ON THE CAUCHY PROBLEM FOR A SEMI-LINEAR HYPERBOLIC SYSTEM AND ITS TRAVELING
 WAVE-LIKE SOLUTIONS

By
Syôzô Niizeki

Introduction

We consider the Cauchy problem of the following system of semi-linear partial differential equations for $u(x, t)$ and $v(x, t)$:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+\lambda \frac{\partial u}{\partial x}=-u v+g(u) \varepsilon, \tag{1}\\
\frac{\partial v}{\partial t}+\mu \frac{\partial v}{\partial x}=u v+h(v) s, \quad(x, t) \in R \times R_{+},
\end{array}\right.
$$

with the initial data
(2) $\quad\left\{\begin{array}{l}u(x, 0)=\phi(x), \\ v(x, 0)=\psi(x), \quad x \in R,\end{array}\right.$
where $R=(-\infty,+\infty)$ and $R_{+}=(0,+\infty) ; \lambda, \mu(\lambda \neq \mu)$ and ε are real constants; g and h are real-valued and real analytic functions at the origin with radii ρ_{1} and ρ_{2} respectively, that is to say
(3) $\quad\left\{\begin{array}{l}g(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, \quad h(v)=\sum_{k=0}^{\infty} b_{k} v^{k} ; \\ \limsup _{k \rightarrow \infty} \sqrt{\left|a_{k}\right|}=\frac{1}{\rho_{1}}, \underset{k \rightarrow \infty}{\lim \sup ^{2} \sqrt{\left|b_{k}\right|}}=\frac{1}{\rho_{2}} .\end{array}\right.$

Without loss of generality we may assume that $0<\rho_{1} \leqq \rho_{2}$, and we suppose that

$$
\begin{equation*}
\phi(x), \phi(x) \geqq 0, x \in R ; \phi(x), \phi(x) \in \mathfrak{B}(R), \tag{4}
\end{equation*}
$$

where by $\mathfrak{B}^{1}\left(l^{\prime}\right)$ we mean the function space of all real-valued C^{1}-functions which are bounded on R together with their first derivatives. From now on by $C^{1}(S)$ we mean the function space of all real-valued continously differentiable functions defined on S.

The system (1)-(2) has an ecological meaning when both g and h are some

[^0]polynomials of degree one, namely $g(u)=a_{1} u$ and $h(v)=b_{1} v$. If $a_{1}>0, b_{1}<0$ and $\varepsilon>0$, then u and v in (1) represent prey and predator respectively, and the system (1)-(2) describes what is called prey-predator equations. The constants $a_{1} \varepsilon$ and $b_{1} \varepsilon$ represent the rate of natural multiplication of prey without predator and the rate of natural extinction of predator without prey respectively (see Yamaguti and Niizeki [9]).

In this paper we will investigate on the following three matters.
The first is to obtain the solutions, which belong to $C^{1}\left(\Omega_{T}\right)$, of the Cauchy problem (1)-(2) in the following form (see Theorem 4.4):

$$
\left\{\begin{array}{l}
u(x, t)=\sum_{l=0}^{\infty} u_{l}(x, t) \varepsilon^{l} \tag{5}\\
v(x, t)=\sum_{l=0}^{\infty} v_{l}(x, t) \varepsilon^{l},(x, t) \in \Omega_{T}
\end{array}\right.
$$

where u_{l} and v_{l} will be introduced in $\S 1$, and Ω_{T} is defined by

$$
\begin{equation*}
\Omega_{T}=R \times[0, T], T>0 \tag{6}
\end{equation*}
$$

The representation (5) shows that the solutions of the Cauchy problem (1)-(2) can be described as analytic functions of ε.

The second is as follows: The solutions of semi-linear hyperbolic system of partial differential equations of two independent variables can be constructed by the method of successive approximation (see Nagumo [4]). In this case, in general, we need to take the absolute values of the initial data sufficiently small according to T. In this paper, however, it will be shown that if g and h in (1) are entire functions over R then we can take initial data independent of T (see Remark 4.5).

And the third is to show that for some initial data ϕ and ϕ the Cauchy problem (1)-(2) has traveling wave-like solutions for sufficiently small ε (see Theorem 5.3).

Now, in case that $g(u)=a_{0}+a_{1} u+a_{2} u^{2}$ and $h(v)=b_{0}+b_{1} v+b_{2} v^{2}$ and in case that $g(u)=\sum_{k=0}^{n} a_{k} u^{k}$ and $h(v)=\sum_{k=0}^{n} b_{k} v^{k}$, where n is an arbitrary positive integer, we investigated in detail in Niizeki [5] and [6] respectively.

§ 1. Preliminaries and notations

u_{l} and v_{l} in (5) are, in truth, the solutions of the following semi-linear system (1.1) $(l=0)$ or the linear system (1.2) $(l \geqq 1)$ of partial differential equations for u_{l} and v_{l} : in case $l=0$
(1.1) $\left\{\begin{array}{l}\frac{\partial u_{0}}{\partial t}+\lambda \frac{\partial u_{0}}{\partial x}=-u_{0} v_{0}, \\ \frac{\partial v_{0}}{\partial t}+\mu \frac{\partial v_{0}}{\partial x}=u_{0} v_{0},(x, t) \in R \times R_{+}, \\ u_{0}(x, 0)=\phi(x), v_{0}(x, 0)=\phi(x), x \in R,\end{array}\right.$
where $\phi(x)$ and $\psi(x)$ are the initial data in (2), and in case $l \geqq 1$

$$
\left\{\begin{array}{l}
\frac{\partial u_{l}}{\partial t}+\lambda \frac{\partial u_{l}}{\partial x}=-\sum_{i=0}^{l} u_{l-i} v_{i}+\sum_{k=0}^{\infty} a_{k} U_{l-1}^{(k)}(x, t), \tag{1.2}\\
\frac{\partial v_{l}}{\partial t}+\mu \frac{\partial v_{l}}{\partial x}=\sum_{i=0}^{l} u_{l-i} v_{l}+\sum_{k=0}^{\infty} b_{k} V_{l-1}^{(k)}(x, t),(x, t) \in \Omega_{T} \\
u_{l}(x, 0)=0, v_{l}(x, 0)=0, x \in R
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
U_{0}^{(0)}(x, t)=V_{0}^{(0)}(x, t) \equiv 1, \tag{1.3}\\
U_{l}^{(0)}(x, t)=V_{l}^{(0)}(x, t) \equiv 0(l \geqq 1), \\
U_{l}^{(k)}(x, t)=\sum_{i=0}^{l} u_{i}(x, t) U_{l-i}^{(k-1)}(x, t)(k \geqq 1, l \geqq 0), \\
V_{l}^{(k)}(x, t)=\sum_{i=0}^{l} v_{i}(x, t) V_{l-i}^{(k-1)}(x, t)(k \geqq 1, l \geqq 0),(x, t) \in \Omega_{T} .
\end{array}\right.
$$

The properties of solutions of (1.1) are investigated in detail in Yoshikawa and Yamaguti [10]. The convergency of the series appearing in (1.2)

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k} U_{l-1}^{(k)}(x, t), \sum_{k=0}^{\infty} b_{k} V_{l-1}^{(k)}(x, t),(x, t) \in \Omega_{T} \tag{1.4}
\end{equation*}
$$

will be examined in (1.20) for $l=1$ and in Remark 2.4 for $l \geqq 2$. The system (1.1) and (1.2) can be formally obtained by substituting (5) into (1) and collecting terms with the same power in ε.

Now, in view of (4) there exist positive constants M and \tilde{M} such that

$$
\begin{equation*}
0 \leqq \phi(x), \phi(x) \leqq M ; \quad\left|\frac{d}{d x} \phi(x)\right|,\left|\frac{d}{d x} \phi(x)\right| \leqq \tilde{M}, x \in R . \tag{1.5}
\end{equation*}
$$

Proposition 1.1. For any $T>0$, the solutions u_{0} and v_{0} of the Cauchy problem (1.1) are nonnegative and bounded over Ω_{T}.

Proof. We remark here that the system (1.1) has real-valued global solutions which belong to $C^{1}\left(R \times R_{+}\right)$(see Hashimoto [2] or Hirota [3]). Now, from (1.1) we have
(1.6) $\left\{\begin{array}{l}u_{0}(x, t)=\phi(x-\lambda t) \exp \left(-\int_{0}^{t} v_{0}(x-\lambda t+\lambda s, s) d s\right), \\ v_{0}(x, t)=\phi(x-\mu t) \exp \left(\int_{0}^{t} u_{0}(x-\mu t+\mu s, s) d s\right) .\end{array}\right.$

Hence u_{0} and v_{0} are nonnegative since ϕ and ψ are nonnegative. Next, from (1.5) and (1.6) we have

$$
\begin{equation*}
u_{0}(x, t) \leqq M, v_{0}(x, t) \leqq M \mathrm{e}^{M T},(x, t) \in \Omega_{T} \tag{1.7}
\end{equation*}
$$

which shows that u_{0} and v_{0} are bounded over Ω_{r}.
Q.E.D.

In connection with the above proposition, we define r_{0} by

$$
\begin{equation*}
r_{0}=M e^{M T} \tag{1.8}
\end{equation*}
$$

Furthermore, for every solution u_{l} and $v_{l}(l \geqq 0)$ of the Cauchy problem (1.1) and (1.2) we put
(1.9) $\begin{cases}\tilde{u}_{l}(x, t)=\frac{\partial}{\partial x} u_{l}(x, t), & \tilde{v}_{l}(x, t)=\frac{\partial}{\partial x} v_{l}(x, t), \\ \bar{u}_{l}(x, t)=\frac{\partial}{\partial t} u_{l}(x, t), & \bar{v}_{l}(x, t)=\frac{\partial}{\partial t} v_{l}(x, t) .\end{cases}$

Now, we will give here Harr's inequality (see Petrovski [7]), which will be often used later in the following form.

Let us consider the system of linear partial differential equations

$$
\begin{aligned}
& \frac{\partial u_{1}}{\partial t}+c_{1} \frac{\partial u_{1}}{\partial x}=a_{11}(x, t) u_{1}+a_{12}(x, t) u_{2}+b_{1}(x, t) \\
& \frac{\partial u_{2}}{\partial t}+c_{2} \frac{\partial u_{2}}{\partial x}=a_{12}(x, t) u_{1}+a_{22}(x, t) u_{2}+b_{2}(x, t),(x, t) \in \Omega_{T}
\end{aligned}
$$

with the initial data $u_{1}(x, 0)=\phi_{1}(x)$ and $u_{2}(x, 0)=\phi_{2}(x)(x \in R)$. Here, c_{1} and c_{2} are real constants and $a_{i j}(x, t)(1 \leqq i, j \leqq 2)$ and $b_{i}(x, t)(1 \leqq i \leqq 2)$ are continuous and bounded over Ω_{T}, and $\phi_{1}(x)$ and $\phi_{2}(x)$ are continuous and bounded over R. Further we put

$$
\begin{aligned}
& A=\max _{1 \leqslant i, j \leqslant 2}\left\{\sup _{(x, t) \rho_{T}}\left|a_{i j}(x, t)\right|\right\}, \\
& B=\max _{1 \leq i \leqslant 2}\left\{\sup _{(x, t) \in O_{T}}\left|b_{i}(x, t)\right|\right\}, \\
& C=\max _{1 \leq i \leqslant 2}\left\{\sup _{x \in R}\left|\phi_{i}(x)\right|\right\},
\end{aligned}
$$

then we have Haar's inequality:

$$
\begin{equation*}
\left|u_{1}(x, t)\right|,\left|u_{2}(x, t)\right| \leqq C e^{2 A T}+\frac{B}{2 A}\left(e^{2 A T}-1\right),(x, t) \in \Omega_{T} . \tag{1.10}
\end{equation*}
$$

Under these preparations we prove the following propositions.
Proposition 1.2. For any $T>0, \tilde{u}_{0}, \bar{v}_{0}, \bar{u}_{0}$ and \bar{v}_{0} are all bounded over Ω_{T}.
Proof. Differentiating (1.1) with respect to x we obtain the following system (1.11) of partial differential equations for \tilde{u}_{0} and \tilde{v}_{0} with the initial data (1.12):

$$
\left\{\begin{array}{l}
\frac{\partial \tilde{u}_{0}}{\partial t}+\lambda \frac{\partial \tilde{u}_{0}}{\partial x}=-v_{0} \tilde{u}_{0}-u_{0} \tilde{v}_{0}, \\
\frac{\partial \tilde{v}_{0}}{\partial t}+\mu \frac{\partial \tilde{v}_{0}}{\partial x}=v_{0} \tilde{u}_{0}+u_{0} \tilde{v}_{0},(x, t) \in R \times R_{+}, \tag{1.12}\\
\quad \tilde{u}_{0}(x, 0)=\frac{d}{d x} \phi(x), \tilde{v}_{0}(x, 0)=\frac{d}{d x} \psi(x), x \in R .
\end{array}\right.
$$

Applying Haar's inequality (1.10) to the Cauchy problem (1.11)-(1.12) and using (1.5) and (1.7) we have

$$
\begin{equation*}
\left|\tilde{u}_{0}(x, t)\right|,\left|\tilde{v}_{0}(x, t)\right| \leqq \tilde{M} \exp \left(2 M T e^{M T}\right),(x, t) \in \Omega_{T} . \tag{1.13}
\end{equation*}
$$

Hence \tilde{u}_{0} and \tilde{v}_{0} are bounded over Ω_{T}.
Next, by considering (1.9) for $l=0$ the first and the second expressions in (1.1) can be rewritten by

$$
\bar{u}_{0}+\lambda \tilde{u}_{0}=-u_{0} v_{0}, \quad \bar{v}_{0}+\mu \bar{v}_{0}=u_{0} v_{0} .
$$

Hence, from (1.7) and (1.13) we have

$$
\left|\bar{u}_{0}(x, t)\right| \leqq\left|u_{0}\right|\left|v_{0}\right|+|\lambda|\left|\tilde{u}_{0}\right| \leqq M^{2} e^{M T}+|\lambda| \tilde{M} \exp \left(2 M T e^{M T}\right),(x, t) \in \Omega_{T} .
$$

Similarly we have

$$
\left|\bar{v}_{0}(x, t)\right| \leqq M^{2} e^{M T}+|\mu| \tilde{M} \exp \left(2 M T e^{M T}\right),(x, t) \in \Omega_{T} .
$$

Therefore when $\eta=\max \{1,|\lambda|,|\mu|\}$ we have

$$
\begin{equation*}
\left|\bar{u}_{0}(x, t)\right|,\left|\bar{v}_{0}(x, t)\right| \leqq M^{2} e^{M T}+\eta \tilde{M} \exp \left(2 M T e^{M T}\right),(x, t) \in \Omega_{T} \tag{1.14}
\end{equation*}
$$

Hence the proposition now follows at once.
Q.E.D.

In connection with (1.13) and (1.14) we will define \tilde{r}_{0} by

$$
\begin{equation*}
\tilde{\boldsymbol{r}}_{0}=M^{2} e^{M T}+\eta \tilde{M} \exp \left(2 M T e^{M T}\right) \tag{1.15}
\end{equation*}
$$

Proposition 1.3. For any positive number p, there exists a positive number δ_{T}
such that if $M \leqq \delta_{T}$ then the inequality

$$
\begin{equation*}
r_{0} \leqq p \tag{1.16}
\end{equation*}
$$

holds. Here δ_{T} depends on T, and for example we may take ∂_{T} as

$$
\delta_{T}=\frac{1}{T} \log \frac{1+\sqrt{1+4 p T}}{2}
$$

then we remark that if $p \rightarrow+\infty$ then $\delta_{T \rightarrow+\infty}$.
Proof. The proof is easily performed, so we omit it.
Q.E.D.

Now, for all integers $k \geqq 0$ we will define q_{k} by

$$
\begin{equation*}
q_{k}=\max \left\{\left|a_{k}\right|,\left|b_{k}\right|\right\} \tag{1.17}
\end{equation*}
$$

where a_{k} and $b_{k}(k \geqq 0)$ are given in (3). Then we have the following proposition.
Proposition 1.4. The radius of convergence of $\sum_{k=0}^{\infty} q_{k} z^{k}$ is equal to ρ_{1}, where ρ_{1} is defined in (3).

Proof. The proof is obvious, so we omit it.
Q. E. D.

Now, by Proposition 1.3 we can choose M, which is introduced in (1.5), so small that the inequality

$$
\begin{equation*}
r_{0} \leqq \frac{\rho_{1}}{2} \tag{1.18}
\end{equation*}
$$

holds, where r_{0} is defined in (1.8). We remark here that if M is chosen so that the inequality

$$
\begin{equation*}
M \leqq \frac{1}{T} \log \frac{1+\sqrt{1+2 \rho_{1} T}}{2} \tag{1.19}
\end{equation*}
$$

holds, then (1.18) holds. From now on we suppose that M is chosen so that (1.18) holds. Then in view of Proposition 1.4 we have

$$
\begin{equation*}
\sum_{k=0}^{\infty} q_{k} \gamma_{0}^{k}<+\infty \tag{1.20}
\end{equation*}
$$

Hence, for $l=1$ both of the series in (1.4) converge uniformly over Ω_{T}.
Here, we define a constant L_{T} by

$$
\begin{equation*}
L_{T}=\frac{1}{2 r_{0}}\left\{\exp \left(2 r_{0} T\right)-1\right\}, T>0 \tag{1.21}
\end{equation*}
$$

which will be used in the definition of r_{l} in (2.1).

§ 2. The estimates of $u_{l}(x, t)$ and $v_{l}(x, t)$

For every integer $k \geqq 0$ and $l \geqq 0$, we will define r_{l} and $K_{l}^{(k)}$ inductively by means of the following relations:
(2.1) $\quad\left\{\begin{array}{l}r_{l}=\left(\sum_{i=1}^{l-1} r_{l-i} r_{i}\right) L_{T}+\sum_{k=0}^{\infty} q_{k} K_{i-1}^{(k)}(l \geqq 1), \\ K_{0}^{(0)}=1, K_{l}^{(0)}=0(l \geqq 1), \\ K_{l}^{(k+1)}=\sum_{i=0}^{l} r_{i} K_{l-i}^{(k)}(k \geqq 0, l \geqq 0),\end{array}\right.$
where we put $\sum_{i=1}^{l-1} r_{l-i} r_{i}=0$ for $l=1$ and the validity of definition of r_{1} follows immediately from (1.20) since $K_{0}^{(k)}=r_{0}{ }^{k}$, and the convergency of $\sum_{k=1}^{\infty} q_{k} K_{l-1}^{(k)}$ in the definition of r_{l} will be shown in the proof of Proposition 2.1.

Proposition 2.1. The implicit function $w(z)$, which satisfies $w(0)=r_{0}$, determined by the equation

$$
\begin{align*}
& F(z, w)=z \sum_{k=0}^{\infty} q_{k} w^{k}+L_{T}\left(w-r_{0}\right)^{2}-\left(w-r_{0}\right)=0, \tag{2.2}\\
& \quad(z, w) \in\left\{(z, w)\left||z|<+\infty,|w|<\rho_{1}\right\},\right.
\end{align*}
$$

has the expression

$$
\begin{equation*}
w(z)=\sum_{l=0}^{\infty} r_{l} z^{l},|z|<\mu_{0}, \tag{2.3}
\end{equation*}
$$

where the sequence $\left\{r_{l}\right\}_{l=0}^{\omega}$ is given in (1.8) and (2.1), and μ_{0} is some positive constant.
Proof. Since by Proposition 1.4 the right-hand side of $F(z, w)$ converges on the domain $\left\{(z, w)\left||z|<+\infty,\left|w-r_{0}\right|<\rho_{1}-r_{0}\right\}\right.$ and since $F\left(0, r_{0}\right)=0$ and $\frac{\partial F}{\partial w}\left(0, r_{0}\right)=-1$, by the existence theorem for implicit function (see Tsuji [8]), $w(z)$ has the following expansion with the radius of convergence ρ :

$$
\begin{equation*}
w(z)=\sum_{l=0}^{\infty} c_{l} z^{l},|z|<\rho, \tag{2.4}
\end{equation*}
$$

where $c_{0}=r_{0}$ and ρ is some positive constant. Now, by using the Weierstrass' double series theorem we will define $E_{l}^{(k)}$ for every pair (k, l) of integers $k \geqq 0$ and $l \geqq 0$ by

$$
\begin{equation*}
w(z)^{k}=\left(\sum_{l=0}^{\infty} c_{l} z^{2}\right)^{k}=\sum_{l=0}^{\infty} E_{l}^{(k)} z^{l},|z|<\rho . \tag{2.5}
\end{equation*}
$$

Hence we have

$$
\left\{\begin{array}{l}
E_{0}^{(0)}=1, E_{l}^{(0)}=0(l \geqq 1), \tag{2.6}\\
E_{l}^{(k+1)}=\sum_{i=0}^{l} c_{i} E_{l-i}^{(k)}(k \geqq 0, l \geqq 0) .
\end{array}\right.
$$

Substituting (2.4) into (2.2) and using (2.5), we have

$$
\begin{gather*}
\sum_{l=1}^{\infty}\left(\sum_{k=0}^{\infty} q_{k} E_{l-1}^{(k)}\right) z^{l}+L_{T} \sum_{l=2}^{\infty}\left(\sum_{i=1}^{t-1} c_{i} c_{l-i}\right) z^{l}=\sum_{l=1}^{\infty} c_{l} z^{l},|z|<\rho . \tag{2.7}\\
c_{l}=\sum_{k=0}^{\infty} q_{k} E_{l-1}^{(k)}+L_{T}\left(\sum_{i=1}^{l-1} c_{i} c_{l-i}\right)(l \geqq 1), \tag{2.8}
\end{gather*}
$$

where the right-hand side of (2.8) is well-defined. Therefore we have

$$
\begin{equation*}
c_{l}=r_{l}(l \geqq 0), E_{l}^{(k)}=K_{l}^{(k)}(k \geqq 0, l \geqq 0) \tag{2.9}
\end{equation*}
$$

comparing (2.1) with (2.6) and (2.8). Hence we have

$$
\begin{equation*}
\sum_{k=0}^{\infty} q_{k} K_{l}^{(k)}<+\infty(l \geqq 0), \tag{2.10}
\end{equation*}
$$

and we see that $r_{l}(l \geqq 1)$ defined in (2.1) are well-defined.
Q.E.D.

We are now in a position to prove the main proposition of this section.
Proposition 2.2. For $U_{l}^{(k)}(x, t)$ and $V_{l}^{(k)}(x, t)$ defined in (1.3) we have the following estimates:

$$
\begin{equation*}
\left|U_{l}^{(k)}(x, t)\right|,\left|V_{l}^{(k)}(x, t)\right| \leqq K_{l}^{(k)} L_{T}{ }^{l}(l \geqq 0, k \geqq 0),(x, t) \in \Omega_{T} . \tag{2.11}
\end{equation*}
$$

Proof. Let us prove this through the following four steps.
(i) From (1.3), (1.7), (1.8) and (2.1) it is obvious that the estimates (2.11) hold for $k=0$ and $l \geqq 0$ and for $k=1$ and $l=0$.
(ii) We suppose that (2.11) hold for $1 \leqq k \leqq s$ and $0 \leqq l \leqq n$. Then from (1.3) and (2.1) we have

$$
\left|U_{l}^{(s+1)}\right| \leqq \sum_{i=0}^{l}=\left|u_{i}\right|\left|U_{l-i}^{(s)}\right| \leqq\left(\sum_{i=0}^{l} r_{i} K_{l-i}^{(s)}\right) L_{T}^{l}=K_{l}^{(s+1)} L_{T}^{l}(0 \leqq l \leqq n),
$$

where by (1.3) and (2.1) we have $U_{i}^{(1)}=u_{i}$ and $K_{i}^{(1)}=r_{i}$. Similarly we have

$$
\left|V_{l}^{(s+1)}\right| \leqq K_{l}^{(s+1)} L_{T}{ }^{l}(0 \leqq l \leqq n) .
$$

Therefore by an induction process on k the estimates (2.11) hold for $k \geqq 0$ and $0 \leqq l \leqq n$.
(iii) From (1.17), (2.10) and (ii), we see that the system (1.2) has meaning for $l=n+1$. Therefore applying Haar's inequality (1.10) to (1.2) for $l=n+1$ and using (ii) and (2.1) we have

$$
\begin{aligned}
\left|U_{n+1}^{(1)}\right| & =\left|u_{n+1}\right| \leqq L_{T}^{n+2} \sum_{i=1}^{n} r_{n+1-i} r_{i}+L_{T}{ }^{n+1}\left(\sum_{k=0}^{\infty} q_{k} K_{n}^{(k)}\right) \\
& =L_{T}^{n+1}\left\{L_{T} \sum_{i=1}^{n} r_{n+1-i} r_{i}+\sum_{k=0}^{\infty} q_{k} K_{n}^{(k)}\right\}=r_{n+1} L_{T} r^{n+1}=K_{n+1}^{(1)} L_{T}^{n+1} .
\end{aligned}
$$

Similarly we have $V_{n+1}^{(1)} \leqq K_{n+1}^{(1)} L_{T}^{n+1}$. Hence the estimates (2.11) hold for $k=1$ and $l=n+1$.
(iv) From (i), (ii) and (iii) we easily see that (2.11) hold for all integers $k \geqq 0$ and $l \geqq 0$.
Q.E.D.

Remark 2.3. From (1.3) we see that $U_{l}^{(1)}=u_{l}$ and $V_{l}^{(1)}=v_{l}$, and from (2.1) we
see that $K_{l}^{(1)}=r_{l}$. Therefore putting $k=1$ in (2.11) we have

$$
\begin{equation*}
\left|u_{l}(x, t)\right|,\left|v_{l}(x, t)\right| \leqq r_{l} L_{T}{ }^{l},(x, t) \in \Omega_{T}, \tag{2.12}
\end{equation*}
$$

which will be used in proving Proposition 3.6, Lemma 5.1 and 5.2 .
Remark 2.4. In view of (2.10) and (2.11) we see that both $\sum_{k=0}^{\infty} a_{k} U_{l-1}^{(k)}(x, t)$ and $\sum_{k=0}^{\infty} b_{k} V_{l-1}^{(k)}(x, t)(l \geqq 1)$ appearing in (1.2) converge uniformly over Ω_{T}.
$\S 3 . \quad$ The estimates of $\tilde{\boldsymbol{u}}_{l}, \tilde{\boldsymbol{v}}_{l}, \overline{\boldsymbol{u}}_{l}$, and $\overline{\boldsymbol{v}}$
The purpose of this section is to estimate $\tilde{u}_{l}, \bar{v}_{l}, \bar{u}_{l}$ and $\bar{v}_{l}(l \geqq 1)$, which are defined in (1.9), in the same manner as in Proposition 2.2.

For any pair (k, l) of integers $k \geqq 0$ and $l \geqq 0$ we will inductively define $\tilde{U}_{l}^{(k)}(x, t)$ and $\tilde{V}_{l}^{(x, t)}$ on Ω_{T} by means of the following relations:

$$
\left\{\begin{array}{l}
\tilde{U}_{l}^{(0)}=\tilde{V}_{l}^{(0)}=0 \quad(l \geqq 0), \tag{3.1}\\
\tilde{U}_{l}^{(k)}=k \sum_{i=0}^{l} \tilde{u}_{i} U_{l-i}^{(k-1)} \quad(k \geqq 1, l \geqq 0), \\
\tilde{V}_{l}^{(k)}=k \sum_{i=0}^{l} \tilde{v}_{i} V_{l-1}^{(k-1)} \quad(k \geqq 1, l \geqq 0),
\end{array}\right.
$$

where $U_{l}^{(k)}, V_{l}^{(k)}$ are defined in (1.3).
Proposition 3.1. For every pair (k, l) of integers $k \geqq 0$ and $l \geqq 0$, we have

$$
\begin{equation*}
\frac{\partial}{\partial x} U_{l}^{(k)}(x, t)=\tilde{U}_{l}^{(k)}(x, t), \quad \frac{\partial}{\partial x} V_{l}^{(k)}(x, t)=\tilde{V}_{l}^{(k)}(x, t) . \tag{3.2}
\end{equation*}
$$

Proof. Let us prove this by an induction process on k. From (1.3) and (3.1) we see that (3.2) hold for $l \geqq 0$ if $k=0$. Next, we suppose that (3.2) hold for $l \geqq 0$ when $k=m$. Then from (1.3) and (3.1) we have

$$
\begin{aligned}
\frac{\partial}{\partial x} U_{l}^{(m+1)} & =\sum_{i=0}^{l=} \tilde{U}_{i}^{(m)} u_{l-i}+\sum_{i=0}^{l} U_{i}^{(m)} \tilde{u}_{l-i} \\
& =m \sum_{i=0}^{l} \sum_{s=0}^{i} \tilde{u}_{s}\left\{U_{i-s}^{(m-1)} u_{l-i}\right\}+\sum_{i=0}^{l} \tilde{u}_{i} U_{l-i}^{(m)} \\
& =m \sum_{s=0}^{l} \tilde{u}_{s}\left\{\sum_{j=0}^{l-=} U_{j}^{(m-1)} u_{l-s-j}\right\}+\sum_{i=0}^{l} \tilde{u}_{i} U_{l-i}^{(m)} \\
& =m \sum_{s=0}^{l} \tilde{u}_{s} U_{l=s}^{(m)}+\sum_{i=0}^{l} \tilde{u}_{i} U_{i-i}^{(m)}=(m+1) \sum_{i=0}^{l} \tilde{u}_{i} U_{l-i}^{(m)}=\tilde{U}_{i}^{(m+1)} .
\end{aligned}
$$

Similarily we have

$$
\frac{\partial}{\partial x} V_{l}^{(m+1)}=\tilde{V}_{l}^{(m+1)} .
$$

Therefore by an induction process the proposition now follows at once.
Q.E.D.

Now, differentiating (1.2) and using (3.1) and (3.2) we obtain the following system of partial differential equations for \tilde{u}_{l} and $\tilde{v}_{l}(l \geqq 1)$:

$$
\left\{\begin{array}{l}
\frac{\partial \tilde{u}_{l}}{\partial t}+\lambda \frac{\partial \tilde{u}_{l}}{\partial x}=\left(-v_{0}\right) \tilde{u}_{l}+\left(-u_{0}\right) \tilde{v}_{l}-\sum_{i=0}^{l-1} \tilde{u}_{i} v_{l-i}-\sum_{i=0}^{l-1} \tilde{v}_{i} u_{l-i}+\sum_{k=1}^{\infty} a_{k} \tilde{U}_{l-1}^{(k)}, \tag{3.3}\\
\frac{\partial \tilde{v}_{l}}{\partial t}+\mu \frac{\partial \tilde{v}_{l}}{\partial x}=v_{0} \tilde{u}_{l}+u_{0} \tilde{u}_{l}+\sum_{i=0}^{l-1} \tilde{u}_{i} v_{l-i}+\sum_{i=0}^{l-1} \tilde{v}_{i} u_{l-i}+\sum_{k=1}^{\infty} b_{k} \tilde{v}_{l-1,}^{(k)}(x, t) \in \Omega_{T}, \\
\tilde{u}_{l}(x, 0)=0, \tilde{v}_{l}(x, 0)=0, x \in R .
\end{array}\right.
$$

Here, from (1.7), (1.8), (1.17) and (1.20) we see that both $\sum_{k=1}^{\infty} k a_{k} u_{0}^{k-1}$ and $\sum_{k=1}^{\infty}$ $k b_{k} v_{0}^{k-1}$ converge uniformly over Ω_{T}. Therefore both $\sum_{k=1}^{\infty} a_{k} \tilde{U}_{0}^{(k)}$ and $\sum_{k=1}^{\infty} b_{k} \tilde{Y}_{0}^{(k)}$ converge uniformly over Ω_{T}. Hence for $l=1$ the right-hand sides of (3.3) are well-defined. In order to show that the right-hand sides of (3.3) are well-defined for $l \geqq 2$, we must show that both of the series

$$
\begin{equation*}
\sum_{k=1}^{\infty} \alpha_{k} \tilde{U}_{l-1}^{(k)}(x, t), \sum_{k=1}^{\infty} b_{k} \tilde{V}_{l-1}^{(k)}(x, t)(l \geqq 2) \tag{3.4}
\end{equation*}
$$

converge uniformly over Ω_{T}, which will be mentioned in Remark 3.5.
Now, we define $\tilde{r}_{l}(l \geqq 1)$ and $\tilde{K}_{l}^{(k)}(l \geqq 0, k \geqq 0)$ inductively by means of the following relations:
(3.5) $\quad\left\{\begin{array}{l}\tilde{r}_{l}=\sum_{k=1}^{\infty} q_{k} \tilde{K}_{l-1}^{(k)}+2 L_{T}\left(\sum_{i=0}^{l-1} \tilde{r}_{i} r_{l-i}\right)(l \geqq 1), \\ \tilde{K}_{l}^{(0)}=0(l \geqq 0), \\ \tilde{K}_{l}^{(k)}=k \sum_{i=0}^{l} \tilde{r}_{i} K_{l-i}^{(k-1)}(l \geqq 0, k \geqq 1),\end{array}\right.$
where r_{0}, \tilde{r}_{0} are defined in (1.8) and (1.15) respectively and r_{l} and $K_{l}^{(k)}$ are defined in (2.1). The validity of the definition of \tilde{r}_{1} follows from (1.20) since $\tilde{r}_{1}=\sum_{k=1}^{\infty}$ $k q_{k} r_{0}{ }^{k-1} \tilde{\boldsymbol{r}}_{0}$, where from (2.1) and (3.5) we see that $\widetilde{K}_{0}^{(k)}=k r_{0}{ }^{k-1} \tilde{\boldsymbol{r}}_{0}$. The convergency of $\sum_{k=1}^{\infty} q_{k} \tilde{K}_{l-1}^{(k)}(l \geqq 2)$ will be examined in (3.15).

Proposition 3.2. The implicit function $\tilde{w}(z)$, determined by

$$
\begin{equation*}
\tilde{F}(z, \tilde{w})=z \tilde{w} \sum_{k=1}^{\infty} k q_{k} w(z)^{k-1}+2 L_{T}\left(w(z)-\gamma_{0}\right) \tilde{w}-\left(\tilde{w}-\tilde{\gamma}_{0}\right)=0, \tag{3.6}
\end{equation*}
$$

has the expansion

$$
\begin{equation*}
\tilde{w}(z)=\sum_{l=0}^{\infty} \tilde{r}_{l} z^{l},|z|<\tilde{\rho}, \tag{3.7}
\end{equation*}
$$

where $\tilde{\rho}$ is some positive number independent of \tilde{r}_{0}, and $w(z)$ is given in (2.3).
Proof. By Proposition 2.1 if $|z|<\rho_{0}$ then $|w(z)|<\rho_{1}$. Hence by Proposition 1.4 we see that $\sum_{k=1}^{\infty} k q_{k} w(z)^{k-1}$ converges for $|z|<\rho_{0}$. Therefore the right-hand side of (3.6) is well-defined on $\left\{(z, \tilde{w})\left||z|<\rho_{0},|\tilde{w}|<+\infty\right\}\right.$.

Now, since $\widetilde{F}(z, \tilde{w})$ is linear for \tilde{w} and since $\tilde{F}\left(0, \tilde{r}_{0}\right)=0$, the function $\tilde{w}(z)$ determined by (3.6) has the expansion of the form

$$
\begin{equation*}
\tilde{w}(z)=\sum_{n=0}^{\infty} \tilde{c}_{n} z^{n},|z|<\tilde{\rho}, \tag{3.8}
\end{equation*}
$$

where $\tilde{c}_{0}=\tilde{r}_{0}$ and $\tilde{\rho}$ is some positive number. We define $\tilde{\rho}_{0}$ by

$$
\begin{equation*}
\tilde{\rho}_{0}=\min \left\{\rho_{0}, \tilde{\rho}\right\}, \tag{3.9}
\end{equation*}
$$

where ρ_{0} is defined in (2.3). Then, by the Weierstrass' double series theorem we define $\tilde{E}_{l}^{(k)}(k \geqq 1, l \geqq 0)$ by means of the following relations:

$$
\begin{equation*}
k\left(\sum_{l=0}^{\infty} \tilde{c}_{l} z^{l}\right) \cdot\left(\sum_{l=0}^{\infty} r_{l} z^{l}\right)^{k-1}=\sum_{l=0}^{\infty} \tilde{E}_{l}^{(k)} z^{l},|z|<\tilde{\rho}_{0} . \tag{3.10}
\end{equation*}
$$

In view of (2.1) we have

$$
\begin{equation*}
\left(\sum_{l=0}^{\infty} r_{l} z^{l}\right)^{k}=\sum_{l=0}^{\infty} K_{l}^{(k)} z^{l},|z|<\tilde{\rho}_{0} . \tag{3.11}
\end{equation*}
$$

Therefore from (2.1), (3.9) and (3.10) we have

$$
\begin{equation*}
\tilde{E}_{l}^{(k)}=k \sum_{i=0}^{l} \tilde{c}_{i} K_{l-i}^{(k-1)}(k \geqq 1, l \geqq 0), \tag{3.12}
\end{equation*}
$$

where we define $\tilde{E}_{l}^{(0)}=0(l \geqq 0)$. Substituting (3.8) into (3.6) and considering (3.9) we have

$$
\begin{equation*}
\sum_{l=1}^{\infty}\left(\sum_{k=1}^{\infty} q_{k} \tilde{E}_{l-1}^{(k)}\right) z^{l}+2 L_{T} \sum_{l=1}^{\infty}\left(\sum_{i=1}^{l-1} \tilde{c}_{i} r_{l-i}\right) z^{l}=\sum_{l=1}^{\infty} \tilde{c}_{l} z^{l},|z|<\tilde{\rho}_{0} . \tag{3.13}
\end{equation*}
$$

Comparing each coefficient of z^{l} of (3.13) we obtain

$$
\begin{equation*}
\tilde{c}_{l}=\sum_{k=1}^{\infty} q_{k} \tilde{E}_{l-1}^{(k)}+2 L_{T} \sum_{i=0}^{t-1} \tilde{c}_{i} r_{l-i}(l \geqq 1) . \tag{3.14}
\end{equation*}
$$

Therefore, from (3.5), (3.12) and (3.14) we easily see that

$$
\tilde{c}_{l}=\tilde{r}_{l}(l \geqq 0), \tilde{E}_{l}^{(k)}=\tilde{K}_{l}^{(k)}(l \geqq 0, k \geqq 0) .
$$

Hence the proposition follows at once. Furthermore we have

$$
\begin{equation*}
\sum_{k=1}^{\infty} q_{k} \tilde{K}_{l}^{(k)}<+\infty(l \geqq 0) \tag{3.15}
\end{equation*}
$$

Q.E.D.

Under these preparations we will prove the main proposition of this section.
Proposition 3.3. For $\tilde{U}_{l}^{(k)}(x, t)$ and $\tilde{V}_{l}^{(k)}(x, t)(l \geqq 0, k \geqq 0)$ defined in (3.1) we have

$$
\begin{equation*}
\left|\tilde{U}_{l}^{(k)}(x, t)\right|,\left|\tilde{V}_{l}^{(k)}(x, t)\right| \leqq \tilde{K}_{l}^{(k)} L_{T^{l}},(x, t) \in \Omega_{T} . \tag{3.16}
\end{equation*}
$$

Proof. In the same manner of the proof of Proposition 2.2, we will prove this through four steps.
(i) It is obvious from (3.1) and (3.5) that (3.16) hold for $k=0$ and $l \geqq 0$. From (2.1), (3.1) and (3.5) we see that $\tilde{U}_{0}^{(1)}=\tilde{u}_{0}, \tilde{V}_{0}^{(1)}=\tilde{v}_{0}$ and $\tilde{K}_{0}^{(1)}=\tilde{r}_{0}$ hold. Hence we see from (1.13) and (1.15) that (3.16) hold for $k=1$ and $l=0$.
(ii) We suppose that (3.16) hold for $1 \leqq k \leqq s$ and $0 \leqq l \leqq n$. Then from (3.1), (3.5) and (2.11) we have

$$
\left|\tilde{U}_{i}^{(s+1)}\right| \leqq(s+1) \sum_{i=0}^{l}\left|\tilde{u}_{i}\right|\left|U_{l-i}^{(s)}\right| \leqq\left((s+1) \sum_{i=0}^{l} \tilde{r}_{i} K_{l-i}^{(s)}\right) L_{T}^{l}=\tilde{K}_{l}^{(s+1)} L_{T}^{l}(0 \leqq l \leqq n) .
$$

Similarly we have

$$
\left|\tilde{V}_{l}^{(s+1)}\right| \leqq \tilde{K}_{l}^{(s+1)} L_{T^{l}} \quad(0 \leqq l \leqq n) .
$$

Hence by an induction process on k, the estimates (3.16) hold for $k \geqq 0$ and $0 \leqq l \leqq n$.
(iii) From (1.17), (3.15) and (ii) we see that the system (3.3) has meaning for $l=n+1$. Therefore applying Haar's inequality (1.10) to (3.3) for $l=n+1$ and using (ii) and (3.5) we have

$$
\begin{aligned}
\left|\tilde{U}_{n+1}^{(1)}\right| & =\left|\tilde{u}_{n+1}\right| \leqq L_{r}\left\{2\left(\sum_{i=0}^{n} \tilde{\gamma}_{i} r_{n+1-i}\right) L_{T}^{n+1}+\left(\sum_{k=1}^{\infty} q_{k} \tilde{K}_{n}^{(k)}\right) L_{T}{ }^{n}\right\} \\
& =\left\{\sum_{k=1}^{\infty} q_{k} \tilde{K}_{n}^{(k)}+2 L_{T} \sum_{i=0}^{n} \tilde{\gamma}_{i} r_{n+1-i}\right\} L_{T}^{n+1}=\tilde{\gamma}_{n+1} L_{T}^{n+1}=\tilde{K}_{n+1}^{(1)} L_{T}^{n+1} .
\end{aligned}
$$

Similarly we have $\left|\tilde{V}_{n+1}^{(1)}\right| \leqq \tilde{K}_{n+1}^{(1)} L_{T}{ }^{n+1}$. Therefore (3.16) hold for $k=1$ and $l=n+1$.
(iv) From (i), (ii) and (iii) we easily see that (3.16) hold for $k \geqq 0$ and $l \geqq 0$.

> Q.E.D.

Remark 3.4. From (1.3) and (3.1) we see that $\tilde{U}_{l}^{(1)}=\tilde{u}_{l}$ and $\tilde{V}_{l}^{(1)}=\tilde{v}_{l}$, and from (2.1) and (3.5) we see that $\tilde{K}_{l}^{(1)}=\tilde{r}_{l}$. Therefore putting $k=1$ in (3.16) we have

$$
\begin{equation*}
\left|\tilde{u}_{l}(x, t)\right|,\left|\tilde{v}_{l}(x, t)\right| \leqq \tilde{r}_{l} L_{T^{l}},(x, t) \in \Omega_{T}, \tag{3.17}
\end{equation*}
$$

which will be used in proving Proposition 3.6 and Lemma 4.3.
Remark 3.5. In view of (3.15) and (3.16) we easily see that both $\sum_{k=0}^{\infty} a_{k} \tilde{U}_{l-1}^{(k)}$ (x, t) and $\sum_{k=0}^{\infty} b_{k} \tilde{V}_{i=1}^{(k)}(x, t)(l \geqq 1)$ appearing in (3.3) converge uniformly over Ω_{T}.

Proposition 3.6. For \bar{u}_{l} and \bar{v}_{l}, which are introduced in (1.9), we have

$$
\begin{equation*}
\left|\bar{u}_{l}(x, t)\right|,\left|\bar{v}_{l}(x, t)\right| \leqq \eta \tilde{r}_{l} L_{T}^{l}+\left(2 r_{0}+\frac{1}{L_{T}}\right) r_{l} L_{T}^{l},(x, t) \in \Omega_{T} \tag{3.18}
\end{equation*}
$$

where η is defined in (1.14).
Proof. In view of (1.9) the first expression in (1.2) can be rewritten by

$$
\bar{u}_{l}=-\lambda \tilde{u}_{l}-\sum_{i=0}^{l} u_{l-i} u_{l} v_{i}+\sum_{k=0}^{\infty} a_{k} U_{l-1}^{(k)} .
$$

From (2.1), (2.11), (2.12) and (3.17) we have

$$
\begin{aligned}
\left|\bar{u}_{l}\right| \leqq & \leqq \lambda| | \tilde{u}_{l}\left|+\sum_{i=0}^{l}\right| u_{l-1}| | v_{i}\left|+\sum_{k=0}^{\infty}\right| a_{k}| | U_{l-1}^{(k)} \mid \\
& \leqq \eta \tilde{r}_{l} L_{T}{ }^{l}+2 r_{0} r_{l} L_{T}{ }^{l}+\left\{\left(\sum_{i=1}^{l-1} r_{l-i} r_{i}\right) L_{T}+\sum_{k=0}^{\infty} q_{k} K_{l-1}^{(k)}\right\} L_{T^{\prime-1}}^{l-1}
\end{aligned}
$$

$$
=\eta \tilde{r}_{l} L_{T}^{l}+\left(2 r_{0}+\frac{1}{L_{T}}\right) r_{l} L_{T}^{l} .
$$

Similarly we have

$$
\left|\bar{v}_{l}\right| \leqq r \tilde{\gamma}_{l} L_{T}^{l}+\left(2 r_{0}+\frac{1}{L_{T}}\right) r_{l} L_{T^{l}} .
$$

Q.E.D.

§4. The proof of main theorem

First, we will define ε_{T}^{\prime} by

$$
\begin{equation*}
\varepsilon_{T}^{\prime}=\frac{\tilde{\rho}_{0}}{L_{T}}, \tag{4.1}
\end{equation*}
$$

where $\tilde{\rho}_{0}$ is defined in (3.9).
Lemma 4.1. For any $T>0$, if $|\varepsilon|<\varepsilon_{T}^{\prime}$ then both of the series in (5) converge uniformly over Ω_{T}.

Proof. In view of (2.12) we have

$$
\begin{equation*}
\left|\sum_{l=0}^{\infty} u_{l} \varepsilon^{l}\right|,\left|\sum_{l=0}^{\infty} v_{l} \varepsilon^{l}\right| \leqq \sum_{l=0}^{\infty} r_{l}\left(L_{T}|\varepsilon|\right)^{l},(x, t) \in \Omega_{T} . \tag{4.2}
\end{equation*}
$$

If $|\varepsilon|<\varepsilon_{T}^{\prime}$, then from (3.9) and (4.1) we have $L_{T}|\varepsilon|<\rho_{0}$. Therefore, from (2.3) we have $\sum_{l=0}^{\infty} r_{l}\left(L_{T}|\varepsilon|\right)^{l}<+\infty$. Hence the lemma now follows at once. Q.E.D.

We remark here that for any $T>0$ we can define ε_{T} as both of the relations (4.3) $\left\{\begin{array}{l}\varepsilon_{T} \leqq \varepsilon_{T}^{\prime}, \\ \sum_{l=1}^{\infty} r_{l}\left(L_{T}\left|\varepsilon_{T}\right|\right)^{l} \leqq \frac{\rho_{1}}{2},\end{array}\right.$
are satisfied. Then, from (1.18) we have

$$
\begin{equation*}
\sum_{l=0}^{\infty} r_{l}\left(L_{T}|\varepsilon|\right)^{l}<\rho_{1},|\varepsilon|<\varepsilon_{T} . \tag{4.4}
\end{equation*}
$$

Hence we have the following lemma.
Lemma 4.2. For any $T>0$, if $|\varepsilon|<\varepsilon_{T}$ then we have

$$
\begin{equation*}
\left|\sum_{l=0}^{\infty} u_{l}(x, t) \varepsilon^{l}\right|,\left|\sum_{l=0}^{\infty} v_{l}(x, t) \varepsilon^{l}\right|<\rho_{1},(x, t) \in \Omega_{T} . \tag{4.5}
\end{equation*}
$$

Proof. It is obvious from (2.12) and (4.4).
Q.E.D.

Lemma 4.3. For any $T>0$, if $|\varepsilon|<\varepsilon_{T}$ then the series $\sum_{l=0}^{\infty} \tilde{u}_{l}(x, t) \varepsilon^{l}, \sum_{l=0}^{\infty} \tilde{v}_{l}(x, t) \varepsilon^{l}$, $\sum_{l=0}^{\infty} \bar{u}_{l}(x, t) \varepsilon^{l}$ and $\sum_{l=0}^{\infty} \bar{v}_{l}(x, t) \varepsilon^{l}$ converge uniformly over Ω_{T}.

Proof. In view of (3.17) and (3.18) we have

$$
\begin{aligned}
& \left|\sum_{l=0}^{\infty} \tilde{u}_{l} \varepsilon^{l}\right|,\left|\sum_{l=0}^{\infty} \tilde{v}_{l} \varepsilon^{l}\right| \leqq \sum_{l=0}^{\infty} \tilde{r}_{l}\left(L_{T}|\varepsilon|\right)^{l}, \\
& \left|\sum_{l=0}^{\infty} \bar{u}_{l} \varepsilon^{l}\right|,\left|\sum_{l=0}^{\infty} \bar{v}_{l} \varepsilon^{l}\right| \leqq \eta \sum_{l=0}^{\infty} \tilde{r}_{l}\left(L_{T}|\varepsilon|\right)^{2}+\left(2 r_{0}+\frac{1}{L_{T}}\right) \sum_{l=0}^{\infty} r_{l}\left(L_{T}|\varepsilon|\right)^{2} .
\end{aligned}
$$

If $|\varepsilon|<\varepsilon_{T}$ then from (4.1) and (4.3) we have $L_{T}|\varepsilon|<\tilde{\rho}_{0}$. Therefore from (3.7) and (3.9) we see that $\sum_{i=0}^{\infty} \tilde{r}_{l}\left(L_{T}|\varepsilon|\right)^{l}<+\infty$. We already saw in the proof of Lemma 4.1 that $\sum_{l=0}^{\infty} r_{l}\left(L_{T}|\varepsilon|\right)^{l}<+\infty$. Hence the lemma now follows at once.
Q.E.D.

Under these preparations we obtain the following theorem.
Theorem 4.4. For any $T>0$, if $\phi, \psi \in \mathfrak{B}^{1}(R), 0 \leqq \phi(x), \psi(x) \leqq M_{T}$ and $|\varepsilon|<\varepsilon_{T}$ then the Cauchy problem (1)-(2) has solutions u and v which are unique and belong to $C^{1}\left(\Omega_{T}\right)$. The solutions u and v are analytic with respect to ε and are expressed in the form of (5). The right-hand sides of (5) converge uniformly over Ω_{T}. Here M_{T} is arbitrary positive constant such that $M_{T} \leqq \frac{1}{T} \log \frac{1+\sqrt{1+2 \rho_{1} T}}{2}$ (see (1.19)), and ε_{T} is arbitrary positive constant which satisfy (4.3), where $r_{l}(l \geqq 0), L_{T}$ and $\tilde{\rho}_{0}$ are defined when we put $M=M_{T}$ in (1.8) and in (1.15).

Proof. In view of Lemma 4.3, both of the series in (5) are diffentiable term by term with respect to x and t on Ω_{r}. And from the manner of the constructions of u_{l} and $v_{l}(l \geqq 0)$ and from Lemma 4.1 and 4.2, if $|\varepsilon|<\varepsilon_{T}$ then u and v given in (5) are solutions of the Cauchy problem (1)-(2). The uniform convergency follows from Lemma 4.1 and the first inequality in (4.3) at once. The uniqueness of solutions is obvious from the general theory (see Nagumo [4]).
Q.E.D.

Remark 4.5. If g and h appearing in (1) are entire functions (i.e. $\rho_{1}=+\infty$), then Theorem 4.4 can be rewrited as follows.

For any positive constants T and M, if $0 \leqq \phi(x), \psi(x) \leqq M$ and $|\varepsilon|<\varepsilon(T, M)$ then the Cauchy problem (1)-(2) has solutions u and v which are unique and belong to $C^{1}\left(\Omega_{T}\right)$. Here we put $\varepsilon(T, M)=\rho_{0} / L_{T}$, and $\tilde{\rho}_{0}$ and L_{T} are defined when we put $r_{0}=M e^{M T}$ by using M given above.

In this case, of course, the analyticity with respect to ε and the uniform convergency over Ω_{T} of solutions hold also.

§ 5. The existence of traveling wave-like solutions

In this section, as an application of Theorem 4.4 we shall show that the

Cauchy problem (1) with some initial conditions has traveling wave-like solutions. For this purpose we need Theorem 5.1 which states the existence of traveling wave solutions $u_{0}(x, t)=u_{0}(x-\xi t)$ and $v_{0}(x, t)=v_{0}(x-\xi t)$ (for the traveling wave solution, see Aronson and Weinberger [1]).

Theorem 5.1. The Cauchy problem

$$
\left\{\begin{array}{l}
\frac{\partial u_{0}}{\partial t}+\lambda \frac{\partial u_{0}}{\partial x}=-u_{0} v_{0} \tag{5.1}\\
\frac{\partial v_{0}}{\partial t}+\mu \frac{\partial v_{0}}{\partial x}=u_{0} v_{0},(x, t) \in R \times R_{+}
\end{array}\right.
$$

with initial data

$$
\left\{\begin{array}{l}
u_{0}(x, 0)=\phi(x)=\frac{a\{a(\lambda-\xi)+b(\mu-\xi)\}}{a(\lambda-\xi)+b(\mu-\xi) e^{\gamma x}} \tag{5.2}\\
v_{0}(x, 0)=\phi(x)=\frac{b\{a(\lambda-\xi)+b(\mu-\xi)\}}{a(\lambda-\xi) e^{-\gamma x}+b(\mu-\xi)}
\end{array}\right.
$$

has traveling wave solutions of the form

$$
\left\{\begin{array}{l}
u_{0}(x, t)=u_{0}(x-\xi t)=\frac{a\{a(\lambda-\xi)+b(\mu-\xi)\}}{a(\lambda-\xi)+b(\mu-\xi) e^{r(x-\xi t)}}, \tag{5.3}\\
v_{0}(x, t)=v_{0}(x-\xi t)=\frac{b\{a(\lambda-\xi)+b(\mu-\xi)\}}{a(\lambda-\xi) e^{-r(x-\xi t)}+b(\mu-\xi)},
\end{array}\right.
$$

where $a>0, b>0,(\lambda-\xi)(\mu-\xi)>0$ and $\gamma=\frac{a}{\mu-\xi}+\frac{b}{\lambda-\xi}$.
Proof. Putting $s=x-\xi t, u_{0}(x, t)=u_{0}(s)$ and $v_{0}(x, t)=v_{0}(s)$ in (5.1) and putting $x=0$ in (5.2), then the Cauchy problem (5.1)-(5.2) will be reduced to the Cauchy problem of ordinary differential equations for u_{0} and v_{0} :

$$
\left\{\begin{array}{l}
(\lambda-\xi) \frac{d u_{0}}{d s}=-u_{0} v_{0} \tag{5.4}\\
(\mu-\xi) \frac{d v_{0}}{d s}=u_{0} v_{0} \\
u_{0}(0)=a, v_{0}(0)=b
\end{array}\right.
$$

Adding the first expression to the second one in (5.4) we have

$$
\frac{d}{d s}\left\{(\lambda-\xi) u_{0}+(\mu-\xi) \cdot v_{0}\right\}=0
$$

Solving this equation with initial data in (5.4) we obtain

$$
\begin{equation*}
(\lambda-\xi) u_{0}+(\mu-\xi) v_{0}=a(\lambda-\xi)+b(\mu-\xi) \tag{5.5}
\end{equation*}
$$

Eliminating v_{0} from (5.5) and the first expression in (5.4) we have

$$
\frac{d u_{0}}{d s}=\left(\frac{1}{\mu-\xi} u_{0}-\frac{a}{\mu-\xi}-\frac{b}{\lambda-\xi}\right) u_{0} .
$$

Solving this equation with $u_{0}(0)=a$, we have

$$
\begin{equation*}
u_{0}(s)=\frac{a\{a(\lambda-\xi)+b(\mu-\xi)\}}{a(\lambda-\xi)+b(\mu-\xi) e^{r^{r s}}} . \tag{5.6}
\end{equation*}
$$

Substituting (5.6) into (5.5) we have

$$
\begin{equation*}
v_{0}(s)=\frac{b\{a(\lambda-\xi)+b(\mu-\xi)\}}{a(\lambda-\xi) e^{-r s}+b(\mu-\xi)} . \tag{5.7}
\end{equation*}
$$

Therefore, putting $s=x-\xi t$ in (5.6) and (5.7) we obtain the traveling wave solutions (5.3).
Q.E.D.

Remark 5.2. It is easily seen from (5.3) that if $\gamma<0$ we have

$$
\begin{array}{ll}
u_{0}(-\infty, 0)=0, & u_{0}(+\infty, 0)=p, \\
v_{0}(-\infty, 0)=q, & v_{0}(+\infty, 0)=0,
\end{array}
$$

and if $\gamma>0$ we have

$$
\begin{array}{ll}
u_{0}(-\infty, 0)=p, & u_{0}(+\infty, 0)=0, \\
v_{0}(-\infty, 0)=0, & v_{0}(+\infty, 0)=q,
\end{array}
$$

where $p=a+b \frac{\mu-\xi}{\lambda-\xi}$ and $q=a \frac{\lambda-\xi}{\mu-\xi}+b$. Hence we have the relations

$$
p q=a q+b p, \gamma=\frac{p}{\mu-\xi}=\frac{q}{\lambda-\xi}=\frac{p-q}{\mu-\lambda}, \xi=\frac{\lambda p-\mu q}{p-q} .
$$

Here, we will sketch the graphs of the solutions $u_{0}(s)$ and $v_{0}(s)$ according to the case of $\gamma<0$ or $\gamma>0$. Since $\lambda \neq \mu$, without loss of generality we may assume that $\lambda<\mu$.

In case of $\gamma<0(0<p<q)$

in case of $\gamma>0(0<q<p)$

We call the solutions u and v of the Cauchy problem (1)-(2) traveling wavelike solution when u and v are written by means of some functions f_{0}, f_{1}, g_{0} and g_{1} in the following form

$$
\left\{\begin{array}{l}
u(x, t)=f_{0}(x-\xi t)+\varepsilon f_{1}(x, t), \tag{5.8}\\
v(x, t)=g_{0}(x-\xi t)+\varepsilon g_{1}(x, t),
\end{array}\right.
$$

where ξ is some constant, f_{1} and g_{1} are bounded over Ω_{T} and the absolute value of ε is sufficiently small.

Now, the initial data (5.2) satisfy the conditions in (4) since $a>0, b>0$ and $(\lambda-\xi)(\mu-\xi)>0$. If put

$$
M(a, b)=\max \left\{a+b \frac{\mu-\xi}{\lambda-\xi}, a \frac{\lambda-\xi}{\mu-\xi}+b\right\}
$$

then we have

$$
0 \leqq \phi(x), \phi(x) \leqq M(a, b) .
$$

Thus, in view of Theorem 4.4 and 5.1 we establish the main theorem of this section.

Theorem 5.3. For any $T>0$, let us take positive numbers a and b so that the inequality $M(a, b)<\rho_{1} / 2$ holds (see (1.18)) and take ε such that the inequality $|\varepsilon|<\varepsilon_{T}$ is satisfied, where ε_{T} is defined in (4.3). Then the Cauchy problem (1) and (5.2) has traveling wave-like solutions. Here, ε_{T} is defined in (4.3), and $r_{l}(l \geqq 0)$ are defined when we put $M=M(a, b)$ in (1.8) and in (1.15).

Proof. In view of Theorem 4.4, the solutions of the Cauchy problem (1) and (5.2) can be expressed by

$$
\left\{\begin{array}{l}
u(x, t)=u_{0}(x-\xi t)+\sum_{l=1}^{\infty} u_{l}(x, t) \varepsilon^{l}, \tag{5.9}\\
v(x, t)=v_{0}(x-\xi t)+\sum_{l=1}^{\infty} v_{l}(x, t) \varepsilon^{l},(x, t) \in \Omega_{T}
\end{array}\right.
$$

where u_{0} and v_{0} are traveling wave solutions (5.3) of the Cauchy problem (5.1) and (5.2). In view of Lemma 4.1, if we take $|\varepsilon|$ sufficiently small then we can make the absolute value of the second term of the right-hand sides in (5.9) as small as possible over Ω_{T}. Therefore, the solutions (5.9) certainly have the form of (5.8). Hence the Cauchy problem (1) and (5.2) has traveling wave-like solutions.
Q.E.D.

Remark 5.4. In Theorem 5.3, if g and h are entire functions (i. e. $\rho_{1}=+\infty$) then we can arbitrarily take positive numbers a and b independent of T (cf. Remark 4.5).

In conclusion, the author is deeply indebted to Prof. M. Yamaguti, of Kyoto University, who contributed many significant suggestions and much invaluable advaices, and he wishes to thank heartily Prof. M. Mimura, of Hiroshima University, who gave several significant suggestions in completing § 5. He also wishes to thank heartily Prof. S. Mizohata, of Kyoto University, who contributed many times much invaluable encouragement and advaices. Further he wishes to thank heartily to the referee for his many useful and invaluable advaices.

References

[1] Aronson, D.G. and Weinberger, H.F., Nonlinear diffusion in population genetics, combustion and nerve pulse propagation, Lecture Notes in Mathematics 446, Partial Differential Equations and Related Topics, Springer-Verlag (1975), 5-49.
[2] Hashimoto, H., Exact solutions of a certain semi-linear system of partial differential equations related to a migrating predation problem, Proc. Japan Acad. 50 (1974), 623-627.
[3] Hirota, R., Direct method of finding exact solution of nonlinear evolution equations, Lecture Notes in Mathematics 515, Bäcklund Transformations, Springer-Verlag (1976), 40-68.
[4] Nagumo, M., The theory of partial differential equations (in Japanese), Asakura Publisher, Tokyo (1974).
[5] Niizeki, S., On a representation of solutions of the Cauchy problem for a semi-linear hyperbolic system (1), Mem. Fac. Sci. Kochi Univ. (Math.) 1 (1980), 69-80.
[6] Niizeki, S., On a representation of solutions of the Cauchy problem for a semi-linear hyperbolic system (11), Mem. Fac. Sci. Kochi Univ. (Math.), 2 (1981), 101-112.
[7] Petrovski, I.G., Lectures on partial differential equations, 2nd. ed. Gos. Izd. Tekh. Teor. lit., Moscow (1972).
[8] Tsuji, M., Theory of functions of complex variable (in Japanese), Maki Publisher, Tokyo (1972).
[9] Yamaguti, M. and Niizeki, S., On the Cauchy problem for a semi-linear hyperbolic system, J. Math. Kyoto Univ. 20-4 (1980), 625-634.
[10] Yoshikawa, A. and Yamaguti, M., On some furuther properties of solutions to a certain semi-linear system of partial differential equations, Publ. RIMS, Kyoto Univ. 9 (1974), 577-595.

Kochi University
Department of Mathematics
Faculty of Science
Kochi, 780 Japan

[^0]: Received May 11, 1981

