HAPPLEL-RINGEL'S THEOREM ON TILTED ALGEBRAS

By

Mitsuo Hoshino

In [4], Happel-Ringel have generalized the earlier work of Brenner-Butler [3] and extensively developed the theory of tilting modules. They have also introduced the notion of tilted algebras.

Let A be an artin algebra and T_A a finitely generated right A-module. Recall that T_A is said to be a *tilting module* if it satisfies the following three conditions:

(1) proj dim $T_A \leq 1$.

(2) $\operatorname{Ext}_{A}^{1}(T_{A}, T_{A}) = 0.$

(3) There is an exact sequence $0 \rightarrow A_A \rightarrow T'_A \rightarrow T''_A \rightarrow 0$ with T'_A , T''_A direct sums of direct summands of T_A .

If A is hereditary, the endomorphism algebra $B = \text{End}(T_A)$ of a tilting module T_A is said to be a *tilted algebra*.

In [4, Theorem 7.2], it has been shown that an artin algebra B is a tilted algebra if there is a component of the Auslander-Reiten quiver of B which contains all indecomposable projective modules and a finite complete slice.

Recall that a set \mathcal{U} of indecomposable modules in a component C of the Auslander-Reiten quiver of an artin algebra is said to be a *complete slice* in C if it satisfies the following three conditions:

(i) For any indecomposable module X in C, U contains precisely one module from the orbit $\{\tau^{z}X|z \in \mathbb{Z}\}$ under τ , τ^{-1} .

(ii) If there is a chain $X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_r$ of indecomposable modules and non-zero maps with X_0 , X_r in \mathcal{U} , then all X_i belong to \mathcal{U} .

(iii) There is no oriented cycle $U_0 \rightarrow U_1 \rightarrow \cdots \rightarrow U_r \rightarrow U_0$ of irreducible maps with all U_i in \mathcal{U} .

The aim of this note is to show that the condition (iii) in the definition of a complete slice is essentially dispensable, that is, to prove the following

THEOREM. Let B be a basic artin algebra. Assume that there is a component C of the Auslander-Reiten quiver of B which contains all indecomposable projective modules, and that there is a finite set $U = \{U_1, \dots, U_n\}$ of indecom-

Received November 18, 1981. Revised June 7, 1982.

Mitsuo Hoshino

posable modules in C which satisfies the conditions (i), (ii) in the definition of a complete slice. Then B is either a tilted algebra or a local Nakayama algebra.

At the same time, we shall provide a short proof of [4, Theorem 7.2] using the characterization of tilting modules due to Bongartz [2, Theorem 2.1].

Throughout this note, all modules are finitely generated and most modules are right modules. For an artin algebra A over the center C, denote by D the duality $\operatorname{Hom}_{c}(-, I)$, where I is the injective envelope of $C/\operatorname{rad} C$ over C, and by τ (resp. τ^{-1}) DTr (resp. TrD). We refer to [1] DTr and Auslander-Reiten sequences, and shall freely use the results of [1].

Proof of the Theorem.

Consider, first, the case in which $\tau U_i \cong U_i$ for some *i*. We claim that *B* is a local Nakayama algebra. (More generally, in [5] it will be shown that a basic artin algebra *B* is a local Nakayama algebra if there is an indecomposable module *X* such that $\tau X \cong X$ and the component of the Auslander-Reiten quiver of *B* which contains *X* is not *stable*). If *B* is simple, we are done. So we assume that *B* is not simple. Let $0 \rightarrow U_i \rightarrow E \rightarrow U_i \rightarrow 0$ be the Auslander-Reiten sequence. By the condition (ii), all indecomposable summands of *E* belong to \mathcal{U} . Let U_j be a summand of *E*. Three cases are possible:

(a) U_j is projective-injective. We get $\operatorname{rad} U_j \cong U_i \cong U_j / \operatorname{soc} U_j$, hence top $(\operatorname{rad} U_j) \cong \operatorname{top} U_j$, this means that B is a local Nakayama algebra.

(b) U_j is not projective. We get a chain of irreducible maps $U_i \cong \tau U_i \rightarrow \tau U_j$ $\rightarrow U_i$, hence by the conditions (i), (ii) $\tau U_j \cong U_j$.

(c) U_j is not injective. By the dual argument of (b), we get $\tau^{-1}U_j \cong U_j$, hence $\tau U_j \cong U_j$.

We claim that for any indecomposable module X in C, either $\tau X \cong X$ or X is projective-injective. Let $X \cong U_i$ be an indecomposable module in C. Note that there is a sequence $U_i = X_0, X_1, \dots, X_r = X$ of indecomposable modules in C such that X_j 's are pairwise non-isomorphic and for each j there is an irreducible map either from X_j to X_{j+1} or from X_{j+1} to X_j . By induction on r, we show that $X \cong U_k$ for some k and either $\tau X \cong X$ or X is projective-injective. We note that this has already been shown for r=1. Suppose r>1. By induction, for each $j < r, X_j \cong U_{k_j}$ for some k_j and either $\tau X_j \cong X_j$ or X_j is projective-injective. We have only to show $\tau X_{r-1} \cong X_{r-1}$, then our assertion follows from the above arguments. Suppose, on the contrary, that X_{r-1} is projective-injective. Then either $X_r \cong rad X_{r-1}$ or $X_r \cong X_{r-1}/soc X_{r-1}$. On the other hand, rad $X_{r-1} \cong X_{r-2} \cong$ $X_{r-1}/\operatorname{soc} X_{r-1}$ since X_{r-2} can not be projective-injective. Hence $X_{r-2} \cong X_r$, a contradiction. Let P be an indecomposable projective module. By the assumption on C, P belongs to C, thus has to be projective-injective. Therefore, we get rad $P \cong P/\operatorname{soc} P$, hence top $P \cong \operatorname{top}(\operatorname{rad} P)$, this means that B is a local Nakayama algebra.

Next, assume that $\tau U_i \cong U_i$ for all *i*. Let $U = \bigoplus_{i=1}^n U_i$ and A = End(U). We claim that D(U) is a tilting module and A is hereditary. Then our assertion follows from the Theorem of Brener-Butler (see [3] and [4]).

LEMMA 1 ([4]). $Ext_B^1(U, U) = 0$.

PROOF. Since $\operatorname{Ext}_B^i(U, U)$ is a subgroup of $D \operatorname{Hom}_B(U, \tau U)$, it is sufficient to show that $\operatorname{Hom}_B(U, \tau U)=0$. Suppose, on the contrary, that $\operatorname{Hom}_B(U_i, \tau U_j)\neq 0$ for some *i*, *j*. Using the Auslander-Reiten sequence ending in U_j , we get a chain $U_i \rightarrow \tau U_j \rightarrow * \rightarrow U_j$ of indecomposable modules and non-zero maps, hence by the conditions (i), (ii) $\tau U_j \cong U_j$, which contradicts our assumption.

PROPOSITION 2. A is hereditary.

PROOF. Denote by add U the category consisting of direct sums of direct summands of U. Let P_A be a projective A-module and X_A a submodule of P_A . We claim that X_A is also projective. Note that P_A is of the form $\operatorname{Hom}_B(U, U')$ for some U' in add U. Let $f_1, \dots, f_r \in X_A$ be generators and put

$$f = (f_1 \cdots f_r) \colon \bigoplus_{i=1}^r U \longrightarrow U' \,.$$

Then $X_A \cong \text{Im}(\text{Hom}_B(U, f))$. By the condition (ii), we get a decomposition Ker $f = K \oplus K'$ such that $K \in \text{add } U$ and $\text{Hom}_B(U, K') = 0$. Taking a push-out, we get the commutative diagrm with exact rows

By the condition (ii) Im $f \in \text{add } U$, hence by Lemma 1 the sequence (b) splits. Therefore, α is a split monomorphism. Applying the functor $\text{Hom}_{\mathcal{B}}(U, -)$ on the sequence (a), we get a split exact sequence

$$0 \longrightarrow \operatorname{Hom}_{B}(U, K) \longrightarrow \operatorname{Hom}_{B}(U, \bigoplus_{i=1}^{r} U) \longrightarrow X_{A} \longrightarrow 0,$$

which completes the proof.

LEMMA 3. injdim $U \leq 1$.

PROOF. Suppose that U_i is not injective, and let $P_1 \rightarrow P_0 \rightarrow \tau^{-1} U_i \rightarrow 0$ be the minimal projective resolution. By the definition of τ , we get the exact sequence

$$0 \longrightarrow U_i \longrightarrow D \operatorname{Hom}_{\mathcal{B}}(P_1, B) \longrightarrow D \operatorname{Hom}_{\mathcal{B}}(P_0, B) \longrightarrow D \operatorname{Hom}_{\mathcal{B}}(\tau^{-1}U_i, B) \longrightarrow 0.$$

Since $D \operatorname{Hom}_{B}(P_{j}, B)$ are injective, it is sufficient to show that $\operatorname{Hom}_{B}(\tau^{-1}U_{i}, B) = 0$. Suppose, on the contrary, that $\operatorname{Hom}_{B}(\tau^{-1}U_{i}, P) \neq 0$ for some indecomposable projective module P. Note that P is of the form $\tau^{r}U_{j}$ for some j and some non-negative integer r. Using the Auslander-Reiten sequences starting from U_{i} and $\tau^{s}U_{j}$ with $1 \leq s \leq r$, we get a chain $U_{i} \rightarrow * \rightarrow \tau^{-1}U_{i} \rightarrow \tau^{r}U_{j} \rightarrow \cdots \rightarrow U_{j}$ of indecomposable modules and non-zero maps, hence by the conditions (i), (ii) $\tau^{-1}U_{i} \approx U_{i}$, which contradicts our assumption.

Note that by the assumption on C, n is greater than or equal to the number of indecomposable projective modules. The next proposition due to Bongartz [2, Theorem 2.1] together with Lemmas 1, 3 completes the proof of the Theorem.

PROPOSITION (Bongartz [2]). Let A be an artin algebra with m simple modules and $T = \bigoplus_{i=1}^{n} T_i$ a module with pairwise non-isomorphic indecomposable T_i 's. Assume proj dim $T \leq 1$ and $\operatorname{Ext}_{A}^{1}(T, T) = 0$. Then $n \leq m$, and n = m if and only if T is a tilting module.

References

- Auslander, M., Reiten, I., Representation theory of artin algebras III. Comm. algebra 3 (1975), 239-294.
- [2] Bongartz, K., Tilted algebras. Springer L.N. 903 (1981), 26-38.
- [3] Brenner, S., Butler, M.C.R., Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors. Springer L.N. 832 (1980), 103-169.
- [4] Happel, D., Ringel, C.M., Tilted algebras. To appear in Trans. A.M.S..
- [5] Hoshino, M., DTr-invariant modules. Preprint.

Institute of Mathematics University of Tsukuba Ibaraki, 305 Japan

292