NEW CRITERIA FOR MEROMORPHIC p-VALENT STARLIKE FUNCTIONS

By

M.K. Aouf and H.M. Hossen

Abstract. Let $B_{n}(\alpha)$ be the class of functions of the form

$$
f(z)=\frac{a_{-p}}{z^{p}}+\sum_{k=0}^{\infty} a_{k} z^{k} \quad\left(a_{-p} \neq 0, \quad p \in N=\{1,2, \cdots\}\right)
$$

which are regular in the punctured $\operatorname{disc} U^{*}=\{z: 0<|z|<1\}$ and satisfying

$$
\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}-(p+1)\right\}<-\alpha \quad\left(n \in N_{0}=\{0,1, \cdots\}, \quad|z|<1,0 \leqq \alpha<p\right),
$$

where

$$
D^{n} f(z)=\frac{a_{-p}}{z^{p}}+\sum_{m=1}^{\infty}(p+m)^{n} a_{m-1} z^{m-1}
$$

It is proved that $B_{n+1}(\alpha) \subset B_{n}(\alpha)$. Since $B_{0}(\alpha)$ is the class of meromorphically p-valent starlike functions of order α, all functions in $B_{n}(\alpha)$ are p-valent starlike. Further a property preserving integrals is considered.

1. Introduction.

Let Σ_{p} denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{a_{-p}}{z^{p}}+\sum_{k=0}^{\infty} a_{k} z^{k} \quad\left(a_{-p} \neq 0, p \in N=\{1,2, \cdots\}\right) \tag{1.1}
\end{equation*}
$$

which are regular in the punctured disc $J^{*}=\{z: 0<|z|<1\}$. Define

$$
\begin{equation*}
D^{0} f(z)=f(z) \tag{1.2}
\end{equation*}
$$

KEY WORDS-Regular, p-valent, starlike, meromorphic.
AMS (1991) Subject Classification, 30C45-30C50.
Received November 6, 1993.

$$
\begin{align*}
D^{1} f(z) & =\frac{a_{-p}}{z^{p}}+(p+1) a_{0}+(p+2) a_{1} z+(p+3) a_{2} z^{2}+\cdots \\
& =\frac{\left(z^{p+1} f(z)\right)^{\prime}}{z^{p}} \tag{1.3}\\
& D^{2} f(z)=D\left(D^{1} f(z)\right) \tag{1.4}
\end{align*}
$$

and for $n=1,2, \cdots$,

$$
\begin{align*}
D^{n} f(z)=D\left(D^{n-1} f(z)\right) & =\frac{a_{-p}}{z^{p}}+\sum_{m=1}^{\infty}(p+m)^{n} a_{m-1} z^{m-1} \\
& =\frac{\left(z^{p+1} D^{n-1} f(z)\right)^{\prime}}{z^{p}} . \tag{1.5}
\end{align*}
$$

In this paper, we shall show that a function $f(z)$ in Σ_{p}, which satisfies one of the conditions

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}-(p+1)\right\}<-\alpha, \quad(z \in U=\{z:|z|<1\}) \tag{1.6}
\end{equation*}
$$

for some $\alpha(0 \leqq \alpha<p)$ and $n \in N_{0}=\{0,1,2, \cdots\}$, is meromorphically p-valent starlike in U^{*}. More precisely, it is proved that, for the classes $B_{n}(\alpha)$ of functions in Σ_{p} satisfying (1.6).

$$
\begin{equation*}
B_{n+1}(\alpha) \subset B_{n}(\alpha) \tag{1.7}
\end{equation*}
$$

holds. Since $B_{0}(\alpha)$ equals $\Sigma_{p}^{*}(\alpha)$ (the class of meromorphically p-valent starlike functions of order α), the starlikeness of members of $B_{n}(\alpha)$ is a consequence of (1.7). Further for $c>0$, let

$$
\begin{equation*}
F(z)=\frac{c}{z^{c+p}} \int_{0}^{z} t^{c+p-1} f(t) d t \tag{1.8}
\end{equation*}
$$

It is shown that $F(z) \in B_{n}(\alpha)$ whenever $f(z) \in B_{n}(\alpha)$. Some known results of Bajpai [1], Goel and Sohi [2] and Uralegaddi and Somanatha [5] are extended. In [4] Ruscheweyh obtained the new criteria for univalent functions.

2. Properties of the class $B_{n}(\alpha)$.

In proving our main results (Theorem 1 and Theorem 2 below), we shall need the following lemma due to Jack [3].

Lemma. Let $w(z)$ be non-constant regular in $U=\{z:|z|<1\}, w(0)=0$. If $|w(z)|$ attains its maximum value on the circle $|z|=r<1$ at z_{0}, we have $z_{0} w^{\prime}\left(z_{0}\right)$ $=k w\left(z_{0}\right)$ where k is a real number, $k \geqq 1$.

ThEOREM 1. $B_{n+1}(\alpha) \subset B_{n}(\alpha)$ fer each integer $n \in N_{0}$.

Proof. Let $f(z) \in B_{n+1}(\boldsymbol{\alpha})$. Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+2} f(z)}{D^{n+1} f(z)}-(p+1)\right\}<-\alpha, \quad|z|<1 . \tag{2.1}
\end{equation*}
$$

We have to show that (2.1) implies the inequality

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}-(p+1)\right\}<-\alpha . \tag{2.2}
\end{equation*}
$$

Define a regular function $w(z)$ in U by

$$
\begin{equation*}
\frac{D^{n+1} f(z)}{D^{n} f(z)}-(p+1)=-\frac{p+(2 \alpha-p) w(z)}{1+w(z)} \tag{2.3}
\end{equation*}
$$

Clearly $w(0)=0$. Equation (2.3) may be written as

$$
\begin{equation*}
\frac{D^{n+1} f(z)}{D^{n} f(z)}=\frac{1+(2 p+1-2 \alpha) w(z)}{1+w(z)} \tag{2.4}
\end{equation*}
$$

Differentiating (2.4) logarithmically and using the identity (easy to verify)

$$
\begin{equation*}
z\left(D^{n} f(z)\right)^{\prime}=D^{n+1} f(z)-(p+1) D^{n} f(z) \tag{2.5}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\frac{D^{n+2} f(z)-(p+1)+\alpha}{D^{n+1} f(z)}=\frac{2 z w^{\prime}(z)}{(1+w(z))(1+(2 p+1-2 \alpha) w(z))}-\frac{1-w(z)}{1+w(z)} . \tag{2.6}
\end{equation*}
$$

We claim that $|w(z)|<1$ in U. For otherwise (by Jack's lemma) there exists a point z_{0} in U such that

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right) \tag{2.7}
\end{equation*}
$$

where $\left|w\left(z_{0}\right)\right|=1$ and $k \geqq 1$. From (2.6) and (2.7), we obtain

$$
\begin{equation*}
\frac{\frac{D^{n+2} f\left(z_{0}\right)}{D^{n+1} f\left(z_{0}\right)}-(p+1)+\alpha}{p-\alpha}=\frac{2 k w\left(z_{0}\right)}{\left(1+w\left(z_{0}\right)\right)\left(1+(2 p+1-2 \boldsymbol{\alpha}) w\left(z_{0}\right)\right)}-\frac{1-w\left(z_{0}\right)}{1+w\left(z_{0}\right)} . \tag{2.8}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left.\operatorname{Re}\left\{\frac{D^{n+2} f\left(z_{0}\right)}{D^{n+1} f\left(z_{0}\right)}-(p+1)+\alpha\right\} \geqq \frac{1}{p-\alpha}\right\} \geqq 2 \tag{2.9}
\end{equation*}
$$

which contradicts (2.1). Hence $|w(z)|<1$ in U and from (2.3) it follows that $f(z) \in B_{n}(\alpha)$.

Theorem 2. Let $f(z) \in \Sigma_{p}$ satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}-(p+1)\right\}<-\alpha+\frac{p-\alpha}{2(p-\alpha+c)} \quad(z \in U) \tag{2.10}
\end{equation*}
$$

for a given $n \in N_{0}$ and $c>0$. Then

$$
F(z)=\frac{c}{z^{c+p}} \int_{0}^{z} t^{c+p-1} f(t) d t
$$

belongs to $B_{n}(\boldsymbol{\alpha})$.

Proof. From the definition of $F(z)$, we have

$$
\begin{equation*}
z\left(D^{n} F(z)\right)^{\prime}=c D^{n} f(z)-(c+p) D^{n} F(z) \tag{2.11}
\end{equation*}
$$

and also

$$
\begin{equation*}
z\left(D^{n} F(z)\right)^{\prime}=D^{n+1} F(z)-(p+1) D^{n} F(z) \tag{2.12}
\end{equation*}
$$

Using (2.11) and (2.12) the condition (2.10) may be written as

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\frac{D^{n+2} F(z)}{D^{n+1} F(z)}+(c-1)}{1+(c-1) \frac{D^{n} F(z)}{D^{n+1} F(z)}}-(p+1)\right\}<-\alpha+\frac{p-\alpha}{2(p-\alpha+c)} . \tag{2.13}
\end{equation*}
$$

We have to prove that (2.13) implies the inequality

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+1} F(z)}{D^{n} F(z)}-(p+1)\right\}<-\alpha \tag{2.14}
\end{equation*}
$$

Define $w(z)$ in U by

$$
\begin{equation*}
\frac{D^{n+1} F(z)}{D^{n} F(z)}-(p+1)=-\frac{p+(2 \alpha-p) w(z)}{1+w(z)} . \tag{2.15}
\end{equation*}
$$

Clearly $w(z)$ is regular and $w(0)=0$. The equation (2.15) may be written as

$$
\begin{equation*}
\frac{D^{n+1} F(z)}{D^{n} F(z)}=\frac{1+(2 p+1-2 \alpha) w(z)}{1+w(z)} \tag{2.16}
\end{equation*}
$$

Differentiating (2.16) logarithmically and using (2.5), we obtain

$$
\begin{equation*}
\frac{D^{n+2} F(z)}{D^{n+1} F(z)}-\frac{D^{n+1} F(z)}{D^{n} F(z)}=\frac{2(p-\alpha) z w^{\prime}(z)}{(1+w(z))(1+(2 p+1-2 \alpha) w(z))} . \tag{2.17}
\end{equation*}
$$

The above equation may be written as

$$
\begin{aligned}
& \frac{D^{n+2} F(z)}{\frac{D^{n+1} F(z)}{}+(c-1)} \\
& 1+(c-1) \frac{D^{n} F(z)}{D^{n+1} F(z)}
\end{aligned}-(p+1)=\frac{D^{n+1} F(z)}{D^{n} F(z)}-(p+1) .
$$

which, by using (2.15) and (2.16), reduces to

$$
\begin{aligned}
& \frac{D^{n+2} F(z)}{D^{n+1} F(z)}+(c-1) \\
& 1+(c-1) \frac{D^{n} F(z)}{D^{n+1} F(z)}-(p+1)= \\
&-\left[\alpha+(p-\alpha) \frac{1-w(z)}{1+w(z)}\right] \\
&+\frac{2(p-\alpha) z w^{\prime}(z)}{(1+w(z))[c+(c+2(p-\alpha)) w(z)]}
\end{aligned}
$$

The remaining part of the proof is similar to that of Theorem 1.
Remarks. (i) Putting $p=1, \quad a_{-1}=1, \quad n=0$ and $\alpha=0$ in Theorem 2, we get the result of Goel and Sohi [2, Corollary 1].
(ii) For $p=1, a_{-1}=1, n=0, \alpha=0$ and $c=1$ the above theorem extends a result of Bajpai [1, Theorem 1].

Theorem 3. $f(z) \in B_{n}(\alpha)$ if and only if

$$
F(z)=\frac{1}{z^{1+p}} \int_{0}^{z} t^{p} f(t) d t \in B_{n+1}(\alpha)
$$

Proof. From the definition of $F(z)$ we have

$$
D^{n}\left(z F^{\prime}(z)\right)+(1+p) D^{n} F(z)=D^{n} f(z)
$$

That is,

$$
\begin{equation*}
z\left(D^{n} F(z)\right)^{\prime}+(1+p) D^{n} F(z)=D^{n} f(z) \tag{2.18}
\end{equation*}
$$

By using the identity (2.5), (2.18) reduces to $D^{n} f(z)=D^{n+1} F(z)$. Hence $D^{n+1} f(z)=D^{n+2} F(z)$.

Therefore

$$
\frac{D^{n+1} f(z)}{D^{n} f(z)}=\frac{D^{n+2} F(z)}{D^{n+1} F(z)}
$$

and the result follows.

Remark. Putting $p=1$ in the above theorems, we get the results obtained by Uralegaddi and Somanatha [5].

References

[1] S.K. Bajpai, A note on a class of meromorphic univalent functions, Rev. Roum. Math. Pures Appl. 22 (1977), 295-297.
[2] R. M. Goel and N.S. Sohi, On a class of meromorphic functions, Glas. Mat. 17 (1981), 19-28.
[3] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. (2) 3 (1971), 469-474.
[4] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
[5] B. A. Uralegaddi and C. Somanatha, New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc. 43 (1991), 137-140.

Department of Mathematics
Faculty of Science
University of Mansoura
Mansoura, Egypt

