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§0. Introduction.

B.I. Zil'ber made tremendous amount of important works about groups of

finite Morley rank. One of the most important works of his is the indecom-

posability theorem for groups of finte Morley rank, with which he proved that

the simplicity of a group of finite Morley rank is preserved by elementary

equivalence, and simple groups of finiteMorley rank are almost strongly minimal.

We will show with his methods that the simplicity (or irreducibility)of a

representation of a connected group or ring (not necessarily associative) over a

group of finite Morley rank is preserved by elementary equivalence. As the

simplicity of a group or a ring can be considered as the simplicity of its

representation on itself,this extends the result of Zil'ber above and also we get

the theorem for a ring of finiteMorley rank. Berlin and Lascar extended the

indecomposability theorem to the superstable case and one of their applications

was the preservation theorem for the simplicity of a superstable group ([3]).

We can also extend their works to the cases as here with some modification.

We also prove that a simple ring of finiteMorley rank is almost strongly

minimal. For a simple representation of a group or a ring, we can prove that

it is strongly minimal under. some stronger assumption and in a different

language from above. Our results yield many algebraic examples of the almost

strongly minimal structure, hence of the |L |+-categorical structure where L is

the language of the structure considering. As for a^-categorical ring, Zil'ber

made complete classificationfor associative ring of characteristiczero ([8]), and

Rose proved that finitedimensional central algebra over an algebraically closed

fieldis cih-categorical([6]). We can easily find an almost strongly minimal ring

which is not associative or central, namely a finite dimensional simple Lie

algebra for example.
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§1. Preliminaries.

We assume the readers to have some knowledge of stabilitytheory in model

theory and of stable groups. Our notations are fairly standard. Now we

explain some notions and facts we need.

A pair of sets (Q, G) is called a group with an operator domain Q if G is

a group and each element of Q acts on G as a group endomorphism. In this

case, we also call G an Q-group or (Q, G) a representation of Q over G and G

the representation space.

Let us now explain the rings we consider later. A structure {R, +, ･) is

called a ring if (R, +) is a group and for each elements a, b, c of R, aib+c)―

ab-＼-acand (b-＼-c)a=ba+ca holds. We will not assume the multiplication to be

associative. Even we do not have to assume the operation "+" to be commut-

ative neither. But the identity element of (R, +) will be denoted by 0. We

can define ideals (left, right, or both-sided) and the simplicity of a ring in a

same way as usual ones.

In this paper, we assume that Q, G and the action of Q on G are definable

(interpreted) in some structure M. If we were talking about definable subsets

or ranks of Q or G, then they are relative to Th(M). So, in every results

below, Q or G can have other structure which is not appearlant. Also, definable

will mean that definable with some parameters.

A subgroup of an i2-group G is called i2-admissible or an i2-subgroup if it

is closed under the action of Q. An /3-group G is called simple or i2-simple ii

it contains no non-triviali2-subgroups, and called definably simple if it contains

no non-trivialdefinable J2-subgroups. Note that a group G is simple if and only

if G is simple as a G-group where the action is given by taking conjugate.

Also, a ring R is simple if it is simple as an i?-group or an i?VJi?'-group where

R' is a copy of R with some adequate action which will be clear depending on

the definitionof an ideal dealing with, left, right, or both-sided.

We give brieflyimportant definitionsand facts which are due to Zil'ber.

A definable subset 5 of a group G is called indecomposable if for any

definable subgroup H of G if 5 is covered by a finitenumber of cosets of h

then S is covered by one of them. In this definition,if S is a subgroup ther

S is called connected. Note that the connectedness of a definable subset S o＼

G is preserved by elementary equivalence with respect to the parameters used

Proposition 1.1. Let Gu G2 be groups and f: G^G2 a definable homo-

morphism. If a definable subset S of Gi is indecomposable then f(S) is indecom-
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posable. □

This is a corollary to V. 1.4 in [3] which was given as an exercise. Direct

proof is also an easy exercise, but this one is an important fact for us. The

following theorem of Zil'beris a cruciallemma. A proof for it is available in

f31 or r51

Zil'ber'sIndecomposability Theorem. Let F be a family ofindecomposable

subsets of a group G of finiteMorley rank. Suppose each setin F contains

the identityelement of G. Then <UF> isconnectedand equalto X-X'x where

X=S, ■■■Sn with Si'sfrom F.

§2. Main Theorems.

We state and prove our resultsin this section.

Lemma 2.1. Let G be an Q-group and RM{G)<o). If So is an indecomposable

subset of G containing the identity element of G then the Q-subgroup of G gene-

rated by So is a definable connected subgroup of G which is algebraic over So and

some finite number of constants. In particular, if G is Q-simple then G is

connected.

Proof. Define families of sets F* (z'<<w)by induction as follows:

F0={S0} and Fi+1= {Sd: d<=Q, S^Ft＼.

Put F―＼Ji<(OFi. Then every element of F is indecomposable by Proposition 1.1

and contains the identity of G. Thus by the indecomposability theorem, <wF>=

X-X-1 with X=S1 ― Sn for some Slt - , S≫eF. Hence, <WF> is the ^-sub-

group generated by So, definable, connected and algebraic over 50 and para-

meters used to define So, Su ･･･. 5n. D

Lemma 2.2. Let G bs an Q-group. Suppose that aa is indecomposable for

each element a of G, and {xeG : Vy, z^Q(xy = xz)} is Q-admissible and not equal

to G. If RM(G)<o) and G is definably Q-simple then G is Q-simple.

Proof. Let A be an i2-subgroup of G. We show that A―{e) or A=G.

Choose o^Q and fix it. By the indecomposability theorem, the set So=

<ai2(a")"1>aeA is connected, definable and contained in A. Consider the ^-sub-

group generated by So. Note that it is a subgroup of A and definable by

Lemma 2.1. If it is not {e} then it is equal to G, and hence A=G. If it equals

to le＼then aQ―aa for each a^A. Hence, Ad{x^G: V;y,z(bQ(xv = xz)}~{e}.
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We remark that the set (xgG : V;y,z^Q(xv = xz)} is the center of G if

Q = G and xy=yxy~1, and also it becomes the (left,right) annihilator if a ring

is considered.

Now we consider an -Q-group where Q has a structure of group.

Definition. Let G be an i2-group where (Q, *) is a group. {Q, G) will

be called a representation of type A if Q acts on G as a subgroup of the auto-

morphism group of G, and a representation of type B if for each x, y(=Q and

a^G, ax'y=(ax){av) holds.

For example, a representation of a group is of type A and a representation

of a ring is of type B. There are two trivialactions of a group Q on a group

G, one of type A and one of type B. Namely, if each element of Q acts on

G as the identity map then it is of type A, and if each element of Q sends

every element of G to its identity element then it is of type B.

Theorem A. For a non-trivialrepresentation of type A or B of a connected

group, if the representation space is of finite Morley rank then if it is definably

simple then it is simple. In particular, the simplicityis preserved by elementary

equivalence.

Proof. Let (Q, G) be a representation of type A or B. We will check

that the assumption of Lemma 2.2 holds. We will denote the identity elements

of both Q and G by the same letter e.

In the case that (Q, G) is of type A, we can show that aQ is indecomposable

for each aeG in the same way as the case that Q is a connected subgroup of

G and a" is given by bab'1 (See [3] or [5]). Now we assume that (Q, G) is a

representation of type B. Then the map from Q to aQ given by x-+ax is a

group homomorphism. So aa is connected by Proposition 1.1.

Now, the set (igG: V;y, z<=Q(xy=xz)} is equal to {zgG: V^e.QU^x)}

if (0, G) is of type A and is equal to (igG: V^G^U^e)} if (Q, G) is of

type B. Note that xe=e in the latter case. It is easy to check in each case

that it is J2-subgroup and if it coincides with G then the representation is a

trivial one. Now we get the theorem by Lemma 2.2. □

As the algebras over an infinite field of characteristic zero is connected as

additive groups, we get the following:

Corollary 1. For finite dimensional representations of algebras over alge-

braically closed fields of characteristic zero, the simplicity is preserved by ele-
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mentory equivalence.

Corollary 2. For a ring R of finite Morley rank such that R-R=t(0), if

it is definably simple then it is simple.

Proof. If we are dealing with right or left ideals (this is sufficient for

many cases) then we get the theorem immediately from Theorem A and Lemma

2.1. In the case we have to deal with both-sided ideals, use Lemmas 2.1 and

Lemma 2.2 again. Note that for each x^R, xR and Rx are connected and both

contain 0, and thus xRKJRx is indecomposable. □

We cannot drop the assumption i?-i?=£(0)in Corollary 2, because the ring

(C, +, *) defined by x*y=0 for each x, j/gC where C is the set of complex

numbers is defmably simple but not simple. Note also that if a ring R such

that R-R=(0) is simple then it must be finitesince every subgroup of (R, +)

is an ideal of R. Hence we get:

Corollary 3. For rings of finite Morley rank, the simplicity is preserved

by elementary equivalence.

We thank the referee to point out that we do not need the rings to be

infinitein Corollary 3 and to give a correct example after Corollary 2.

All the results we gave so far can be proved in the superstable case instead

of finiteMorley rank case by slightlymodifying them if necessary using methods

inl[3]. A proof for the preservation of simplicity of a ring by elementary

equivalence in the superstable case will be given somewhere.

Now, we give our final theorem in this paper. Proof goes almost parallel

to that for groups ([9]).

Theorem B.

strongly minimal.

Any (definably) simple ring of finite Morley rank is almost

In particular,it is ai^-categorical.

Proof. Let D be a strongly minimal formula. Let Ho be the minimal sub-

group such that DH＼C is infinite for some coset C of D. It is easy to verify

that DC＼C is indecomposable. Choose some element a of Dr＼C and put

S0=(―a)Jr(Dr＼C). By Lemma 2.1, the ideal generated by So is definable and

algebraic over So and a finitenumber of constants. Hence it is algebraic over

D and some finitenumber of constants and, on the other hand, coincides with

the whole ring. □
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Corollary 4. Any finitedimensional simple algebra over an algebraically

closed fieldis almost strongly minimal. □

Note that for an algebra over a field,simplicity is same whether if it is

considered as an algebra or a ring.

There is another firstorder formulation of groups with an operator domain.

If Q is an operator domain of a group, Lq will denote the language obtained

by adding each element of Q as a unary function symbol to the language of

groups L. If G is a simple i2-group then it must be the prime model in the

language Lq. So we cannot talk about the preservation of simplicity and we

do not know even whether or not being definably simple is preserved by ele-

mentary extensions. But we can prove the almost strong minimality if it is

(definably)simple and has some strongly minimal formula over it. This can be

satisfiedif it is weakly categorical([9]) for example. So, as a corollary, any

finite dimensional representation of a group or a ring Q is almost strongly

minimal with respect to the language Lq. In particular,it is |Q |+-categorical.
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