NON-STANDARD REAL NUMBER SYSTEMS WITH REGULAR GAPS

By

Shizuo KAMO

The purpose of this paper is to show that if an enlargement *M of the universe M is saturated, then the non-standard real number system *R has a regular gap and the uniform space (*R, E[L(1)]) is not complete.

Our notions and terminologies follow the usual use in the model theory. Let $G = \langle G, +, < \rangle$ be a first order structure which satisfies

- (a) the axioms of ordered abelian groups,
- (b) the axioms of dense linear order.

(i.e. $\langle G, +, < \rangle$ is an ordered abelian group and $\langle G, < \rangle$ is a densely ordered set.) A Dedekind cut (X, Y) in G is said to be a gap if sup(X) (inf(Y)) does not exist. A gap (X, Y) is said to be *regular* if, for all e in G_+ (={g $\in G$; g>0}), $X+e \neq X$.

THEOREM. Suppose that G is saturated. Then, G has a regular gap. Moreover, G has 2^{κ} -th regular gaps, where κ is the cardinality of G.

PROOF. Since G is saturated, the coinitiality of G_+ is κ . Let $\langle g_{\alpha} | \alpha < \kappa \rangle$ be an enumeration of G and let $\langle e_{\alpha} | \alpha < \kappa \rangle$ be a strictly decreasing coinitial sequence in G_+ . By the induction on $\alpha < \kappa$, we shall define a set $\{I(x_u, y_u); u \in a^2\}$ of open intervals in G such that

- (1) $I(x_u, y_u) \neq \emptyset$ for all u in ^a2,
- (2) $y_u x_u < e_\alpha$ for all u in ^{α}2,
- (3) $g_{\alpha} \notin I(x_u, y_u)$ for all u in ^{α}2,
- (4) $I(x_u, y_u) \cap I(x_v, y_v) = \emptyset$ for all distinct elements u, v in ^a2,
- (5) for all $\beta < \alpha$, for all $v \in {}^{\beta}2$ and for all $u \in {}^{\alpha}2$, if $v \subset u$, then $I(x_v, y_v) \supset I(x_u, y_u)$.

The construction is as follows:

(Case 1) $\alpha = 0$.

This case is obvious.

(Case 2) $\alpha = \beta + 1$ for some β .

Received June 3, 1980.

Suppose that $\{I(x_v, y_v); v \in {}^{\beta}2\}$ has been defined and satisfies (1)~(5). For each v in ${}^{\beta}2$, choose z_v, z'_v, w_v and w'_v in $I(x_v, y_v)$ such that

$$I(z_{v}, w_{v}) \neq \emptyset, \quad I(z'_{v}, w'_{v}) \neq \emptyset,$$
$$I(z_{v}, w_{v}) \cap I(z'_{v}, w'_{v}) = \emptyset,$$
$$w_{v} - z_{v} < e_{\alpha}, \quad w'_{v} - z'_{v} < e_{\alpha},$$
$$g_{\alpha} \in I(z_{v}, w_{v}) \cup I(z'_{v}, w'_{v}).$$

Set

$$\begin{aligned} x_{v\widehat{\langle 0 \rangle}} &= z_v, \\ y_{v\widehat{\langle 0 \rangle}} &= w_v, \\ x_{v\widehat{\langle 1 \rangle}} &= z'_v, \\ y_{v\widehat{\langle 1 \rangle}} &= w'_v. \end{aligned}$$

Then,

 $I(x_{\widehat{v(i)}}, y_{\widehat{v(i)}}); v \in \beta^2 \text{ and } i=0, 1$

satisfies (1) \sim (5).

(Case 3) α is limit.

Suppose that, for all $\beta < \alpha$, $\{I(x_v, y_v); v \in \beta_2\}$ has been defined and satisfies (1)~(5). Let u be in $\beta < \alpha$, put

 $x_{\beta} = x_{u1\beta}$ and $y_{\beta} = y_{u1\beta}$

(where $u1\beta$ denotes the restriction of u to β). The sequence $\langle I(x_{\beta}, y_{\beta}) | \beta < \alpha \rangle$ satisfies that

 $I(x_{\beta}, y_{\beta}) \neq \emptyset \quad \text{for all } \beta < \alpha,$ $I(x_{\beta}, y_{\beta}) \subset I(x_{\gamma}, y_{\gamma}) \quad \text{for all } \gamma < \beta < \alpha.$

Since G is saturated, $\bigcap_{\beta < \alpha} I(x_{\beta}, y_{\beta})$ contains elements x and y such that x < y. Since $I(x, y) \subset \bigcap_{\beta < \alpha} I(x_{\beta}, y_{\beta})$, we can choose x_u , y_u in I(x, y) such that

$$x_u < y_u < x_u + e_\alpha$$
 and $g_\alpha \in I(x_u, y_u)$.

Then, $\{I(x_u, y_u); u \in {}^{\alpha}2\}$ satisfies (1)~(5).

Now, $\{I(x_u, y_u); u \in \bigcup_{\alpha < \kappa} \alpha^2\}$ is a set which satisfies (1)~(5). For each f in β^2 , define subsets X_f and Y_f of G by

$$X_f = \{g \in G ; \exists \alpha < \kappa(g < x_{f1\alpha})\},$$
$$Y_f = \{g \in G ; \exists \alpha < \kappa(y_{f1\alpha} < g)\}.$$

22

By (3) and (5), (X_f, Y_f) is a cut in G. By (4), if f, h are distinct elements in κ^2 , then $(X_f, Y_f) \neq (X_h, Y_h)$. To complete the proof of our theorem, it suffices to show that (X_f, Y_f) is regular. Let e be any element in G_+ . Since $\langle e_{\alpha} | \alpha < \kappa \rangle$ is coinitial in G_+ , there exists some $\alpha < \kappa$ such that $e_{\alpha} \leq e$. By (2),

$$y_{f1\alpha} < x_{f1\alpha} + e_{\alpha} \leq x_{f1\alpha} + e$$
.

Since $y_{f_{1\alpha}}$ is in Y_f , $x_{f_{1\alpha}} + e$ is in Y. Thus $X_f + e \neq X_f$.

Let R be the set of real numbers, let M be a universe with $R \in M$, let *M be an enlargement of M and let *R be the scope of R. We shall regard *R as an ordered group $\langle *R, +, < \rangle$. (*R may be of the form $\langle *R, *+, *< \rangle$. But we shall omit asterisks in *+ and *<, because there is no danger of confusion.)

COROLLARY 1. Suppose that *M is saturated. Then, *R has a regular gap.

PROOF. Since *M is saturated, *R is saturated. So, this follows from Theorem.

For each r in $*R_+$, define E(r) by

$$E(r) = \{(s, t) \in R \times R; |s-t| < r\}.$$

Define L(1) and E[L(1)] by

$$L(1) = \{r \in R; \forall r' \in R(r' < r)\},\$$
$$E[L(1)] = \{E(r); r \in L(1)\}.$$

E[L(1)] is the base of some uniform topology on **R*. This uniform space is denoted by (**R*, E[L(1)]) (see [6]). Define \overline{R} by

$$\overline{R} = \{r \in R; \exists r' \in R(|r| < r')\}.$$

 \overline{R} is a convex subgroup of **R*. So, the quotient group **R*/ \overline{R} becomes an ordered group.

LEMMA. (* \mathbf{R} , E[L(1)]) is complete if and only if $*\mathbf{R}/\overline{\mathbf{R}}$ does not have a regular gap.

PROOF. It is easy from simple calculations.

#

COROLLARY 2. Suppose that *M is saturated. Then, (*R, E[L(1)]) is not complete.

#

PROOF. From Theorem and Lemma.

Assume GCH. There exists an enlargement *M which is saturated (see [4, Proposition 5.1.5(ii)]). Therefore, from Corollaries 1 and 2, there exists an enlargement *M such that

- (1) *R has a regular gap,
- (2) (*R, E[L(1)]) is not complete.

This is another proof of Theorems 4.5 and 4.2 in my paper [6].

References

- [1] Robinson, A., Non-standard Analysis (Studies in Logic and the Foundations of Mathematics). North-Holland, Amsterdam, 1966.
- [2] Zakon, E., Remark on the Nonstandard Real Axis, in: Applications of Model Theory to Algebra, Analysis, and Probability, ed. W. A. J. LUXEMBURG (Holt, Rinehart and Winston), pp. 195-227.
- [3] Machover M. and Hirschfeld, J., Lecture in Non-standard Analysis (Springer Verlag), 1969.
- [4] Chang, C.C. and Keisler, H.J., Model Theory, North-Holland, Amsterdam, 1973.
- [5] Sacks, G., Saturated Model Theory, Reading, Mass., Benjamin, 1972.
- [6] Kamo, S., Non-standard natural number systems and non-standard models, to appear in J. of Symb. Logic.

Department of Mathematics University of Osaka Prefecture Sakai, Osaka, Japan