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Ivan Matveevic Vinogradov

in memoriam

We shallconcern in the present paper with one of the Diophantine problems

arisingfrom the study of relationsbetween two kinds of figuratenumbers, or

more specifically,between pyramidal and triangularnumbers Px and ty,defined

resnerHvp.lvbv

and

Px = ^x(x + l)(2x + l)
6

ty= y+1).

As an unsolved problem in number theory, the problem has been proposed in [3;

D3] to determine when the equality ty―Px does occur. In fact,it has been con-

iectured that the integer solutions x, y of the equation

(1)

Z 6

are those that are given by

(2) x=-l, 0, 1, 5, 6 and 85.

It will be proved in the following that this is in fact the case, namely, that the

Diophantine equation (1) has the solutions x, y with x listed in (2) and only these.

Thus, we have just four natural numbers, 1, 55, 91 and 208335, which are simul-

taneously triangular and pyramidal.

It will be of some interest to note that a similar Diophantine equation

(3) ^y(y + l)^jx(x + l)(x+2)

where the right-hand side is a tetrahedral number Tx, was treated by E. T.
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Avanesov [5],who showed that the solutions x, y of (3) are those that are given

by

x = l, 3, 8, 20 and 34

apart from x=―2, ―1 and 0 which are trival. Our methods of reasoning are alike

in principle but the respective proofs differfrom each other considerably in many

details.

Now, if we put

X=2ar + 1. Y=2v + 1.

then the equation (1) becomes

(4) 3Y* = Xa-X+3.

It is well known that the ellipticequation

eyz = ax3 + bx2+cx + d (≪^0),

where the coefficientsare integers and where the cubic polynomial on the right-

hand side has no squared linear factor in x, admits only a finitenumber of integer

solutions x, y, and these solutions can be effectivelydetermined (cf.[4; Chaps. 27

& 28]).

We shall prove the

Theorem. The only solutions of the Diophantine equation (4) in rational

integers X, Y are given by

(5) X=-l, 0, 1, 3, 8, 11, 13, 171 and 1704.

Needless to say, the odd values only of X in (5) correspond to the values of

x listed in (2) for the solutions of (1).

1. Reducing the original equation.

1.1 Throughout in what follows we shall denote by Z the ring of rational

integers and by Q the field of rational numbers.

Put

g(x) = xa--x + 2>.

The polynomial g(x) is irreducible in Z[x] and has discriminant Dg~― 239. Thus,

the equation g(x) = 0 has a real root and a pair of conjugate complex roots. Let

X be a generic root of the equation g(x) ―0. Then X generates a cubic field K=Q(k).

The field discriminant of K is £)*-=―239. and an integral basis of K is A ―W. I. P＼.
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According to Dirichlet'sunits theorem, the fieldK has the unit group generated

by a fundamental unit e,and we see from a table in [7; p. 113] that we can take

The cyclotomic units in K are ±1. Moreover, K has the class number hK = l.

It is immediate to see that we have in Q, the ring of integers of K,

(6) (3)= (A)(;-1)U + 1)

and

(7) (239)= (3^2-l)2(3/l2-4),

where each of the ideals appearing in the right-hand side of (6) and (7) is a prime

ideal of Q.

Now, the equation (4) can be rewritten in the form

(8) (X-Z)(X2+ZX+Xi-l)=a(Z-l)tt+l)Y2,

where C is a unit of K.

(X-X,X2 + XX+l2-l) = (X-X,U2-l).

We see that X-X=O (mod 3^-1) if and onlyif X=124 (mod 239). Here,if Xe=124

(mod 239) then

g(X)=0 (mod 239)

g(X)^O (mod 2392),

since we have

</(124)=3-239-2659 and </(124)= 193-239.

It follows that the equation (4) is impossible for any X with X=124 (mod 239).

We may assume, therefore, that in (8) the two factors on the left-hand side are

co-prime.

<*-*HSU if Z=0

if X=±l

(mod 3),

(mod 3).

We have also,for any a,b,c in Z,

(a + bZ+a2)2=A+BA+Ck＼

whprp
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＼B=2ab+2bc-?>c2

＼C=b2+2ac + c2.

We distinguishthree cases according as X=0, 1 or ―1(mod 3).

1.2 Case of X=Q (mod 3). Here we have from (8)

X-X = ±tek(a+bX+ ck2)2

for some a,b,c,and k in Z, where one may assume without loss of generality

thatk=0 or 1.

If k = 0 then

X-X=±X(a+bX+cX2)2

= ±X{A+BX+CX2)

It follows from this that

0 = 5,

+ l = A+C,

+ X=3C.

In view of (9) we find that c must be even, and hence + I=a2+bz (mod 4); there-

fore, a,b have different parity and we must take the lower sign +. Thus we

have

X=3(b2+2ac+c2)

and

(10)

+c) = 3c2

c)2+b2-6bc = l

Suppose firstthat bc = 0. If 6=0 then we have from (10) #+c=±l, c=0, and

so a~±l, which gives the solution

X=0.

If c=0 and bi=0 then, from (10) again, a2+ b2= l,a=0, b=±l, which gives

X=3.

Suppose then that bc>0. We note that (b,a+c) = l, and so (2b,a+c) = l or 2.

If a+c is odd, then X, as well as b, is even. There are two cases to be

distinguished.

(i) a+c=±3u2,b=±22m-iv2,c=±2muv for some u,v and m in Z with u,v
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odd, ra^l.

If we write U―u, F=2m~'y, then the second equality in (10) gives

9£/4-24£/F3+4F4 = l.

This equation has, however, no integer solutions U, V with odd U, since the con-

gruence

9Ui-2AUVi+4V4 = l (mod 16)

is insoluble in U, V with U=l (mod 2).

(ii) a+c=±uz, b= ±3-22m~1v2,c―±2muv for some u, v and m in Z with u,i

odd, mi^l.

If we write U=u, V=2m~1v, then we have, from the second equality in (10'

again,

(11) U4-72UV3+36V4 = l.

There are solutions U―±l, V―±2, which as we shall see later are the only

solutions of (11) (apart from the trivialones U―±l, F=0) and which give ≪=+3,

b=±2A, c=±4 and so

X= 3 -568=1704.

Incidentally, the equation (11) is impossible modulo 8 if m ―1.

Next, if a+c is even, then X, as well as b, is odd. There are two cases again.

(iii) a+c=±3-22m~lu2,b=±v2,c=±2muv for some u,v and m in Z with u,v

odd, m^X.

If we put U=2m~1u, V―v, then we have

(12) 36C/4-12C/F3+F4 = l,

which admits, as we shall see later, no solutions U, V (apart from the trivialsolu-

tions U=0,V=±l).

The equation (12) is impossible modulo 16 for m=2.

(iv) a+c= ±22m~1u2,b=±Sv2, c=±2muv for some u, v and m in Z with u, v

odd, m^l.

If we put U=2m-1u, V=v, then we get

(13) 4f/4-36t7F3+9F4 = l.

There are solutions U―±2,V=±l, which as we shall see later are the only

solutions of (13) and which give a=±4, b= ±3,c=±A, and hence

X=3-57=171.

The equation (13) is impossible modulo 16 if m^3.
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If k = l then we have

X-A=±JLs(a+bX + cFy

= ±(r--3)(A+m+Ck2)

= ±(-Z(A + B)-(2B+3C)X + (A-2C)Xi＼

whence

(14) 0 = A-2C,

(15) ±1=2B+3C,

and + X=3(A + B).

In view of (9), from (14) it follows that a = 0 (mod 2), and from (15) that

±1 = 3b"z―3cs(mod 4), or b + c = l (mod 2). But then, from (14) again we get 0=―2

(mod 4), an absurd relation. Hence, there are no solutions X under the circum-

stances

1.3 Case of X=l (mod 3). In thiscase we have

X-X= ±(X-l)s＼a+ bl+ cXzy

for some a,b,c,and k in Z, where as before we may assume thatk=0 or 1

Tf & = 0 then we have

X-X = ±{X-l)(a+b1i+cFY

= ±(A-1)(A + BZ+CXZ)

= ±(-(A+3C) + (A-B+C)k + (B-C)22),

so that

0=B― C,

+ 1=A-B+C,

+X=A+3C.

On account of (9) we find that a^O (mod 3), and so we must take the lower sign +

in the last two equalities,and that &~0 (mod 2). Thus we have

X=W+2ac+c2) + l

and

(16)
U2a-~b+c)(b-c)=3c2

[a2-6bc = l.

Suppose firstthat be=0. If b~0 then a=±l,c=0, which give

X=l.

If c = 0 and bi=0 then a=±l,b=±2, which give
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1q

Suppose then that bc>0. Since we must have (a,6bc) = l,(a,b―c) = l so that

(2a,b―c) = l or 2.

If b―c is odd, then c is odd and X is even. There are two cases to be

distinguished.

(i) 2a ―b+ c=±3u2,b―c=±vz, ＼c＼=uvfor some u,v in Z,u,v odd.

If c= uv>0 then b=±vz + uv,bc = uv(u±v), where for the sign ― we must have

u ―v>0.

If c=― uv<0 then b=±v2 ―uv,bc ―uv(u + v), where for the sign ― we must

have u―v>0.

In either case we have a=±(1/2)(3uz + v2).If we write U=±u,V=v, then we

get from the second equality in (16)

9 U4 -18 U2V2 + 24 UV&+ F4 = 4.

However, this equation has no integer solutions U, V with U=V=1 (mod 2), since

the congruence

9U4-18U2V2 + 2AUV3+Vi=i (mod 16)

is impossible for U=V=1 (mod 2).

(ii) 2a―b + c―±u2,b―c~±3v2,＼c＼―uv for some u,v in Z,u,v odd.

If c = uv>0 then b=±3vz + uv,bc ―uvz(ti±Zv),where for the sign ― we must

have u―3v>0.

If c=―uv<0 then b―±3vz―uv,bc ―uv2(u + 3v), where for the sign ― we must

have u―3v>0.

We have, in either case, a―±(l/2)(tt2+3vz). If we write U―±u, V―v, then

Ui-18U2V2+72UV3+9Vi = A,

where U=V=1 (mod 2). This equation is also impossible, as is seen by consider-

ing the both sides of it modulo 16.

If b―c is even, then c is even and X is odd. We have to distinguish four

cases.

(iii) 2a-6+c=±3-22W-1≪2, b-c=±2v2, where 2m||c, so that ＼c＼=2muvwith u,v

odd, m^l.

If c=2muv>0, then b=±2v* + 2miw, bc=2m+1uv＼2m~1u±v)>0.

If c=-2muv<Q, then b=±2v2-2muv,bc=2m+1uv*(2m-1u+v) >0.

In either case we have a=±(3-2*m-*u* + v2).If we put U=±2m~1u, V=v, then

we get from (16)

(17) 9U4-im2V2+24UV3+V4 = l.
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We shallshow later that thisequation has no solutions U, V (apart from the trivial

ones 17=0, V=±l). The equation (17) has no solutions U, V with U=V=1 (mod

2), that is, in the case of m = l. This can be seen at once if we consider the

equation modulo 4.

(iv) 2a-b+c=±22m-lM2,b-c=±3-2v2, where 2m＼＼c,so that ＼c＼=2muvwith u, v

odd, m^l.

If c= 2muv>0, then b=±3-2v* + 2muv,bc = 2m+1uv2(2m-1u±Zv)>0.

If c=-2muv<0, then b= ±3-2v2-2muv, bc = 2m^uv2(2m-lu + Sv)>0.

We have in either case a= ±(22m'2u2+ 3vs). If we write U=±2m~lu, V=v, then

(18) U4-l8U2V2 + 72UVs + 9V* = l.

We shall show later that this equation has also no solutions U, V (apart from the

trivialones U=±l, V=0). Again, the equation (18) has no solutions U, V with

U=V=1 (mod 2), that is,in the case of m = l. For w^3 the equation turns out

to be impossible, when considered modulo 16.

(v) 2a-b + c=±3-2u2,b-c=±22m-1v＼ where 2m＼＼c,so that ＼c＼=2muvwith u,i

odd, m>l.

If c=2muv>0 then b= ±22m-1v2+2muv,bc=22muv＼u±2m-lv)>0.

If c=-2muv<0 then b=±22m-1v2-2muv,bc = 22muv2(u+ 2"l~'v)>0.

We have in either case a= ±(3u2+ 22m~2v2).If we put U=±u, V=2m~'v, then

we get

9U4-ISU2V2 + 24UV3+ F4 = l.

This equation is identicalin form with (17); the only difference is in the parity

of the solutions U, V sought. The equation is impossible modulo 16 for m^3.

(vi) 2a-b + c=±2u＼b-c=±3-22m-lv2, where 2m＼＼c,so that ＼c＼=2muvwith u,v

odd, m>＼.

If c= 2mwy>0 then b= ±3-22m-lv2+2muv, bc=22muv2(u±3-2m~"v)>Q.

If c=-2muv<0 then b=±3-22m~1v2-2muv, bc=22muv＼u + 3-2m-'i;)>0.

In either case we have a=±(w2+3-22ra"~V). If we put U=±u, V=2m-1v, then

Ut-lSU2V2+72UVs+9V4=l.

This equation is identicalin form with (18), with the difference only in the parity

of the solutions U, V sought. The equation is impossible for m=l; this is also

impossible modulo 16 for m=2.

Tf k = ＼then

X-X=±(X- l)e(fl+ bX + cJL2f

= +(*+2)(A + BX+CX2)
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(19) 0-5+2C,

(20) ±1 = A + 2B+C,

(21) +X=2A-3C.

It follows from (21) that a^O (mod 3) and we have to take the upper sign, +

in (20) and - in (21). The equality (19) modulo 4 gives 2ab+2b2=0 (mod 4),i.e.

b(a + b)= O (mod 2). The equality (20) modulo 4 yields a2+b2 = l (mod 4), since,

from (19) we have c=0 (mod 2). It follows that b=0 (mod 2) and a=l (mod 2).

But, b = 0 (mod 2) implies X=0 (mod 2). Since

X=-A-l = ~(a2-6bc)-l=-2 (mod 8),

it would follow that

3 = ZY2 = X3-X+3=5 (mod 8),

an impossibility. Therefore, there are no solutions X in this situation.

1.4 Case of X= ―l (mod 3). In this case we have

X-*=±(Z + l)ek(a+ bX + cX2)2

for some a,b,c, and k in Z, where we may assume as before that k = 0 or 1.

If k―0 then we have

x-z=±(x+i)(a+bx+a2y

= ±(X+ l)(A + BX + Ck2)

= ±(A-3C+(A + B+C)X + (B+C)Z2),

from which follows that

(22) 0 = B+C,

(23) +1 = A + B+C,

(24) ±X=A-SC.

It follows from (9) and (24) that a^O (mod 3) and we have to take the lower sign

+ in (23) and - in (24). By (22) we have b = 0 (mod 2). We thus have

X=3(b2 + 2ac + c2)-l

and

(25)
(2a + b + c)(b + c) = 'Sc2

a2-6bc = l.
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Suppose that bc ―0. If b = 0 then a=±l; if further c = 0 then this gives

and if c^O then ±2 + c--3c, or c = ±1 and this gives

V Q

If b^O then c = 0, and so ±2 + 6 = 0, or b= + 2. This gives

X=ll.

Suppose now that bc>Q. Since we have (a, Gbc)= l, (a,b + c)= l so that (2a,

b + c)= l or 2.

If b + c is odd, then c is odd and X is even. There are two cases to be con-

sidered.

(26)

(i) 2a + b + c= ±3?42,b + c= ±v2,c―±uv with u,v odd.

We have ≪=±(l/2)(3?r-y2), b= ±(v2―uv)= ±v(v―u＼ and so, by (25),

9M4 + 18?iV~24≪y3+ y4-4.

We shall see later that the only solutions of (26) are u ―v―±l, which will lead to

a=±l,b = 0,c=±l, a case we have already dealt with and now excluded.

(ii) 2a + b + c = ±u2,b + c= ±3v2,c=±uv with u, v odd.

We have a=±(l/2)(M2-3w2)>6=±(3w2-≪≪)=±≫(3≫-≪) and so

u4 +18≪V - 72uv3+9v4=4.

This equation is impossible, as can be seen by considering it modulo 128.

If b + c is even, then c is even and X is odd. We have to distinguish four

cases.

(iii) 2a + b + c=±3-2*m-1ui, b + c=±2v＼ where 2m＼＼c,so that c=:t2muv with uv

odd, mi^l.

We have a=±R-2zm-*u--v2),b=±2v(v-2m-1n). If we write U=2m~lu,V=v,

then we get from (25) again

(27) 9C/4+ 18t72F2-24t773+74 = l.

We shall show later that this equation has only trivialsolutions f/=0, V=±l.

We note that the equation (27) is impossible, modulo 4, for m = l; it is also

impossible modulo 16 for m = 2.

(iv) 2a + b + c=±22m~1u2,b + c=±S-2v＼ where 2m＼＼c,so that c= ±2muv with ?^y

odd, w^l.

We have ≪=±(22m"V-3y1!),6=±2≪(3t;-2"l-"IM). If we write U=2m~lu, V=v,

then
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(28) Ui + lSU2V2~72UVa + 9Vi = l.

We shall show later that this equation also has only trivialsolutions U―±l, V―0.

The equation (28) is impossible, modulo 4, for m ―1; also,it is impossible, modulo

16, for mi=:3.

(v) 2a + b+c=^±3-2u2,b + c^±22Vl-1v＼where 2m＼＼c,so that c=±2muv with uv

odd, m>l.

We have a= ±(3u2-22m-*v2),b = ±2mv(2m~lv-u). If we pat U=u, V=2m~% then

9C/4+ 18f72F2-24C/F3+ F4 = l.

This equation is identical in form with (27), except for the parity condition on the

solutions U, V. The equation is impossible for m = l, and so is also for m^3,

modulo 16.

(vi) 2a + b + c=±2us, b+ c=±3-22m-1v2, where 2m＼＼c,so that c=±2muv with ui

odd, m>l.

We have a=±(uz-3-221*-2v2),b=±2mv(3-2m-lv-u). If we put. U=u, V=2M-iv

Ui + l8U2V2~72UVs + 9Vi = l.

This equation is again identicalin form with (28), except for the parity condition

on the solutions U, V. The equation is impossible for m = l, and is also impossible

modulo 16 for m ―2.

Tf & = 1 fhpn wp havp

X- X=±{1 + l)e(a+ bA + cXz)2

= ±(2P + X-1)(A + BX + CX*)

= ±(- (AA + 6B+ 3C) + (A - 2B- 5C)X

+ {2A + B-2C)X2)

so that

(29) Q = 2A + B-2C,

(30) +1 = A-2B-5C,

(31) +X=AA+6B+SC.

From (31) it follows that a^O (mod 3) and we have to take the upper sign

―in (30) and (31). The equality (29) modulo 2 gives c=0 (mod 2),and the equality

(30) modulo 4 gives a2―b2=― 1 (mod 4), and so a is even and b odd. But then

(29) modulo 4 will yield ―2b2=2=Q (mod 4), an absurdity. Hence, there are no

solutions X in the present situation.

1.5 We thus have completed the reduction of the problem of solving the
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original Diophantine equation (4) to the study of eight Diophantine equations (11),

(12),(13),(17),(18),(26),(27) and (28), each of them being of a norm form equation

of fourth degree. Our task is now to resolve these equations.

2. Resolving the equations derived.

2.1 In the following we are going to work with the arithmetic in several

quartic number fieldsL=Q(6) generated by certain algebraic integers 6 of fourth

degree over Q. In each occurrence the defining monic polynomial f(x)eZ[x] of 6

has one and the same discriminant

Df = - 713650176 = - 212･36･239,

but, of course, the fielddiscriminant of L=Q(0) may differ. In order to determine

an integral basis of the field L, the algorithm of W. E. H. Berwick [1] will be

useful.

Since deg/(#) = 4 and Df<0, the equation f(x)=0 has two real roots and a

pair of conjugate complex roots. The resolvent cubic of f(x) has no rational roots,

so that the Galois group of L/Q is the full symmetric group of degree 4. Accord-

ing to Dirichlet'sunits theorem, the unit group of L is generated by two independent

units, so-called fundamental units. In L there are no cyclotomic units other than

±1.

We have appealed to Berwick's criterion [2] to find a pair of fundamental

units in L. In fact, if we assume that 0 be real and denote, for any element

a£L=Q(0), by a', and a", a" the real,and the pair of complex conjugates of a,

respectively, then two independent units are any two of the three units eu £2,s3

defined by

(a) e>l and least, |e'|<l, e"g"<l;

(b) |e|<l,e'>l and least, e"e"<l;

(c) |£|<1,|s'|<l,|e"l= |e"|>l and least.

Here, there is no loss in generality in assuming £is2c3= l. In this connexion one

may refer also to [6].

2.2 Proposition 1. The only solutions of the Diophantine equation

U*-72UV3 + 36V* = l(11)

in rational integers U, V are

Proof. Put

U=±l, V=0 and U=±l, V=±2.

f(x) = x4--72x + 36.
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The discriminant Df of f(x) is negative, more precisely D/ ――212-36-239. Let 0

be a real root of f(x)=0.

The quartic fieldL―Q{0) has an integral basis A ―{l,u)u w2,wB} with

o)i―0,u)2――62,Q)S= ― d'i,
6 6

and the discriminant of L is £>=-28-32-239.

We see that the units eu e2 and £3,where

£l= 24 ―0)2―2a>3,

£2=-208+364Wl + 549(y2+ 138≪>3,

£3=―3+6<wi +8cd2―4a>3>

respectively satisfy Berwick's conditions (a),(b) and (c). Hence, any two of the

three units al,s2,e3form a pair of fundamental units in L. Therefore, the pair of

units

a ―Si =a>2

/3= £i£3= 8―4<wi +3w2

is a fundamental pair.

We have

≪2=-(l-2o>0,

/32=-9(l-2≪;1) + 8(2a;2-3w3) (mod 25).

We list some congruence relations related to the powers of a and /3. Here, m, n

and h are arbitrary rational integers, h'^X. We put Q = l―2o>i.

fi4m =l-8≫to>1 + 144≫to2 (mod 2B),

.Q4TO+1= l-2(4m+l)w1 + 144mft>2 (mod 25),

^ +2_1_4(2w + 1)a>l+24(6w+l)o>2 (mod 2s),

i3*≪+≫= l-2(4≫i + 3)a>1+72(2≫j + l)<w2-48a*8 (mod 25);

(-l)≫+1i32≫e8=32B+1!2lt+1-4-32B-IfiB(2(2≫+ 3)a>g-3(2n + l)fl≫s) (mod 25);

^*≪ = 1_2ft+iWa,1 + 9.2fc^OT<U2 (mod 2h+i),

Q2hm+i = l-2(2flm + l)a)l+9-2h+2mw2 (mod 2ft+3);

(_l)**-1/9≪*≫=32*≫≫^*-1≫_3*ft≫-2.2*+8≫fi*fc-1'≫-1(2ai2-3a≫8)(mod 2h+i).

Now, if C/, VzZ satisfy the equation (11), then we must have

±{U-V6) = aapb

for some rational integers a, b. Since we have

a2mpin+1= ±(w2-2(m + n)ws) (mod 4),
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aim^pin=±(Q>l-2(m + n)a>s) (mod 4),

the exponents a, b must have the same parity.

We shall show that a=h=l (mod 2) is impossible. For this purpose we write

Qm=l-A(m)u)1 + B(my≫2-C(my,h (mod 25)

with

A(m) = 2m for all m,

and, according as m=0, 1, 2, or 3 (mod 4),

£(m)= 36m, 36(m-l), 12(3w-4), or 36(m-l)

C(w) = 0, 0, 0, or 48.

We have

a2W+I|82n+I= a2W^"e8,

so that, modulo 25,

-A-32n~iQm+n(2(2n+3)(o2-3(2n+l)fJ)3)

= 32n+i0-+ S(2n+l)A(m+n))

-32n(A(2n + l)A(m + n)+3A(m+n + i))u)l

-32n-＼8(2n+3)-9B(m+n+l))a)2

+ 32n-＼A(3(2n+ l)+2(2n + 3)A(m + n))-9C(m+n + l))o)3,

where, if m + n+1^3 (mod 4) then the coefficientof u>3on the right is congruent tc

32n-'-4(3(2n+ l)+2(2n+3)A(m + n))m0 (mod 25),

and if m+n + l=3 (mod 4) then m+n=2 (mod 4) and the coefficientof u)3on the

right is again congruent to

32"-1(12(2≫+ l)-9-48) = 32n-I-4(6w-l)^0 (mod 25).

This proves our assertion.

We thus have a=b=0 (mod 2). As before, we have, modulo 25,

±a2mJ82B=32n£mfn

-8-32n-znf2mini(2co2-3ah)

=32n(16n+l)-32nA(m+n)oji

~32n-2(16n-9B(m+n))w2

+ 32n-%24n-~9C(m+n))a)S,

where

32n-H16n-9B(m + n))^0 (mod 25),



Solution of a Diophantine Problem

provided m + n^O or 1 (mod 4).

Suppose then that m + n=0 or 1 (mod 4). A necessary condition for

±(U-V0) = a2mpn

is that

32"-2-24≪=0 (mod 2B),i.e. ≫=0 (mod 4).

Let us suppose that nj=Q and 2h＼＼n,h'^2.Write

n = 2hn', (≫',2)= 1.

We have, modulo 2ft+5,

-32h+ln'-2-2h+sn'Qm+2hn'-＼2a)3-3ws)

= 32h+ln'(2h+W + l)-32h+ln'A(m+2hn')a)1

-3!A+1"r-1(2'l+V-9fi(OT+2V)>2

+ 32ft+1"'-2(3-2A+V-9C(m+2ftw/)V3.

Since m=0 or 1 (mod 4),it follows from this that

3-2A+V = 0 (mod 2ft-6)
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which is impossible, however. Hence, the only possibilityis that ≪=0 (mod 2)

and b=0.

Now, if we have

±(U-V0) = aim=±Qm,

then we must have

m=0 or 1 (mod 4).

Suppose firstthat m=0 (mod 4) and m^O. Let 2＼A^2, be the highest power

of 2 that divides m and set m ―2hm',(mf,2) = l. Then

.G2fcra'= l-2fc+1m'a≫,+9-2A+27≫'a>2 (mod 2ft+4),

which implies ra'= 0 (mod 4), a contradiction. Therefore, the only possibilityis

w = 0, giving

U=±l, V=0.

Suppose next that m=l (mod 4) and mi=-＼.Let 2h,h^2, be the highest power

of 2 that divides m―1, and write m=2hm' + l,(m',2) = l. Then

^2/lm'+1= l-2(2'iw/ + l)w1+9-2A+2m/co2 (mod 2ft+s),

which implies m' = 0 (mod 2), a contradiction again. Thus, the only possibilityis
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ra = l, and so
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U=±l, V=±2.

This completes the proof of Proposition 1.

(12)

2.3 Proposition 2. The only solutions of the Diophantine equation

36[/4-12t/F3+F4 = l

in rational integers U, V are the trivialones,

U=0, V=±l.

Proof. Put

The discriminant of f(x) is Df=― 2I2-36-239. Let d be a real root of the equation

/(ff)=0 and put L=Q(0).

The quartic fieldL has an integral basis J = {1,a>i,tt>2,a>3}with

(Oi = d,(l)2=
1^,0,8

=
^8

and the discriminant of L is D=-28-32-239.

Let f be any root of the equation f(x) = 0. If we define the number f* by

ff*=6, then f* satisfiesthe equation /*(#)=0, where

(32) f*(x) = x4-72x+36.

Therefore, the number 0* given by 00* = 6 generates a quartic field Q(0*)= L, and

J* = {l,ft>f,w2*,ojf}with

(33) tof= 0*,<of- ―0*2,a>*- -#*3
6 6

is another integral basis of L. In fact, we have

A* = MA,

where A and A* are taken to be column vectors and M is the matrix

10 0

0 0 12

0 2 -1
M=

12 -1
0

0

1

0

0

with det M=l.

Consequently,itis immediate to find a fundamental pair of unitsin L by



Solution of a Diophantine Problem 147

making use of a result in the proof of Proposition 1. Thus, the pair

a = 2oj1―oj2,

I5=S + 6o)i―5l(f)2+io)S

is a fundamental pair of units in L.

Now, the solutions U, VeZ of the equation (12) should satisfy

for some a,b£Z.

If a + b = l (mod 2) then

aa/3*=±a)f+b=±w2 (mod 2),

which is obviously impossible.

We now suppose that a + b= 0 (mod 2) and distinguish two cases.

If a=b = l (mod 2) then, writing a ―2m + l,b―2n + l, we have

aapb= l + 2c(a,b)<ti2+2a)3 (mod 4),

where c(<z,b)=Q if m + n=0 (mod 2), and =(m + n―l)/2 if m + n = l (mod 2). This

is impossible.

Next, we consider the case of a=b=0 (mod 2). First suppose that ab^O

Write

a=2hm, b=2kn, {mn, 2)= 1.

Since a>!=0 (mod 2) we have

ao=±(l+2fc/≫fl>s) (mod 2A+1),

/36=±(l + 2*≪fl>8) (mod 2fc+1),

and so

aapb=±(l + (2hrn+2kn)(o3) (mod 2'+1)

with /=min (h, k). This implies that one at least of m, n is divisibleby 2, providec

h^k. li h=k then, since w = ≫=l (mod 2), we have

≪T=1+2c(w, w)oj2+ 2^3 (mod 4),

so that

aapb= l+2h+ic(m,n)a)2+2h+1ws (mod 2A+2).

In any case we have an imposibility,and hence we must have ab―Q.

Suppose then that a^=0, b=0. Writing as before

a = 2hm. (m.2) = l.
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we get
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aa=±(l+2hmo>3) (mod 2*-'),

whence m=0 (mod 2), a contradiction again. Similarly, the supposition a = 0,b^O

involves a contradiction.

Thus, the only possibilityis that a = b=0, which gives the trivialsolutions

of (12),

77=0 T/=+1

2.4 Proposition 3. The only solutions of the Diobhantine eauation

(13)

in rational integers U, V are

4Z74-36[/F3+9F4

U=-2.V=

=1

1 and U=2, V=l.

Proof. If we set U=2u―v, V=u, then the equation (13) becomes

(34) ui~92u*v+96u2v2~-32uv*+4vi = l.

In order to prove Proposition 3 we have to show that the equation (34) admits

the trivialsolutions u=±l, v=0 only.

Let 0 be a real root of the equation f(x)―Q, where

f(x) = xi-92xz+96x2-32x + 4

is a polynomial whose discriminant is Df=― 212-38-239. The quartic fieldL―Q{0)

has an integral basis J = {l,<w1,w2,o>3}with

6 o

and the discriminant of L is D=-2R-32-239.

Let $ be any root of the equation f(x)=0. If we define the number f* by (4―f)-

?*=2, then f* satisfies an equation /*(#) = (),where /*(#) is the polynomial specified

in (32). Therefore, the number 0* given by (4―0)6* = 2 generates a quartic field

Q(0*) = L, and A* ―{l,(of,o)ftQ)f} with (of,(of,cof as given in (33) is another integral

basis of L. We have in fact

where

J*=MA,
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M=

10 0 0

186 140 -282 3

-242 -171 375 -4

500 311 -748 8
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and det M=l.

Thus, we may easily rewrite a fundamental pair of units in Q(6*) in terms of

the new basis A : the.result is

a = -242-171tt>1 + 375ft)2-4ft>s,

£= -1462-1073a>,+2253<ua-24<w9.

Now, the solutions u,v£Z of the equation (34) should satisfy

±{u-v6)=aa^

for some a,bzZ.

The rest of the proof can be carried out just as in the proof of Proposition 2,

bv making use of the congruence relations

and

(18)

a= ― 2―3a≫i― a)2 + 4(o3

/3=2―(Oi― 3o>2

a2 = 52=--H-4ft)2-2o;3

(mod 8),

(mod 8),

(mod 8),

a^3+Ao)1+4o)2-2aj3 (mod 8).

2.5 Proposition 4. The only solutions of the Diophantine equation

/74--18/72F24-72r/Fs + 9F4 = 1

in rational integers U, V are the trivialones,

U=±l, F=0

Proof. Put

(35) f(x) = xi-l%x*+72x+$.

The discriminant of f{x) is D/=-2i2-36-239. Let 6 be a real root of the equation

/(a?)=0 and put L=Q(0).

The quartic fieldL has an integral basis A = {1,oji,o)2,<y3}where

(36) Wi -(0 + 1), o>2=―(02 + 3), a≫8= -^(<? + 3X^ + 3),

and the discriminant of L is /)=―32-239
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We appeal again to Berwick's criterion to find a pair of fundamental units in

L,

a = l ―o)＼+(o2,

(3= 1 ―(I)＼―G)o.

If U, VgZ satisfy the equation (18), then we must have as before

±(U-V6)=±(U+V-2Vo>i)=aap

for some a,bzZ.

Since a=p (mod 2) and since

am = l, a, o>2,o>＼4-ois,oti,l+<≪>3, or W2 + W3 (mod 2)

according as

w=0, 1, 2, 3, 4, 5, or 6 (mod 7),

it is necessary that a+h=0 (mod 7). So we shall suppose in the following tha

a + b=0 (mod 7)

so that

≪-6&=6tf-&=0 (mod 7).

Suppose tf-66^0 and 6^0. Put

a~6b=2h-7e, b=2kf,{ef,2)=l, h^O, k^O.

If k=0 then A^O, and if k>0 then A=0.

Note that

a7 = -l + 4ft>2 (mod 8),

a6/3= l-2(w1-w2) (mod 8).

Case of k = 0, h^O: In this case we have

aa-6≫=±(l-2h+2ew2) (mod 2h+s),

^=a^＼l-2f(a)1-a>2)) (mod 4).

It follows that

aapb=±(l-2f(a)1-a>2)) (mod 4),

and this implies that /=0 (mod 2), a contradiction.

Case of k>0, h=0: Here, we have

a≪-66=_(i_4efl)2) (mod 8),

56 = a-66(l-2*+1/(≪1-o>2)) (mod 2fc+2),
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aapb=~l + 2k^fo>i+4(e-2k-lf)o>2 (mod 8).

This implies that /=0 (mod 2) if k = l, and e=0 (mod 2) if k>l, an impossibility.

We thus have proved that we have

either a―66=0 or b―0.

In quite a similar manner we can show that we have

either 6>a―b= Q or a = Q.

using the relations

(17)

/37=-3+2(>1+g)2) (mod 8),

≪/36= 3+4(oj1+ ≪2) (mod 8).

We have, therefore, a = b=0 in any case, thus giving the trivialsolutions of (18)

U=±l, 7=0.

2.6 Proposition 5. The only solutions of the Diophantine equation

9U4-18U2V2+24UVi+V4 = l

in rational integers U, V are the trivial ones,

U=Q,V=±1.

Proof. Put

f(x) = xi + 2ix3-lSx2+9.

The discriminant of f(x) is Df― ―212-36-239. Let 6 be a real root of the equation

f(x)=0 and put L=Q(8).

The quartic field L has an integral basis J = {l,ft>1,ft>2,≪>s}where wuo)2,(d3 are

defined by (36). The field L has the discriminant £>=-32-239.

Let f be any root of the equation f(x)―0. If we define the number ?* by

f£*= 3, then |* satisfies an equation /*(#)=(), where /*(a;) is a polynomial specified

in (35). Therefore, the number 8* given by 88*=3 generates a quartic field

Q(9*) ―L, and J* = {1,(w,*,a>?,&>f} with a)*,w*,wf as given in (36), with (9* in place

of 8, is another integral basis of L; in fact, we find

where
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M=

1

9

0

7

4 -4

18 6

0

-42

__1

-75

0

-4

0

7

and det M=l.

Thus, we may use a result in the proof of Proposition 4 to find a fundamental

pair of units in L,

a = ―4―Iloj1+41oj2+4ft>3,

0= -12 - 3w, + 43≪2+ Aoh .

Now, for each solution U, VeZ of the equation (17) we have

±{V-Ud)=±{U+V--2Uo)i)=aap>

for some a,bzZ.

Since

≪= /5 (mod 2)

and since

am = l,a, oj2,l+wi + ft>2+ft>3,1+oji, 1 + q)2+(o3,or ft>3 (mod 2)

according as

m = 0, 1, 2, 3, 4, 5, or 6 (mod 7),

we must have a+b=Q (mod 7), and so

a-6b = 6a-b=0 (mod 7).

We note that

a7= -1-2(o>,-oj2) (mod 8),

≪6/3=-H-4(o>,+w2) (mod 8),

and

i97= _1_2((Wl_W2) (mod 8),

a/36=-l + 4(ri>1+w2) (mod 8).

The rest of the proof can be carried out along the same lines as in the prool

of Proposition 4.

2.7 Proposition 6. The only solutions of the Diophantine equation

(28) C/4+ 18£/2F―72£/F3+9F4 = l

in rational integers U. V are the trivialones.
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U=±l. V=0.
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Proof. Put

(37) f(x) = x' + l8x*-72x + 9.

The discriminant of f(x) is Z)/=--212-38-239. Let 0 be a real root of the equation

f(x)=0 and put L=Qifi).

An integral basis J = {l,<yi,<y2,o>3}of the quartic fieldL is given by

(38) <u,= 0,<u2= ―(02+ 3),<w8= ―(08+ 30),
6 6

and the discriminant of L is D=― 28-32-239.

As a fundamental pair of units in L we take the pair

a = 1 + 5(di―3o>2―2<y3,

/3= ―7 + 15<yi+ llo>2+4oj3.

Note that

a = l― 3wi + 3o>2―2≪j3 (mod 8),

/3= 1―wj + S^+^s (mod 8);

a2 = 3+2ft>2-2oj3 (mod 8),

/32=-l-2(y2+2ft>3 (mod 8);

and

ap=-l+2cos (mod 8).

Now, for each solution U, VeZ of the equation (28) we have

±(U-V0) = aapt>

for some a,bzZ.

Since ≪2/32= l (mod 4) and a[}=― l + 2o>2(mod 4), the only possibilityfor the

values of a,b (mod 2) is

a = b=0 (mod 2).

The rest of the proof is similar to that of Proposition 2. We thus have a = b=0

and our equation (28) has only the trivialsolutions

r/= + l. F=0.

(27)

2.8 Proposion 7. The only solutions of the Diophantine equation

9Ui + lW2V2-24UV3+ V4 = l

in rational integers U, V are the trivial ones,
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Proof. Put
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u=o, v= ±1

Ax) = x*-2ixa + 18xs + 9.

The discriminant of f{x) is Df=― 212-36-239. Let 0 be a real root of the equation

f(x)=0 and write L=Q(6).

The quartic field L has an integral basis ^ = {1, q)u oh, w3} with o>u w2, oj3 as given

by (38), and the discriminant of L is Z>=-28-32-239.

Let c be any root of the equation f(x)=Q. If we define the number c* by

^*=3, then f* satisfies an equation /*(^) = 0, where f*{x) is a polynamial specified

in (37). It follows from this that the number 0* given by ftd*= 3 defines a quartic

field Q(0*) = L, and J* = {l,<w1*,a≫2*,a>,*}with w,*,a≫2*,<o3*as given in (38), with 0* in

place of 0, is another integral basis of L. We thus find

J*=MJ

M=

1 0 0

-24 -5 48

-2 4 -1

72 12 -120

0

-2

0

5

and det M―＼.

Consequently, it is again immediate to find a fundamental pair of units in L

by making use of a result in the proof of Proposition 6. Thus

a=-257-37fl*i+474o*8-23a≫8,

/3= -461 + 17o>1+232ft>2-9ft)3

form a fundamental pair of units in our L.

a= ―1 + 3≪i +2ct)2 + a)3

B = 3 + (Oi―o)3

≪2=3+4ft>i + 4a>2+2o>3

/32=-l+4≪>1+2ft>3

(mod 8),

(mod 8);

(mod 8),

(mod 8);

and

ap = -1+2oj2 + 2oh (mod 8).

Therefore, we see that the proof can be carriedout justin the same way as in

the nroof of Proposition2. on notinerthat



Solution of a Diophantine Problem

(±l+w3)2=0 (mod 2).

2.9 Proposition 8. The only solutions of the Diophantine equation

(26) 9m4 + 18^V-24w3 + z/=4

in rational integers u, v are
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Proof. If we set u = x + y,v = x, then the equation (26) becomes

4xi + A8xsy+72x2y2 + 36xy3+9y4=4.

Hence, y must be even, and, by replacing y with 2y and then dividing by 4 the

both sides of the resulting equation, we get

xi + 2Ax*y+72x2y2 + 72xyi-＼-Z§yi= l.

Again, by the transformation U=x―6y, V=y, we have

(39) £/4-144£/2F2+ 936£/F3-1692F4 = l.

Thus, in order to prove Proposition 8 it will sufficeto show that the Diophantine

equation (39) in rationalintegers U, V has only the trivialsolutions U―±l, V=0.

Define the polynomial

/U) = ;c4- 144.Z2+936;e -1692

whose discriminant is Dj = ―212-36-239, Let 0 be a real root of the equation f(x)=Q

and put L=Q(d).

An integral basis of L is J = {1,o>i,g>2,o)3),where

(Oy
/)

<o2=―02 w3=―e3

and the discriminant of L is £>=-28-32-239.

Let ? be any root of the equation f(x)=0. It is not difficult to verify that, if

we define the number ?* by (f―6)(f*―3) = 6, then f * satisfies an equation /*O)=0,

where f*(x) is a polynomial specified in (37). It follows from this that the number

0* satisfying (0-6)(0*-3) = 6 defines a quartic field Q(0*)=L, and J* = {l,(w1*,a>2*,<w?}

with cof,a)t,(of as given in (38), with 0* in place of 6, is another integral basis of

T. We. have in fart

where

d*=MJ,
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M=
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1 0 0 0

-45 18 -6 -1

150 -114 5 1

-264 269 9 1

and det M=l.

In virtue of this relation we may easily translate the pair of fundamental

units found and used in the proof of Proposition 6 to a pair of fundamental units

in our field L. Thus, we take as a fundamental pair of units in L

a = 146 +106ft),+63a>2+ 10ft>3,

/9=-88 + 92a),+a>2.

We have

≪=2+2o>i ―ojo+ 2a)3

j3=4u)i+o)2

a2 = 3 ― 2a)i+4(O2 + 4wz

t32=-1-2(0!

(mod 8),

(mod 8);

(mod 8),

(mod 8);

and

er/9= ―3―2<ui+ 2<w2―2w8 (mod 8).

The rest of the proof can be carried out just as in the proof of Proposition 2

to conclude that the equation (39) admits only the trivialsolutions U―±l, V=0,

as required.

This concludes the proof of our theorem stated in the Introduction.

2.10 Here is a final remark. So far we have treated eight Diophantine

equations that have the form F(U, V) = l, directly or after suitably transformed,

where each of the F(U, V) is an irreducible binary quartic form in U, V with

rationalintegral coefficients.It can be easily verified that no two of these forms

F(U, V) are equivalent under the unimodular transformation of the indeterminates

U, V with integer coefficients.Thus, each of the eight equations F(U, V)~l needed

a vSeparateconsideration, as we have seen above.
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