left(\lambda^{\prime}\right)}, \lambda \leqq \lambda^{\prime}, s_{\lambda}=r_{\varphi(\lambda)}, \lambda \in A$. It is easy to see that $s=\left(s_{\lambda}\right):\left(X, A, A^{\prime}\right) \rightarrow$ $\left(\boldsymbol{Z}, \boldsymbol{C}, \boldsymbol{C}^{\prime}\right)$ is a resolution of triads with all the desired properties. This wellknown argument is described in more details in the case of pairs in [7].

5. Induced resolutions of pairs.

Let $\boldsymbol{p}=\left(p_{\dot{\lambda}}\right):\left(X, A, A^{\prime}\right) \rightarrow\left(\boldsymbol{X}, \boldsymbol{A}, \boldsymbol{A}^{\prime}\right)$ be a morphism of a triad into an inverse system of triads. This morphism induces several morphisms of pairs into systems of pairs. In particular, we have the morphisms

$$
\boldsymbol{p}_{(X, A)}:(X, A) \rightarrow(\boldsymbol{X}, \boldsymbol{A}), \quad \boldsymbol{p}_{\left(X, A^{\prime}\right)}:\left(X, A^{\prime}\right) \rightarrow\left(\boldsymbol{X}, \boldsymbol{A}^{\prime}\right)
$$

and

$$
\boldsymbol{p}_{(X, B)}:(X, B) \rightarrow(\boldsymbol{X}, \boldsymbol{B}),
$$

where $B=A \cap A^{\prime}, B_{i}=A_{\lambda} \cap A_{\lambda}^{\prime},(X, B)_{\lambda}=\left(X_{\lambda}, B_{\lambda}\right)$ and $(\boldsymbol{X}, \boldsymbol{B})=\left((X, B)_{i}, p_{\lambda \lambda^{\prime}}, A\right)$. We also have morphisms $\boldsymbol{p}_{(A, B)}:(A, B) \rightarrow(\boldsymbol{A}, \boldsymbol{B})$ and $\boldsymbol{p}_{\left(A^{\prime}, B\right)}:\left(A^{\prime}, B\right) \rightarrow\left(\boldsymbol{A}^{\prime}, \boldsymbol{B}\right)$, where $(\boldsymbol{A}, \boldsymbol{B})=\left((A, B)_{\lambda}, p_{\lambda \lambda^{\prime}}, A\right),(A, B)_{\lambda}=\left(A_{\lambda}, B_{\lambda}\right)$.

- Remark 1. If \boldsymbol{p} is a resolution, then so are $\boldsymbol{p}_{(X, A)}$ and $\boldsymbol{p}_{\left(X, A^{\prime}\right)}$. To verify properties (R1) and (R2) it suffices to associate with every $A N R$-pair (P, Q) the $A N R-\operatorname{triad}\left(P, Q, Q^{\prime}\right)$, where $Q^{\prime}=P$.

By imposing rather mild restrictions on (X, A, A^{\prime}) we can show that the analogous assertion holds also in the case of the induced morphism $\boldsymbol{p}_{(X, B)}$. The argument uses some ideas from a proof presented in [3].

Theorem 4. Let $\boldsymbol{p}:\left(X, A, A^{\prime}\right) \rightarrow\left(\boldsymbol{X}, \boldsymbol{A}, \boldsymbol{A}^{\prime}\right)$ be a resolution of triads. If the spaces $X, X_{i}, \lambda \in \Lambda$, are normal and the sets $A, A^{\prime} \subseteq X$ are closed, then the induced morphism $\boldsymbol{p}_{(X, B)}:(X, B) \rightarrow(\boldsymbol{X}, \boldsymbol{B})$ is a resolution of pairs.

Corollary 1. If $\boldsymbol{p}:\left(X, A, A^{\prime}\right) \rightarrow\left(\boldsymbol{X}, \boldsymbol{A}, \boldsymbol{A}^{\prime}\right)$ is an ANR-resolution of triads, X is a normal space and $A, A^{\prime} \subseteq X$ are closed sets, then $\boldsymbol{p}_{(X, B)}:(X, B) \rightarrow(\boldsymbol{X}, \boldsymbol{B})$ is an ANR-resolution of pairs.

Proof. First note that the induced morphism $\boldsymbol{p}_{X}: X \rightarrow \boldsymbol{X}$ is a resolution [7]. Therefore, the assertion of Theorem 4 will be proved if we show that $p_{(., ~ B)}$ satisfies the following condition (B1)** (see [7], Theorem 2):

For every $\lambda \in \Lambda$ and every normal covering Q of X_{λ} there exists a $\lambda^{\prime \prime} \geqq \lambda$ such that

$$
\begin{equation*}
p_{\lambda \lambda^{\prime}}\left(B_{\lambda^{\prime}}\right) \subseteq \operatorname{St}\left(p_{\lambda}(B), \mathcal{U}\right) . \tag{1}
\end{equation*}
$$

In order to verify this condition note that $\overline{p_{\lambda}(B)}$ is contained in $G=$ $\operatorname{Stt}\left(p_{\lambda}(B), U\right)$. Therefore, there is an open neighborhood G_{0} of $\overline{p_{\lambda}(B)}$ such that

$$
\begin{equation*}
\overline{p_{\lambda}(B)} \cong G_{0} \subseteq \bar{G}_{0} \subseteq G . \tag{2}
\end{equation*}
$$

Note that $\mathcal{G}=\left\{\beta_{\lambda}^{-1}\left(G_{0}\right), X \backslash A, X \backslash A^{\prime}\right\}$ is an open covering of X, because $B=$
$A \cap A^{\prime} \subseteq p_{\mathrm{\lambda}}^{-1}\left(G_{0}\right)$. This covering is normal because it is finite and X is a normal space. By a well-known property of resolutions (see [8], I, §6.2, Theorem 4), there exists a $\lambda^{\prime} \geqq \lambda$ and a normal covering \mathbb{V} of X_{λ}^{\prime} such that $\left(p_{\lambda^{\prime}}\right)^{-1}(q)$ refines g.

We now put

$$
\begin{equation*}
H=\left(p_{\lambda \lambda^{\prime}}\right)^{-1}(G), \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
H_{0}=\left(p_{\lambda \lambda^{\prime}}\right)^{-1}\left(G_{0}\right) . \tag{4}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\bar{H}_{0} \subseteq H . \tag{5}
\end{equation*}
$$

Moreover, since

$$
\begin{equation*}
p_{\lambda \lambda^{\prime}}\left(\overline{p_{\lambda^{\prime}}(B)}\right) \subseteq \overline{p_{\lambda}(B)} \subseteq G, \tag{6}
\end{equation*}
$$

we see that

$$
\begin{equation*}
\overline{p_{\lambda^{\prime}}(B)} \subseteq H \tag{7}
\end{equation*}
$$

Clearly, the sets $\overline{p_{\lambda^{\prime}}(A)} \backslash H$ and $\overline{p_{\lambda^{\prime}}\left(A^{\prime}\right)} \backslash H$, are closed subsets of $X_{\lambda^{\prime}}$. We claim that they are disjoint. Assume to the contrary that there exists a point

$$
\begin{equation*}
y \in\left(\overline{p_{\lambda^{\prime}}(A)} \backslash H\right) \cap\left(\overline{p_{\lambda^{\prime}}\left(A^{\prime}\right)} \backslash H\right) . \tag{8}
\end{equation*}
$$

Let V be a member of \mathcal{V}, which contains y. For any open neighborhood W of y, which is contained in V, there exist points $a \in A, a^{\prime} \in A^{\prime}$ such that

$$
\begin{equation*}
\left\{p_{\lambda^{\prime}}(a), p_{\lambda^{\prime}}\left(a^{\prime}\right)\right\} \cong W . \tag{9}
\end{equation*}
$$

The set

$$
\left(p_{\lambda^{\prime}}\right)^{-1}(W) \subseteq\left(p_{\lambda^{\prime}}\right)^{-1}(V)
$$

must be contained in one of the sets $X \backslash A, X \backslash A^{\prime}$ or $p_{\lambda^{-1}}\left(G_{0}\right)$. It cannot be contained in $X \backslash A$ because $a \in\left(p_{\lambda^{\prime}}\right)^{-1}(W)$. Similarly, the point $a^{\prime} \in\left(p_{2^{\prime}}\right)^{-1}(W)$ rules out the set $X \backslash A^{\prime}$. Hence, we must have

$$
\begin{equation*}
\left(p_{\lambda^{\prime}}\right)^{-1}(W) \subseteq p_{\lambda^{-1}}^{-1}\left(G_{0}\right)=\left(p_{\lambda^{\prime}}\right)^{-1}\left(H_{0}\right) . \tag{10}
\end{equation*}
$$

However, (9) and (10) imply

$$
\begin{equation*}
\left\{p_{\lambda^{\prime}}(a), p_{\lambda^{\prime}}\left(a^{\prime}\right)\right\} \cong H_{0} \cap W \tag{11}
\end{equation*}
$$

This shows that every sufficiently small open neighborhood W of y intersects H_{0} and therefore $y \in \bar{H}_{0} \subseteq H$, which, however, contradicts (8).

We now choose disjoint open set $K, L \subseteq X_{\lambda^{\prime}}$, such that

$$
\begin{equation*}
\overline{p_{\lambda^{\prime}}(A)} \backslash H \cong K, \quad \overline{p_{\lambda^{\prime}}\left(A^{\prime}\right)} \backslash H \cong L . \tag{12}
\end{equation*}
$$

We then put

$$
\begin{equation*}
K^{*}=K \cup H, \quad L^{*}=L \cup H . \tag{13}
\end{equation*}
$$

These are open sets in X_{λ}, such that

$$
\begin{gather*}
\overline{p_{\lambda^{\prime}}(A)} \subseteq K^{*}, \quad \overline{p_{\lambda^{\prime}}\left(A^{\prime}\right)} \subseteq L^{*}, \tag{14}\\
K^{*} \cap L^{*}=H . \tag{15}
\end{gather*}
$$

Therefore,

$$
\begin{equation*}
\overline{p_{\lambda^{\prime}}(B)} \cong \overline{p_{\lambda^{\prime}}(A)} \cap \overline{p_{\lambda^{\prime}}\left(A^{\prime}\right)} \cong K^{*} \cap L^{*}=H . \tag{16}
\end{equation*}
$$

Now consider an open set $K_{1}^{*} \subseteq X_{\lambda^{\prime}}$ such that

$$
\begin{equation*}
\overline{p_{\lambda^{\prime}}(A)} \subseteq K_{1}^{*} \subseteq \bar{K}_{1}^{*} \subseteq K^{*} . \tag{17}
\end{equation*}
$$

$\mathscr{W}=\left\{K^{*}, X \backslash \bar{K}_{1}^{*}\right\}$ is a normal covering of $X_{\lambda^{\prime}}$. Therefore, by property (B1)** applied to $\boldsymbol{p}_{(x, A)}\left([7]\right.$, Theorem 2), there is a $\lambda^{\prime \prime} \geqq \lambda^{\prime}$ such that

$$
\begin{equation*}
p_{\lambda^{\prime} \lambda^{\prime}}\left(A_{\lambda^{\prime}}\right) \cong \operatorname{St}\left(p_{\lambda^{\prime}}(A), \mathscr{W}\right) . \tag{18}
\end{equation*}
$$

However, $\operatorname{St}\left(p_{\lambda^{\prime}}(A), \mathscr{V}\right)=K^{*}$ so that (18) becomes

$$
\begin{equation*}
p_{\lambda^{\prime} \lambda^{2}}\left(A_{\lambda^{*}}\right) \subseteq K^{*} . \tag{19}
\end{equation*}
$$

Similarly, we argue with A^{\prime} and L^{*}. Therefore, we can assume that $\lambda^{\prime \prime}$ also satisfies

$$
\begin{equation*}
p_{\lambda^{\prime} \lambda^{\prime}}\left(A_{\lambda^{\prime}}^{\prime}\right) \subseteq L^{*} . \tag{20}
\end{equation*}
$$

It now follows, by (16), that

$$
\begin{equation*}
p_{\lambda \lambda^{\prime}}\left(B_{\lambda^{\cdot}}\right) \subseteq p_{\lambda \lambda^{\prime}}\left(K^{*} \cap L^{*}\right)=p_{\lambda \lambda^{\prime}}(H) . \tag{21}
\end{equation*}
$$

Consequently, (3) yields the desired result

$$
\begin{equation*}
p_{\lambda^{\prime} \cdot}\left(B_{\lambda^{0}}\right) \subseteq G . \tag{22}
\end{equation*}
$$

In the next theorem we consider the induced morphism $\boldsymbol{p}_{(A, B)}$.
Theorem 5. Let $\boldsymbol{p}:\left(X, A, A^{\prime}\right) \rightarrow\left(\boldsymbol{X}, \boldsymbol{A}, \boldsymbol{A}^{\prime}\right)$ be a resolution of triads. Let the spaces $X, X_{\lambda}, \lambda \in A$, be normal, let the sets $A, A^{\prime} \subseteq X$ be closed and let the sets $A \subseteq X$ and $A_{\lambda} \subseteq X_{\lambda}, \lambda \in \Lambda$, be normally embedded. Then the induced morphism $\boldsymbol{p}_{(A, B)}:(A, B) \rightarrow(\boldsymbol{A}, \boldsymbol{B})$ is a resolution of pairs.

Corollary 2. If $\boldsymbol{p}:\left(X, A, A^{\prime}\right) \rightarrow\left(\boldsymbol{X}, \boldsymbol{A}, \boldsymbol{A}^{\prime}\right)$ is an $A N R$-resolution of triads, X is a normal space, $A, A^{\prime} \subseteq X$ are closed sets and A is normally embedded in X, then the induced morphism $\boldsymbol{p}_{(A, B)}:(A, B) \rightarrow(\boldsymbol{A}, \boldsymbol{B})$ is an $A N R$-resolution of pairs.

We say that $A \subseteq X$ is normally embedded in X (or \mathscr{P}-embedded) provided
every normal covering \mathcal{V} of A admits a normal covering \mathcal{U} of X such that $\mathcal{Q} \mid A$ refines ϑ.

Proof of Theorem 5. By [7, Theorem 2], it suffices to prove that the induced morphism $\boldsymbol{p}_{A}: A \rightarrow \boldsymbol{A}$ is a resolution and $\boldsymbol{p}_{(A, B)}$ has property (B1)**. Since $\boldsymbol{p}_{(X, A)}$ is a resolution and also $A \subseteq X$ and $A_{\lambda} \subseteq X_{\lambda}, \lambda \in \Lambda$, are normally embedded, [7, Theorem 3] implies that \boldsymbol{p}_{A} is a resolution.

In order to establish (B1)** for $\boldsymbol{p}_{(A, B)}$, we apply Theorem 4 and conclude that $\boldsymbol{p}_{(X, B)}$ is a resolution. Therefore, $\boldsymbol{p}_{(X, B)}$ has property (B 1$)^{* *}$. Consequently, for any $\lambda \in \Lambda$ and any normal covering Q of X_{λ} there is a $\lambda^{\prime \prime} \geqq \lambda$ such that (1) holds. Now let \mathbb{V} be a normal covering of A_{λ}. Since A_{λ} is normally embedded in X_{λ}, we can choose \mathcal{U} such that $\mathcal{U} \mid A$ refines \mathcal{V}. Then the star $\operatorname{St}_{A_{\lambda}}$ ($p_{\lambda}(B), \mathcal{V}$) (star with respect to A_{λ}) clearly contains $A_{\lambda} \cap \operatorname{St}\left(p_{\lambda}(B), \mathcal{U}\right)$, which, by (1), contains $p_{22^{\circ}}\left(B_{2^{\circ}}\right)$. This establishes (B1)** for $\boldsymbol{p}_{(A, B)}$.

References

[1] Lisica, Ju. T. and Mardešić, S., Steenrod-Sitnikov homology for arbitrary spaces, Bulletin Amer. Math. Soc. 9 (1983), 207-210.
[2] - and ——, Coherent prohomotopy and strong shape, Glasnik Mat. (to appear).
[3] and ——, Pasting strong shape morphisms, Glasnik Mat. (to appear).
[4] —— and ——— Strong homology of inverse systems, III, Topology and its Appl. (to appear).
[5] Mardešić, S., Approximate polyhedra, resolutions of maps and shape fibrations, Fund. Math. 114 (1981), 53-78.
[6] - - Inverse limits and resolutions, Shape theory and geometric topology (Dubrovnik 1981), 239-252, Lecture Notes in Math. 870, Springer-Verlag, Berlin 1981.
[7] ——, On resolutions for pairs of spaces, Tsukuba J. Math. 8 (1984), 81-93.
[8] and Segal, J., Shape theory, North-Holland, Amsterdam 1982.
[9] Morita, K., On shapes of topological spaces, Fund. Math. 86 (1975), 251-259.
[10] —, Resolutions of spaces and proper inverse systems in shape theory (to appear).
[11] Watanabe, T., Approximative shape theory, University of Yamaguchi, Yamaguchi City 1982 (mimeographed notes).

Department of Mathematics
University of Zagreb
41.001 Zagreb, p.o. box 187

Yugoslavia

[^0]: Received January 31, 1984.

