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ON THE CAUCHY PROBLEM FOR A SEMI-LINEAR

HYPERBOLIC SYSTEM AND ITS TRAVELING

WAVE-LIKE SOLUTIONS

By

Syoz6 Niizeki

Introduction

We consider the Cauchy problem of the following system of semi-linear partial

differentialequations for u(x,t) and v(x,t):

(1)

£≪

dv ,

du

dx

dv

dx

= ― uv + g(u)e

= uv+h(v)s, (x,t)£RxR+,

with the initial data

f u(x,0) = 6(x),

(2)

v(x,O) = (b(x). xsR.

where 2?=(-oo, +00) and l?+=(0, +00); X^X^p) and e are real constants; g and

A are real-valued and real analytic functions at the origin with radii Pl and p2

respectively, that is to say

(3)

I g(u)=Z^oakuk, h(v)=Er^ohvk

limsup V＼ak＼

k ->°°

=―, limsup V|6*| = ― ･
Pi fc^°°

Without loss of generality we may assume that 0<pi^p2, and we suppose that

(4) <f>{x),<p(x)^Q, x£R; $(x),fcx)ef&＼R),

where by W(R) we mean the function space of all real-valued C1-functions which

are bounded on R together with their firstderivatives. From now on by C＼S)

we mean the function space of all real-valued continously differentiablefunctions

defined on S.

The system (l)-(2)has an ecological meaning when both g and h are some
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polynomials of degree one, namely g{u)=alu and h(v)=b＼V. If at>0, bx<0 and

£>0, then u and v in (1) represent prey and predator respectively, and the system

(l)-(2)describes what is called prey-predator equations. The constants axs and bxe

represent the rate of natural multiplicationof prey without predator and the rate

of natural extinction of predator without prey respectively (see Yamaguti and

Niizfikif91V

In this paper we will investigate on the following three matters.

The firstis to obtain the solutions, which belong to Cl(QT), of the Cauchy

problem (l)-(2)in the following form (see Theorem 4.4):

(5)

I u{x

v(x.

0= Hl^aUiixjy

2 i ovi(x,t)el,(x,t)eQT

where ut and vt will be introduced in §1, and QT is defined by

(6) QT=Rx[0,T], 7>0.

The representation (5) shows that the solutions of the Cauchy problem (l)-(2) can

be described as analytic functions of s.

The second is as follows: The solutions of semi-linear hyperbolic system of

partial differentialequations of two independent variables can be constructed by

the method of successive approximation (see Nagumo [4]).In this case, in general,

we need to take the absolute values of the initialdata sufficientlysmall according

to T. In this paper, however, it will be shown that if g and h in (1) are entire

functions over R then we can take initialdata independent of T (see Remark 4.5).

And the third is to show that for some initial data <fiand <p the Cauchy

problem (l)-(2) has traveling wave-like solutions for sufficiently small s (see

Theorem 5.3V

Now, in case that g(u)=ao+a1u+azu2 and h(v)=bo+biV+b2V2 and in case that

g(u)=J]k1=oakUk and h(v)= T,k7lobkVk,where n is an arbitrary positiveinteger, we

investigated in detailin Niizeki [51 and [61 respectively.

§1. Preliminaries and notations

Ui and Viin (5) are,in truth, the solutions of the following semi-linear system

(1.1)(/=0) or the linear system (1.2)(/^l) of partial differentialequations for ut

and ≪;:in rase /=0



(1.1)

where

(1.5)
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+ *

+fl

dui

dt

+ a

― ―UoVo ,

= UoVo, (x,t)£RxR+ ,

= - S/=o Ui-iVi+EZo CtkUPAx, t)

= EiUui-ivc+ SA bkV^l(x, t),(x, f)eQT ,

_d_

dx
<f>(x) &**> <M, xqR

301

du0

dx

dv0

uo(x,O) ― <f)(x),Vo(x,0)~<Jj(x), xgR

where <j>(x)and Mx) are the initialdata in (2), and in case /^l

dx

dVi

dx

Ui(x,Q) = Q, Vi(x,O) = O, xgR

U?＼x,t)=V?＼x,t)z=l,

Uf＼x,t)=V＼°＼x,t)=O(fel),

U?Kx,t)=Zil^Ui(x,t)U^＼x,t) (k^i, /^O),

Vnx,t)=y＼LaVi{x,tW^＼x,t) (k^l, 1^0), (x,t) Qr.

The properties of solutions of (1.1) are investigated in detailin Yoshikawa and

Yamaguti [10]. The convergency of the series appearing in (1.2)

(1.4) Z^akUflx{x,t), L^hVfl^xJ), (x,t)eQT

will be examined in (1.20) for 1=1 and in Remark 2.4 for/^2. The system (1.1)

and (1.2) can be formally obtained by substituting (5) into (1) and collecting terms

with the same power in s.

Now, In view of (4) there existpositiveconstantsM and M such that

O^0(aO, <p{x)^M

Proposition 1.1. For any T>R, the solutions u0 and v0 of the Cauchy problem

(1.1) are nonnegative and bounded over Or.

Proof. We remark here that the system (1.1) has real-valued global solutions

which belong to Cl(RxR+) (see Hashimoto [2] or Hirota [3]). Now, from (1.1) we

have
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ua{x, t) = <j)(x―kt) expf ―

vo(x,t) = (p(x-/it)exp[ ＼
＼Jo

Sy6zo Niizeki

p ＼

＼vo(x-M+}.s, s)ds)
Jo /

ua{x―fit+fts, s)ds).

Hence u0 and v0 are nonnegative since <f>and </>are nonnegative. Next, from (1.5)

and (1.f>)we have

(1.7) uo(x,t)^M, vo(x,t)^MeMT,(x,t) QT,

which shows that u0 and v0 are bounded over Dr. Q. E. D.

In connection with the above proposition,we define r0 by

(1.8) ro= MeMT.

Furthermore, for every solution u, and vt(/^0) of the Cauchy problem (1.1) and

(1.2) we out

ui(x, t)=-j-tti(x, 0, vt(x, t) = ― v,{x, t),

Ui{x, f)=-rr-Ui(x, t), v,{x, t)= ― Vi(x, t).
at at

Now, we will give here Hair's inequality (see Petrovski [7]), which will be

often used later in the following form.

Let us consider the system of linear partial differentialequations

+ Ct

+c2

-=―=an(x, t)ux +ai2(x, f)u2+bi(x, t),

-~- = an{x, t)ui+a22(x, t)uz+ b2(x, t),(x, t)£QT ,

du
It

du2

with the initial data u1(x,O)―^>i(x)and u2(x,0)=$2(z) (xeR). Here, C＼and cz are

real constants and aij{x,t)(l^i,j^2) and h(x,t) (l^iz'^2) are continuous and

bounded over Qr, and <f>i(x)and <j>z(x)are continuous and bounded over R. Further

we put

A= max { sup ＼ai}{x,f)＼),
ISi.jSZ<.X,t)&JT

B=max{ sup ＼h{x,t)＼},

C = max{sup ＼Mx)＼},
lS,iS2x R

then we have Haar's ineaualitv:



(1.10)
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＼u{(x,t)＼,＼u2(x,t)＼^Ce2AT+-^-(e2Ar-l), (x,t)eQT.

Under these preparations we prove the following propositions.

Proposition 1.2. For any 7>0, uo,v0,u0 and v0 are all bounded over QT
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Proof. Differentiating(1.1) with respect to x we obtain the following system

(1.11) of partialdifferentialequations for u0 and v0 with the initialdata (1.12):

(1.11)

(1.12)

du0

~dt

, , du0
+ X -^― = ―V0Uo ― UoVo,

OX

+ u
dv0

dx
―VoUo + UoV0, (x,t)zRxR+

uo(x,O) = ― <j)(x),Vo(x,O)=―(p{x), xeR

Applying Haar's inequality (1.10) to the Cauchy problem (1.11)-(1.12)and using

(1.5) and (1.7) we have

(1.13) ImoOcOI, ＼vQ(x,t)＼^Mexp{2MTeMT), (x,t)eiJT.

Hence u0 and v0 are bounded over QT.

Next, by considering (1.9) for /=0 the first and the second expressions in

(1.1) can be rewritten by

Mo+ /(Uo=―UoVo, Vo+ (XVo= U0V0.

Hence, from (1.7) and (1.13) we have

|≪o(a?,OI^I≪o|kol + UI ＼uo＼^M2eMT+＼k＼Mexy{2MTeMT), (x,t)eQT.

Similarly we have

＼o(x,t)＼^M2eMT+＼fi＼Mexp(2MTeMT), (x, t)*QT .

Therefore when 3y=max{l, ＼X＼,＼n＼)we have

(1.14) ＼uo(x,t)＼,＼vo(x,t)＼^M2eMT+ vM exp(2MTeMT), (x,t)eQT.

Hence the proposition now follows at once. Q. E. D.

In connection with (1.13) and (1.14) we will define r0 by

(1.15) ro= M2eMT+vM exp(2MTeMT).

Proposition 1.3. For any positive number p, there exists a positivenumber dr
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such that if M^or then the inequality

(1.16) ntkp

holds. Here 8t depends on T, and for example we may take 6r as

then we remark that if p~++ oo then dr-+ + oo.

Proof. The proof is easily performed, so we omit it. Q. E. D.

Now, for all integers £^Q we will define qk by

(1.17) qk = max{＼ak＼,＼bk＼},

where ak and bk (k^O) are given in (3). Then we have the following proposition.

Proposition 1.4. The radius of convergence of T,k°loQkZkis equal to /ju where

pi is defined in (3).

Proof. The proof is obvious, so we omit it. Q. E. D.

Now, by Proposition 1.3 we can choose M, which is introduced in (1.5),so

small that the inequality

(1.18) r'=＼

holds, where r0 is defined in (1.8). We remark here that if M is chosen so that

the inequality

(i.i9) M^4-iogi+vyI^iT

holds, then (1.18) holds. From now on we suppose that M is chosen so that (1.18)

holds. Then in view of Proposition 1.4 we have

(1-20) S*=0 ?**>*< +°O.

Hence, for 1=1 both of the series in (1.4) converge uniformly over QT.

Here, we define a constant Lt bv

(1.21) LT = -~―{exp(2nT)-l}, 7>0,

which will be used in the definitionof n in (2.1).
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§2. The estimates of Ui(x,t) and vL(x,t)

For every integer k^O and /^0, we will define n and K＼k)inductively by

means of the following relations:

(2.1)

n=(Z＼=i n-in)LT+E.=o ^K?＼ (/is1)

/rjw=i, ^o)=o (/^i),

where we put T,liZ＼ri-iri= O for /=1 and the validity of definition of rx follows

immediately from (1.20) since K<ic)―rok,and the convergency of J]^^, in the

definitionof ri will be shown in the proof of Proposition 2.1.

Proposition 2.1. The implicit function w(z), which satisfies w(0) = r0, determined

by the equation

(2.2) F(z, w) = zTik%qicWk + Lr(w-royz-(w~ro)-0,

(z, w)e{(z, tv)＼＼z＼<+00, ＼w＼<pi),

has the expression

(2.3) w(z) = H 1=0nzl, ＼z＼<fj0,

where the sequence {f≪}j=uis given in (1.8) and (2.1),≪≪<ip0 is some positive constant.

Proof. Since by Proposition 1.4 the right-hand side of F(z, w) converges on

dF
the domain {{z,w)＼|2|<+oo, ＼w―ro＼<pi―n}z.nd since F(O,ro) = O and -r―(0,ro)= ―1,

dw

by the existence theorem for implicit function (see Tsuji [8]), w{z) has the follow-

ing expansion with the radius of convergence p:

(2.4) w(z)=Xr=oCizl, ＼z＼<p,

where c0―r0 and p is some positive constant. Now, by using the Weierstrass'

double series theorem we will define E＼k)for every pair (k,l) of integers k^O and

/^0 by

(2.5) w(z)k = (Zt10ciZl)k--=i:£0E?>zl, ＼z＼<P.

Hence we have

f £$w= l, Ef^O (/ill),
(2.6)

Substituting (2.4)into (2.2) and using (2.5),we have
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(2.7) Si-iCSfc-o^^i^+LrS^CLiU CiQ-^-EA ctzl,＼z＼<p.

(2.8) c^Z^ogkE^+LriZtlcid^ mi),

where the right-hand side of (2.8)is well-defined. Therefore we have

(2.9) ci=n mO), E?≫=KP (k^O, /^O)

comparing (2.1) with (2.6) and (2.8). Hence we have

(2-io) 2a?^<+≫ mo),

and we see that rt(/^l) defined in (2.1) are well-defined.

We are now in a position to prove the main proposition of this

Q.E.D.

section.

Proposition 2.2. For Uf＼x,t) and Vf＼x,f) defined in (1.3) we have the fol

lowing estimates:

(2.11) ＼Uf＼x,t)＼,＼VikXx,t)＼^KfLTl (1^0, k^O), (x,t)£QT.

Proof. Let us prove this through the following four steps.

(i) From (1.3), (1.7),(1.8) and (2.1) it is obvious that the estimates (2.11) hold

for k=0 and /^0 and for k=l and 1=0.

(ii) We suppose that (2.11) hold for l^k^s and O^l^n. Then from (1.3)

and (2.1) we have

u I =Zji=o*n| ＼Ul-i =vZji=o 'i^l-iJ^T ―J＼i L,t v."= ' = M) ,

where by (1.3) and (2.1) we have U(i) = ui and K(^=n. Similarly we have

I V<is+l)＼^Kis+i)LTl(0^/^m) .

Therefore by an induction process on k the estimates (2.11) hold for k^O and

(iii) From (1.17),(2.10) and (ii),we see that the system (1.2) has meaning for

l=n+l. Therefore applying Haar's inequality (1.10) to (1.2)for l―n+1 and using

(ii)and (2.1) we have

Ire,| = |m≫+i|̂Lr^Ei"-! rn+1.irt+ LTn+＼i:^oqicK^)

= LrB+1{LrSi-i rn+i-iri+ E£0 qkK^} = rn+1LTn+l= K^+1LTn+1.

Similarly we have V^I^K^Lt^1. Hence the estimates (2.11) hold for k=l and

l=n + l.

(iv) From (i),(ii)and (iii)we easily see that (2.11) hold for all integers k^Q

and />0. Q.E.D.

Remark 2.3. From (1.3) we see that U^ = ut and Vll)= vh and from (2.1) we
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see that K[l)=ri. Therefore putting k=l in (2.11) we have

(2.12) ＼ut(x,t)＼,Mxjy^nLr1, {x,t)£QT,

which will be used in proving Proposition 3.6,Lemma 5.1 and 5.2.

Remark 2.4. In view of (2.10) and (2.11) we see that both Z£*<**U?llx,t)

and Ti^bkVfl^Xft) (/^l) appearing in (1.2) converge uniformly over Qt.

§3. The estimates of ut,vu uu and v

The purpose of this section is to estimate uh vi,ut and vt (/^l), which are

denned in (1.9),in the same manner as in Proposition 2.2.

For any pair (k,l) of integers k^O and /^0 we will inductively define

Of＼x, t) and Vf>l) on QT by means of the following relations:

(3.1) Oy^kZiUuiUt^ (k^l,im,

where Uf＼ Vik) are defined in (1.3).

Proposition 3.1. For every pair (k,l) of integers k^O and /^0, we have

(3-2) i-unx,f)=or<,x,t＼
ox

_d_

dx
Vf＼x,t) = Vf＼x,t)

Proof. Let us prove this by an induction process on k. From (1.3) and (3.1)

we see that (3.2) hold for /^0 if k=0. Next, we suppose that (3.2) hold for /^0

when k―m. Then from (1.3) and (3.1) we have

7T(m+i)_ y I fflm),. . ty' TJWfi

―*wV * V * ≫yITTto-Vn 1-4-V ' ≪ ?/■(≫*)

=mi;/=o^^)s + i:iLo^C/n=(m+l)E/=o^t/n=^r+1)

Similarily we have

u pr(m+i)_|/(m+i)
dx

Therefore by an induction process the proposition now foliows at once. Q.E.D.
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Now, differentiating(1.2) and using (3.1) and (3.2) we obtain the following

system of partial differentialequations for iiiand vt(/^ 1):

dili

IF

+11

= (-vo)ui+(-uo)vi-EI=JHiVi-i-Zi-l^i≪i-< + S*=i aJjfli,

= voui + uovi+'ElizlutVi-i+T^l{zlViUi.i+y]^lbkP?2l, (x,t)eQT,

(3.5)

dx

dvi

dx

≪i(ar,0)=0, vi(x,O) = O, xzR

Here, from (1.7),(1.8),(1.17) and (1.20) we see that both SAtoV^1 and ££,

khicVo*"1converge uniformly over Qt. Therefore both T.^ajj^ and SAW^*0

converge uniformly over Qt- Hence for l―＼ the right-hand sides of (3.3) are

well-defined. In order to show that the right-hand sides of (3.3) are well-defined

for /=^2, we must show that both of the series

(3.4) Efc=.adJfl^x,t),ZkZ,btffllx,t)(12,2)

converge uniformly over Or, which willbe mentioned in Remark 3.5.

Now, we define fi(/i^l)and K[m (/^0, ^^0) inductively by means of the

followingrelations:

ri=S*-i?*fe+2Lr(i:{:Sritt-<) (/^l)

£|0)=0 (/^O),

where r0,r0 are defined in (1.8) and (1.15) respectively and n and K＼k)are defined

in (2.1). The validity of the definition of ft follows from (1.20) since yi= S*=i

kqkfok~lro,where from (2.1)and (3.5) we see that K^―knk~lfn. The convergency

of S*-itffc^te(^2) will be examined in (3.15).

Proposition 3.2. The implicitfunction w{z), determined by

(3.6) F(z,w) = zw%kZ1kqkw(z)k-1+2LT(w(z)―ro)w--(w ―ro)=:Q,

has the expansion

(3.7) w(z)=Zi~*rizl, ＼z＼<p,

where p is some positive number independent of f0, and w(z) is given in (2.3).

Proof. By Proposition 2.1 if |z|<joo then ＼w{z)＼<pu Hence by Proposition

1.4 we see that Tlu^ikqkw{z)le~lconverges for ＼z＼<p0.Therefore the right-hand

side of (3.6)is well-defined on {{z,w)＼|2|<p0, |$|<+oo}.
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Now, since F(z,w) is linear for w and since F(0, ?0)=0, the function w(z)

determined by (3.6) has the expansion of the form

(3.8) w{z)= Zn^5nzn, ＼z＼<p,

where co= rQ and p is some positive number. We define p0 by

(3.9) po―min{po, p},

where p0 is defined in (2.3). Then, by the Weierstrass' double series theorem we

define E＼k)(k^t, 1^0) by means of the following relations:

(3.10) KZi%clzi)-{T1r^nz>'f-^Tir^Erzi, ＼z＼<p0.

In view of (2.1) we have

(3.11) (Z,-.n2{)*=2I=o#iB*', ＼z＼<po.

Therefore from (2.1),(3.9) and (3.10) we have

(3.12) Er=kZl≪CiK?sf (fel, /^0),

where we define Ef^O (/^0). Substituting (3.8)into (3.6) and considering (3.9)

we have

(3.13) S*-i(L*-i^E^^ + 'ZLrZi^iZ^lCiri-i)zl = Zi%cLzl, ＼z＼<p0.

Comparing each coefficientof zl of (3.13) we obtain

(3.14) cl=Z^qkE?ll+2LTTllrJ*Ciri-.i (fel).

Therefore, from (3.5),(3.12) and (3.14) we easily see that

d = ?i (/^0), E?=R?> (li,0, k^O).

Hence the proposition follows at once. Furthermore we have

(3.15) Z&qtRFK+oo (feO). Q.E.D.

Under these preparations we will prove the main proposition of this section.

Proposition 3.3. For O?＼x,f) and ff＼x,t) (1^0, k^O) defined in (3.1) we

have

(3.16) ＼Of＼x,t)＼,＼V?Hx,t)＼^KrLT＼ (x,t) Ur.

Proof. In the same manner of the proof of Proposition 2.2, we will prove

this through four steps.

(i) It is obvious from (3.1)and (3.5)that (3.16) hold for k=0 and /^0. From

(2.1),(3.1) and (3.5) we see that 0$> = u0, Pili= v0 and K^=f0 hold. Hence we see

from (1.13) and (1.15) that (3.16) hold for k=l and /=0.
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(ii) We suppose that (3.16) hold for l^k^s and Q^l^jt. Then from (3.1),

(3.5) and (2.11) we have

Similarly we have

Hence by an induction process on k, the estimates (3.16) hold for k^O and 0^1 ^n.

(iii) From (1.17),(3.15) and (ii)we see that the system (3.3) has meaning for

l=n+l. Therefore applying Haar's inequality (1.10) to (3.3) for l―n + 1 and using

(ii)and (3.5) we have

|^Iiil= |5≪+1|^I^{2(Sf%fir≫+i-*)^rB+1+(LArf?))^B}

Similarly we have fel^feLr"*1. Therefore (3.16) hold for k=l and I=n+1.

(iv) From (i),(ii)and (iii)we easily see that (3.16) hold for k^O and /^0.

Q. E. D.

Remark 3.4. From (1.3) and (3.1) we see that U^―tii and V{p = vi, and from

(2.1)and (3.5) we see that Kf = ?i. Therefore putting k=l in (3.16) we have

(3.17) ＼&i{x,t)＼,＼vi(x,t)＼^riLTl,{x,t)sQT,

which will be used in proving Proposition 3.6 and Lemma 4.3.

Remark 3.5. In view of (3.15) and (3.16) we easily see that both Sfc=o≪*^j-i

{x,t) and Ti^bkVfl^xJ) (/^l) appearing in (3.3)converge uniformly over QT.

Proposition 3.6. For Ui and vu which are introduced in (1.9),we have

(3.18) ＼ui(x,t)＼,＼vt(x,t)＼^7jriLTl+[2ro+-F-

where v is defined in (1.14).

＼nLTl,
(x,t)GQT

Proof. In view of (1.9) the firstexpression in (1.2) can be rewritten by

From (2.1),(2.11),(2.12) and (3.17) we have

^7flLrt+2roriIJ + {(2:li-＼ri-tri)LT+i:£0q*K?2l}LJ-1
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= 7)?lLTl+

Similarly we have

(2ro+~)nLrl

＼ Lit

vi＼^f]fiLTl+(2n+-i―

§4. The proof of main theorem

First, we will define e'Tby

(4.1)
eT =

311

Q. E. D.

where pQ is defined in (3.9).

Lemma 4.1. For any T>0, if ＼e＼<e'Tthen both of the series in (5) converge

Proof. In view of (2.12) we have

(4-2) ISi-.^I, ISi-o^e'l^SAnCLrlel)*, {x,t)^QT .

If |s|<ey, then from (3.9) and (4.1) we have LT＼e＼<p0. Therefore, from (2.3) we

have Sj=0^(£z'l£iy<+00" Hence the lemma now follows at once. Q. E. D.

We remark here that for any T>0 we can define sT as both of the relations

ZAn(LrM)^-f-,

are satisfied. Then, from (1.18) we have

(4.4) ZAn(Lr|£|y<>, |e|<er.

Hence we have the following lemma.

Lemma 4.2. For any T>0, if ＼e＼<eTthen we have

(4.5) ISi-o≪i(a?,*y|,＼Zr-≫vfa,tY＼<pu {x,t)£QT.

Proof. It is obvious from (2.12) and (4.4). Q.E.D

Lemma 4.3. For any T>0, if ＼s＼<eTthen the series 'EtiZaui(x,t)el,%i%vi(x,ty

y.,^,.u,(.T.t)sland y.,°°nf),(.x.t)elcornierpp.unifnrm.lv mwr (),.
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Proof. In view of (3.17) and (3.18) we have

ISi-o≪i6*l,＼Zi~*W^yZi~oHLT＼e＼)l +
(2ro+-j^

■
)S

i-.ri(Lr|≪|)1

If |e|<er then from (4.1) and (4.3) we have LT＼A<p<>- Therefore from (3.7) and

(3.9) we see that J^iZori(Lr＼e＼)l<+oo. We already saw in the proof of Lemma 4.1

that 2i=oft(-Lr|s|)l<+oo. Hence the lemma now follows at once. Q. E. D.

Under these preparations we obtain the following theorem.

Theorem 4.4. For any 7>0, if 0,</>eW(R), 0^<p(x), <p(x)^MT and |e|<£r then

the Cauchy problem (l)-(2) has solutions u and v which are unique and belong to

C＼QT). The solutions u and v are analytic with respect to e and are expressed in

the form of (5). The right-hand sides of (5) converge uniformly over Qr- Here

MT is arbitrarypositiveconstantsuch thatMr^-^-log ^ (see(1.19)),and

st is arbitrary positive constant which satisfy(4.3),where rt (/^O), Lt and p0 are

defined when we put M=MT in (1.8) and in (1.15).

Proof. In view of Lemma 4.3,both of the seriesin (5) are diffentiableterm by

term with respect to x and t on QT. And from the manner of the constructions

of Ui and vt(/^0) and from Lemma 4.1 and 4.2,if ＼e＼<eTthen u and v given in

(5) are solutions of the Cauchy problem (l)-(2). The uniform convergency follows

from Lemma 4.1 and the firstinequality in (4.3) at once. The uniqueness of

solutions is obvious from the general theory (see Nagumo [4]). Q. E. D.

Remark 4.5. If g and h appearing in (1) are entire functions (i.e. ^ = +00),

then Theorem 4.4 can be rewrited as follows.

For any positive constants T and M, if O^^(ar), <f>(x)^M and ＼e＼<e(T,M) then

the Cauchy problem (l)-(2) has solutions u and v which are unique and belong to

C＼Qt)> Here we put e{T,M)=p0ILT, and pQ and LT are defined when we put

ro=MeMT by using M given above.

In this case, of course, the analyticity with respect to e and the uniform

convergency over Qt of solutions hold also.

§5. The existenceof travelingwave-likesolutions

In this section,as an applicationof Theorem 4.4 we shallshow that the
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Cauchy problem (1) with some initialconditions has traveling wave-like solutions.

For this purpose we need Theorem 5.1 which states the existence of traveling

wave solutions uo(x,t)= uo(x―it) and vo(x,t)=vo(x―£t)(for the traveling wave

solution,see Aronson and Weinberger [1]).

Theorem 5.1. The Cauchv Problem

du0
+J

(5.1)

dv0
+p

with initial data

(5.2)

du0

dx

dv0

dx

― UqVq ,

= UoVo,

uQ(x,R) = 0(x)

(x,t) RxR+,

att-^+bipi-ey*

vo(x,O) ― (p(x) ―
b{a(A-$)+b(v-Z)}
a(Z-$)e-'*+b(,i-G) '

has traveling wave solutions of the form

(5.3)

uo(x, t) ― uo(x―^t) =

V0(x,t)=V0(x―$t) =

a{att-t-) + b(u-i=)}

a(X-$)e-ri*-t'> + b(u-$) '

where a>0, b>0, (JL-£)(ft-$)>0 and y-
a

^1
b

1-S

Proof. Putting s=x―£t, uo(x,t)=uQ(s) and vo(x,t)=vo(s)in (5.1) and putting

x=0 in (5.2), then the Cauchy problem (5.1)-(5.2)will be reduced to the Cauchy

problem of ordinary differentialequations for u0 and v0:

(5.4) I

U-f)

(a*-*)

du0

~ds

dv0

― MqVq
≫

― -UoVo,

uo(O) = a, vo(O) = b.

Adding the firstexpression to the second one in (5.4) we have

Solving this equation with initialdata in (5.4) we obtain

(5.5) (X-$)u0 + (u-£)vo=aU-0 + Kv-t)
■
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Eliminating v0 from (5.5)

du0 _

ds

(5.6)

where p=a+b

and

(

Mo(s) =

the

Sy6z6 Niizeki

firstexpression in (5.4) we have

a b ＼

+b. Hence we have the relations

Q P-Q

PL-X

_ fy-m

P-Q

1

Solving this equation with uo(O)=a, we have

a{a(X-£)+b(u-$)}
a(*-e) + b(ft-e)er° "

Substituting (5.6)into (5.5) we have

(5'7) Vo{S)~a(X-e)e^+b(fi-~O ■

Therefore, putting s=x―$t in (5.6) and (5.7) we obtain the traveling wave solu-

tions(5.3). Q. E. D.

Remark 5.2. It is easily seen from (5.3) that if ?-<Q we have

Uo(―oo,0)= 0, U0(+ oo,0)= p,

v0(-°o,0)=q, y0(+ oo,0)=0,

and if y>0 we have

Uo(―oo,Q)=p, U0(+ oo,0) = 0,

i>0(-oo,0)=0, vo(+ cv,O)=q,

and q=a

In case of r<0 (0<p<q)

p

pq=aq+bp, r= r-=
p-e a-£

Here, we will sketch the graphs of the solutions uo(s)and vo(s)according to

the case of y<0 or t->0. Since l^n, without loss of generality we may assume

that X<u.
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in case of ?->0 (0<q<p)
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We call the solutions u and v of the Cauchy problem (l)-(2) traveling wave-

like solution when u and v are written by means of some functions fo,fi,go and

Qi in the following form

f u(x,t)=fo(x-$t) + sfl(x,t),

(5.8)
I v{x,t)=go(x-£t)+ £gl(x,t),

where £is some constant, /i and gt are bounded over QT and the absolute value

of e is sufficientlysmall.

Now, the initialdata (5.2) satisfy the conditions in (4) since ≪>0, b>0 and

tt-£)(jti-£)>0.If put

M(a,b)=max＼a+b-~-~, a +>＼

then we have

0^$(x), (p{x)^M(a,b).

Thus, in view of Theorem 44 and 5.1 we establishthe main theorem of this

section.

Theorem 5.3. For any T>0, let us take positive numbers a and b so that the

inequality M(a,b)<pi/2 holds (see (1.18))and take s such that the inequality |s|<er

is satisfied,where er is defined in (4.3). Then the Cauchy problem (1) and (5.2)

has traveling wave-like solutions. Here, eT is defined in (4.3), and n (/^0) are

defined when we put M=M(a,b) in (1.8)and in (1.15).

Proof. In view of Theorem 4.4,the solutionsof the Cauchy problem (1) and

(5.2) can be expressed by
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(5.9)

]
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u(x, £)=Mo(.r―£0+Si"i ui(%> t)el,

v(x, t)=vo(x-m+rtl°:l vAx, ty, (x, t)£QT,

where u0 and v0 are traveling wave solutions (5.3) of the Cauchy problem (5.1)

and (5.2). In view of Lemma 4.1,if we take |s| sufficientlysmall then we can

make the absolute value of the second term of the right-hand sides in (5.9) as

small as possible over QT- Therefore, the solutions (5.9) certainly have the form

of (5.8). Hence the Cauchy problem (1) and (5.2)has traveling wave-like solutions.

Q.E.D.

Remark 5.4. In Theorem 5.3,if g and h are entire functions(i.e.pi=+oc)

then we can arbitrarilytake positivenumbers a and b independent of T (cf.

Rkmartc 4.5V

In conclusion, the author is deeply indebted to Prof. M. Yaraaguti, of Kyoto

University, who contributed many significant suggestions and much invaluable

advaices, and he wishes to thank heartily Prof. M. Miraura, of Hiroshima Uni-

versity, who gave several significantsuggestions in completing §5. He also wishes

to thank heartily Prof. S. Mizohata, of Kyoto University, who contributed many
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References

[ 1 ] Aronson, D. G. and Weinberger, H. F., Nonlinear diffusion in population genetics,

combustion and nerve pulse propagation, Lecture Notes in Mathematics 446,

Partial Differential Equations and Related Topics, Springer-Verlag (1975), 5-49.

[ 2 ] Hashimoto, H., Exact solutions of a certain semi-linear system of partial differential

equations related to a migrating predation problem, Proc. Japan Acad. 50 (1974),

623-627.

[ 3 ] Hirota, R., Direct method of finding exact solution of nonlinear evolution equations,

Lecture Notes in Mathematics 515, Backlund Transformations, Springer-Verlag

(1976), 40-68.

[4] Nagumo, M., The theory of partial differential equations (in Japanese), Asakura

Publisher, Tokyo (1974).

[ 5 ] Niizeki, S., On a representation of solutions of the Cauchy problem for a semi-linear

hyperbolic system (1), Mem. Fac. Sci. Kochi Univ. (Math.) 1 (1980), 69-80.

[ 6 ] Niizeki, S., On a representation of solutions of the Cauchy problem for a semi-lineai

hyperbolic system (11), Mem. Fac. Sci. Kochi Univ. (Math.), 2 (1981), 101-112.

[ 7 ] Petrovski, I. G., Lectures on partial differential equations, 2nd. ed. Gos. Izd. Tekh.

Teor. lit.,Moscow (1972).

[ 8 ] Tsuji, M., Theory of functions of complex variable (in Japanese), Maki Publisher.

Tokyo (1972).

[ 9 ] Yamaguti, M. and Niizeki, S., On the Cauchy problem for a semi-linear hyperbolic

system, J. Math. Kyoto Univ. 20-4 (1980), 625-634.



On the Cauchy problem for a semi-linearhyperbolicsystem 317

[10] Yoshikawa, A. and Yarnaguti, M., On some furuther properties of solutions to a

certain semi-linear system of partial differentialequations, Publ. RIMS, Kyoto

Univ. 9 (1974), 577-595.

Kochi University

Department of Mathematics

Faculty of Science

Kochi, 780 Japan


