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3-DIMENSIONAL ISOTROPIC SUBMANIFOLDS

OF SPHERES

By

Luc Vrancken0*5

1. Introduction

In this paper, we study 3-dimensional isotropic submanifolds in spheres.

The notion of an isotropic submanifold of an arbitrary Riemannian manifold was

firstintroduced by B. O'Neill in [O]i. The basic equations for isotropic sub-

manifolds are recalled in Section 2.

Isotropic immersions of submanifolds into spheres have been studied by,

amongst others, T. Itoh, H. Nakagawa, K. Ogiue and K. Sakamoto in [I],[N-I],

[I-O] and [S]. Here, we will prove the two following theorems.

Theorem 3.1. Let x:M->Sn be a constant isotropic immersion such that

dim(im(/i))^3. Then, one of the following holds:

(a) M is totallygeodesic in Sn,

(b) There exists a totallygeodesic S4 in Sn, such that the image of M is an

open part of a small hyper sphere of S4,

(c) There exists a totallygeodesic S7 in Sn, such that theimage of M is con-

gruent with an open part of j(RxS2(
/-q-))

in S＼ where j is definedin

Section 3.

Theorem 3.2. Let M be a 3-dimensional, minimal, isotropic submanifold in

Sn. Then, M has constant sectional curvature.

2. Preliminaries

In this section M will always denote a 3-dimensional totally real submani-

fold of Sn(l). We will denote the curvature tensor of M by R. The formulas

of Gauss and Weingarten are given by

(2.1) DxY=1xY+MX,Y) and Dx£=-ArX+^£,
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where X and Y are tangent vector fieldsand C is a normal vector fieldon M.

The space spanned by the image of h, will be called the first normal space.

The equations of Gauss, Codazzi and Ricci for a submanifold of S"(l) are given

by

(2.2) R{X, Y)Z=(Y, Z>X-<X, Z>Y+Ah<Y,z>X~AhCX,z)Y,

(2.3) (V/i)(*, Y, Z)=(lh){Y, X, Z),

(2.4) (R＼X, IX ?>=<D4C> A,-]X, r>,

for tangent (resp. normal) vector fieldsX, Y and Z (resp. C and if) and i?-1

(resp. i?) denotes the curvature tensor of Vx (resp. D).

From now on, we will also assume that M is an isotropic submanifoid, i.e.

in each point p of M, ＼＼h(v,v)＼＼is independent of the unit vector v. Hence, we

obtain a function X on M by

(2.5) X{p)=＼＼h{v,v)＼＼,

where v^UMp. If the function X is also independent of the point p, we say

that M is constant isotropic. In that case, we obtain from [oli the following

conditions for orthonormal tangent vectors X, Y, Z and W:

(2.6) <h(X,Y＼h(X,Xy>=Qt

(2.7) X2-<h(X, X), h(Y, Y)>-2<h(X, Y), h{X, Y)>=0,

(2.8) <h(Y, Z), h(X, X))+2<h(X, Y), h(X, Z)>=0,

(2.9) <h(X, Y), h(Z, wy>+<h(X, Z), h(W, Y)>+<h(X, W), h(Y, Z)}=0.

3. Proof of the theorems

Let M be a 3-dimensional, isotropic submanifold of Sn(l) and let p^M.

Then, we choose an orthonormal basis {eu e2,e3} of TPM in the following way.

Let S={(u, v)|u, v^ TVM with <u, v)=0 and ||M||= ||y||= l}. We define a function

/ on S by

/((m,v))=＼＼h(u,v)＼＼2.

Since 5 is compact, we can choose (eu e2) as a point in which the function /

attains a maximum. To conclude the choice of our basis, we choose es such

that e3 is orthogonal to both ex and ez. Since {elte2) is an absolute maximum

we obtain that

(h(eu e2),h(elfe3)>=0,

<h(eu e2),h(e2,e,)y―Q.
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Lemma 3.1. Let M be a 3-dimensional isotropicsubmanifold with dim(im(/i))

^3 and let p^M. Then there exists an orthonormal basis {e2,e2,es) of TVM

such that one of the following holds.

(3.1) (a) h(eu e1)=h(e2, e2)=h(e3, es)=Q.

h(eu e,)=h(eu e3)―h(e2,es)―0,

or

(3.2) (b)

or

(3.3) (c)

Keu e1)=h(e2> e2)=h(e3, e3)^0,

hie,, ea)=h(eu es)=h(e2, e3)―0,

h(elf e1)――h{e2, ea)=h(ea, es)=Xgl,

h(e1} e2)=2g2,

h{eu e2)=0,

Ke2, e3)―Ag3,

where gu g2, gs are unit normal vectors at the point p and /i^O.

Proof. First, we assume that dIm(im(/zp))=0. This means that p is a

totally geodesic point. Therefore, we obtain (a).

Next, we assume that dim(im(/ip))=l. Since h is symmetric, this implies

that X{p)^O. We choose an orthonormal basis of TPM as shown above. Then,

it follows from the first isotropy condition (2.6) that h(eu e2) is orthogonal to

h(eu ej. Since dim(im(/zp))=l and X(p)^O this implies that h(ely e2)―0. Similarly,

we also obtain that h(eu e3)=h(e2, e3)=0.

From the second isotropy condition it then follows that

0=2.2-<h(e1,e1),h(e2,e2)>.

Hence, since M is isotropic and X^O, we obtain by applying the Cauchy Schwartz

inequality that h(eu ex)=/z(e2, e2). Similarly, we also obtain that h{ez, e3)=h(e1, ex).

This proves (b).

Next, we assume that dim(im(/ip))=2. First, we assume that the function

/ defined above is identically zero. In this case, we obtain similar as in the

previous case that (b) holds. This is in contradiction with the assumption that

dim(im(/zp))=2. Therefore / is not identically zero. Thus, if we choose an

orthonormal basis indicated above, we obtain that ＼＼h{elte2)＼＼= p.^Q. Therefore

h(eu ex) and h(eu ez) span the first normal space at the point p. By our choice

of orthonormal basis and by the isotropy conditions, we know that h(eu es) and

h(e2> e3) are orthogonal to h(ex, ex) and h(eu e2). Thus Uex, e,)―h(e2, es)=Q.
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From the isotropy conditions and the Cauchy-Schwartz ineqality it then follows

that h(eu ei)=h(e3, e3)=h(ez, ez). By applying then again (2.7), we obtain that

ft=O, which is again a contradiction.

Finally, we assume that dim(im(/i))=3. By a similar argument as in the

previous case, we obtain that the function / is not identically zero. Therefore,

if we choose an orthonormal basis in the same way as in the previous case,

we have that ＼＼h(eue2)＼＼= pt^O. Then, we obtain from the isotropy conditions

that

Oi{eu e3),h{e2,eay>=―2<h(eu e2),h(ez,e3)>=0.

Thus we see that h(elte3) and h(e2,e3) are orthogonal to h(e1}ex),h(e2,ez) and

h(eu e2). If h{eu ej, h(e2,ez) and h(ex,ez) span the firstnormal space, we obtain

that h(elre3)=h(e2, e3)―0. From this, we obtain in the same way as in the

previous case that //=0. Therefore, we may assume that h(eu eO, h(eu e2) and

h(e2,e2) are linearly dependent. The firstisotropy condition then implies that

h(e2,e2) only has a component in the direction of h{elfex) and the second isotropy

condition then implies that fi=X and that h{ex,ei)=―h(e2, e2). These formulas

imply that there exist orthonormal normal vectors fu fz and f3 such that

h(eltei)=Xflf

h(e2,ez)=―Xf1,

Keu e2)-Xf2,

h(eu ea)=Vif≫,

h(e2,es)―v2f3,

h(e3,es)=a/1+j8/8.

Then, the isotropy conditions are equivalent with

2vl=X*-aX,

2vl=X2+aX,

PX+2vxv2=0.

From the firsttwo equations, we see that we can put v1=s'm(6)X and y2=cos(0)/L

But then it is clear from the last two equations that a=(2cos2(d)―l)X and

/3=―2sin(0) cos(6)X. But then if we pnt u3=e3> g3=f3, gi=cos(2d)f1s'm(2d)fz,

£2=cos(20)/2+sin(20)/i, Mi=cos(<9)ei―sin(^)e2 and w2=sin(<9)e1+cos(^)e2 we

obtain (c). This completes the proof of the lemma. M
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Lemma 3.2. Let M be as in Lemma 3.1.

(a) // (3.1) holds at a point of M, then Kp = l,

(b) // (3.2) holds at a point p of M, then Kp = l+Xz,

(c) // (3.3) holds at a point p of M, then the sectional curvatures K of M

at the point p satisfy 1-2^^1+^. Furthermore, Kp = l-2A2 for

every plane through e2 and Kp ―l+X2 only for the plane through ex and

es.

Proof, (a) and (b) immediately follow from (3.1) and (3.2). To prove (c),

we take an arbitrary tangent plane a at p. Then, we can find an orthonormal

basis {X, Y) of a such that X=cos001+sin0e3 and Y――cos^sin 6e1-＼-sin0e2

+cos0cos 003, where 6, 0ejK. Then

<R(X, Y)Y, Z>=cos20<i?(e1> Y)Y, e1)+2cosd smd<R(e1> Y)Y, e3>

-fsin20<i?(e3,Y)Y, es>

=(l+^2)cosV-3rsin20.

From this formula, (c) follows immediately. B

Let us now assume that M is constantisotropic,i.e. 1 is a constant on M.

Then it follows from Lemma 3.1, Lemma 3.2 and the connectedness of M that

either

(a) (3.1) holds everywhere on M, i.e. M is totally geodesic,

or

(b) (3.2) holds everywhere on M, i.e. M is totally umbilical,

or

(c) (3.3) holds everywhere on M.

Totally geodesic and totally umbilical submanifolds of spheres are well known

([C], [O]2). So the only case we stillhave to consider is the case that (3.3)

holds everywhere on M with ^0. Let p<^M. Since in that case the sectional

curvature equals 1+^2 only for the plane through ex and ez, we see that at

each point p the vector e2 is uniquely determined, namely e2 is the vector

orthogonal to the unique plane with sectional curvature 1+/L2. From this it

follows that we can choose differentiablevector fields Elt Ez, E3, defined on a

neighbourhood U of p, such that {E^q), E2(q),E3(q)} satisfies(3.3) for every

#e U. Therefore, we also obtain orthonormal normal vector fields gu g2 and g3

such that

h(El} E1)=-h(E2, E2)=h(E3> Es)=*glt

KEuEt)=Xgl,
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h(EuEs)=O,

h(E2, E3)=kgs.

Then, we have the following lemma.

Lemma 3.3. Let us assume that (3.3) holds on M. where 1 is a constant

differentfrom zero. Then k=―py, M is locallyisometric with RxS

after identification E2 is tangent to R. Further, Vx£2=0, for every tangent

vector field X and we can still choose locally £x and E3 in such a way that they

satisfy (3.3) and such that 7£a£i=7s2E8=0. Finally, (7/?.)is orthogonal to im(/z).

Proof. Let p^M. First, we will prove that (7/i)±/i. In order to do so,

it is sufficient to prove that (7/z) is orthogonal to gu g2 and gs. In order to do

so, we first extend eu e2, es to local orthonormal vector fields Uu U2, U3 such

that Ui(p)=ei and ＼Je.Ui=0, where i,j<=M. Since M is constant isotropic, we

know that

<h(Uu U^hiUu Ui)>=X＼

where zge{1, 2, 3}. By differentiating this we obtain that

(3.4) <(lh){ej, eit et), h{eu ei)>=0.

Similarly, using the previous equations, we find from (h{Ui, Uj), h{Uiy f/<)>=0,

for different / and j, that

(3.5) <ilhXek, eit e}), h{eu et)y+ <llh)(eki eif et), h(eu ej)}=0:

So, if we take i=l, j=Z and k=2, we find that

(3.6) <(7/0(e2, elt es), gl>=0.

Then (3.4) together with (3.6) implies that C7h)±gu Therefore, (3.5) becomes

<^h)(ekfeuet),h(euej)>=0,

where i,j, &e{l, 2, 3}, i^j. Since (3.3) holds at the point p this implies that

<Slh){ek, e*, e2), g2> = <(lh)(ek, eu e1), g,}=0,

<ilh){ek, e2, e2), gs> = <(Vh)(ek, e3, es),gs>=0.

Then, if we take the local orthonormal frame {Elf E2, Es} previously defined,

we find that

<h{EuE2), h(Eu E2)>=X＼

Hence by deriving this with respect to Es, we obtain that
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0=<(V/0(£s, EU Et), h{Eu Et)>+<h{VEaEu E2), h(Eu E2)>

+<h(EuVE,Ea),h(EuEty>.
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Thus (7/i)(jB3,Elf E2) is also orthogonal to g%. Similarly, starting fron

(h{E2, Ea), h(E2, ES)}=X＼ we obtain that (7/i)(£1;E2, E3) is also orthogonal t

gs. Using similar arguments, we also can prove that

<{7h)(E1} Ea, £,),£2>=<(7/i)(£2, Es, £,), ga>=0,

<(V/i)(£i,Eu £3), gs>=≪Vh)(Ez, Eu EJ, gs>=0.

Therefore in order to prove that (7/z)_L/i, it only remains to prove tha

(7/i)(£3,Es, Es) is orthogonal to g2 and that (TJh)(E1, Eu Ex) is orthogonal t<

gz. In particular, we already know that (lh＼Ek, Eu Es) is orthogonal to irn(/z

for every k. But on the other hand, we have that

(lhXEk, Eu Ez)=-h{lEkEx, E3)-h(Eu lEkE,)

= -<VBkElt E2yXga-<Eit VEkE3}Xg2

-≪^EkE1> Es>+(VEkEs, E1≫Xg1

Thus lEkE2―^, where k=l, 2, 3. But then if follows by deriving

</i(£3>Ez), h{E1, E2)>=0 and </i(£1;Ex), h{Et, Es)}=0 that also (V/i)(£3,Es, E3

is orthogonal to g2 and that (7/i)(£i, E1} Ei) is orthogonal to gs. So (7/i)±/z.

Since lEkE2―0, k~l, 2, 3, it follows that J?(£i,£2)^2=0. Hence from the

Gauss equation we find that 0=1―2k2. Thus A=^t=k=.
V z

Now, we can define two orthogonal distributions 7＼ and T2 by

7i:/)1―>T1(p)=yect{EKp)}>

Tz:p<―> T2(p)=yect{E1(p), E3(p)}.

Since V£ft£2=0, Jfe=l, 2, 3, we find that V^TxCTj, 7r1T1cT1. Since 7＼ and

T2 are orthogonal distributions, we find from the de Rham decomposition the-

orem ([K.-N]) that M is locally isometric with RxM', where Tx is tangent tc

3

R and T2 is tangent to M'. Since M' has constant Gaussian curvature -y,

/~o~

we also have that M' is locally isometric with a sphere of radius ―pr-

Finally, since M is locally isometric with a product, it is clear that we can

choose locally vector fields Ex and E3, orthogonal to 7＼, such that 1ezE1=1E2E%

=0. m

In the following; lemmas, we will comoute the normal connection on M and
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prove that M lieslinearly fullin a 7-dimensional sphere. Let p<=M and let

{Eu E2, E3} the local orthonormal basis given by Lemma 3.2. Then, if we

define local functions a and /3 on M, by

lElEz=aEi,

^esEi―^Es,

we have the following lemmas.

Lemma 3.4. // we denote the corresponding orthonormal normal vector fields

by gu g* and g3 we obtain that

7£1g1=7£ig1=7£2g8=7j?8£8=0,

VElgz = OLgz,

^Ezgz = figz,

7^i=/,

^E1g2--ags+f,

7£8£8=-j9g≫+/,

where f is a normal vector field to M which is also normal to gu g2 and gB.

Proof. First, we notice that

{lh){Ek, Eu Es)=-h{lEkEu E,)-h(Eu lEkEz)=Q.

Therefore, if we put k=l and apply the Codazzi equation, we obtain that

0=WEsgl-2hC7E3Eu E^m^.

Similarly, if we put k=3, we obtain that 7£1g"i=0. Finally, if we put k=2,

we find from the Codazzi equations that

O=X!Jz1gt-ah(E1,Es),

0=NE3g2-ph(Ez,E3).

From the Codazzi equation (7h)(E2, Eu E2)=(7h)(El, E2, E2), we then obtain

that

Similarly, we obtain from the Codazzi equation (V/i)(£2,Es, E2)=(7h)(EB, E2> E2)

that 7£25r3=0. Then, we define a normal vector field/ by

f=VLgi-
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It follows from the fact that (Vh)(E2, Eu Ex) is orthogonal to im(/i) that the

normal vector field / is orthogonal to gu g2 and g3. Then, it follows from

the Codazzi equations (V/i)(£2,Ex, £1)=(V/z)(£:1,E2, EJ and (V/i)(£2,E3, E3)=

(Vh)(E3> E2, E3) that

^E1g2=-ag3+f,

VE3gs=-Pg*+f.

This completes the proof of this lemma.

Lemma 3.5. Let p<=M and let Eu E2, E3> gl7 g2, gs and f be local vector

fields(normal or tangent) as defined above. Then

(i) </,/> = l

(ii) ljzj = -g%,

VEzf = -gs.

Proof. First, we take a local normal vector field 7) which is orthogonal

to im(/i), i.e. which is orthogonal to glf g2 and g3. Since -qis orthogonal to

im(/i),it follows from the Ricci equation that

(3.7) <R＼EuE2)gl, V}=0,

(3.8) <R＼E2, E3)gl>Vy=Q,

(3.9) <R^Ei,E1)gl,V>=^-

On the other hand, using Lemma 3.4, we find that

Combining this with (3.7) and Lemma 3.4, we find that

?*/ = -</≫/>*≪･

Similarly, we find from (3.8) and (3.9) that

vv=-</≫/>*i>

Vi,/=-</,/>^8.

From these formulas, it is immediately clear that / has constant length. But,

we have firstthat

iR^Eu E2)gl, gt>=<yElf, g2>=-<f, />.

On the other hand, by applying the Ricci identity, we obtain that
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<i^(£:, E2)gu g2>=<LAgl, AMJE, E2>

= <AgtElt AgxEzy-(AglEu Ag2E2>

― 32 12― 1― A A ― JL.

This completes the proof of thislemma. ■

From these lemmas, it is clear that (V/i) only has a component in the

direction of /. Furthermore, by applying all these lemmas, we see that the

space spanned by im(/i) and im(V/z) is parallel with respect to the normal con-

nection and has constant dimension 4. Therefore, by the reduction theorem of

J. Erbacher [E], there exists a totally geodesic S7 of Sn, such that M is

contained in S7. The following example then shows that this case is possible.

Example 3.1. Let us consider S7 as a hypersurface in C＼ Then, it is

well-known that starting from the complex structure on S＼ one can induce a

Sasakian structure 0 on S1 with structure vector field £. Then, we consider

the followingimmersion / from RxS

where

"(vl)int° s'

j(u, yu y2, yz)―{jx, ji, js, ji, js, je, ji, js)

･72==~vTsin(vTM)3;i+＼sin^^M^

73=vTsm＼vTM/:y ―3^sin^ 2 M^

^=cos(ttm)3'1

j6=-sm(VIu)y2

j＼= COS＼QrjU}y3
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where y＼+yl+yi=-^
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Then, a straightforward computation shows that C is a

normal vector field on RxS2
/V2＼

Hence the immersion is a totally real

immersion. Furthermore, if we choose coordinates in such a way that

y*=VTsm＼VTv)cos＼VTw)

/V3 ＼

it is easy to check that j is an isotropic immersion.

Theorfm 3.1. Let x:M->Sn be a constant isotropic immersion such that

dim(im(/i))^3. Then, one of the following holds:

(a) M is totallygeodesic in Sn,

(b) There existsa totallygeodesic S4 in Sn, such that the image of M is an

open part of a small hypersphere of S4,

(c) There exists a totallygeodesic S7 in Sn, such that the image of M

congruent with an open part of j(RxS2(―t=s=Y) in S7

Proof. From Lemma 3.1 and Lemma 3.2 it follows that either (3.1) or

(3.2) or (3.3) holds on M. If (3.1) or (3.2) holds on M, M is totally umbilical.

Therefore, by the classificationof totally umbilical submanifolds of spheres

([C]), we obtain (a) and (b). Therefore, we may assume that (3.3) holds on M.

Then, we know from Lemma 3.3 that M is locallyisometricwith RxS2[^-p=＼

Further from the remark following Lemma 3.5, we know that there exists a

totally geodesic S7 in Sn such that the image of M is contained in S＼ Now,

let p(EM and let U be a neighbourhood of p on which M is isometric with

KxbWs) Then, on U, we can considerthe two followingimmersions

<

X
M > S7

BxS!(7f)^s'

From Lemma 3.3, Lemma 3.4 and Lemma 3.5

apply the uniqueness theorem ([Sp], volume 4).

it then follows that we can

Thus there exists an isometry
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A of S7 such that on U

A°x=j.

Since the immersion j is an analytic immersion, it follows immediately that the

isometry A is indepenent of the point p. M

Theorem 3.2. Let M be a "^-dimensional,minimal, isotropic submanifold in

Sn(X). Then. M has:constant,sectionalcurvature.

Proof. Let />eM and let us assume that p is not a totally geodesic point.

Then, it follows by combining Lemma 3.1 with the minimality of M that

dim(im(/i)) is greater than or equal to 4. On the other hand, it follows from

the minimality of M that dim(im(/i)) is less than or equal to 5. Let us choose,

as indicated at the beginning of this section, an orthonormal basis {eu e2, e3}

of TPM. Clearly im(/i) is spanned by h(eu ex), h(elf e2), h(e2, e2), h(eu e3) and

Ke2, e3).

Since h(elf e3) is orthogonal to h(eu et) and h(e3, es), it follows from the

minimality M that h(eu es) is orthogonal to h{e2, e2). Furthermore, by the

choice of our basis, we also know that h{eu es) is orthogonal to h(elt e2).

Similarly, we also obtain that h(e2, ez) is orthogonal to h{eu ey), h(eif e2) and

h{eu et).

From (2.8) and the minimality of M, it than follows that

<h(eu e,), h(e2, et)>=―^<kh(e1, e2), h(ez, es)>

=-2<h(elf e2), h(eu e1)y-＼--^ih{e1,e2), h(et, e2)>

―0.

On the other hand, it follows from (2.7) and the Cauchy Schwartz inequality

that h{fiu e3)^0^h(eZ) e3). By the choice of our basis, this implies that h(eu e2)^0.

By combining these information, we see that there orthonormal normal

vector fields glf g2, g3, g*. and a normal vector field g5, which is orthogonal tc

gi, g*> gs and gi such that

h(eu ei)=Xgi,

h(eu e2)=ftigt,

h(eu es)―ft2g3)

h(e2, es)=[isgi,

h(et, ei)=utgi+g6.
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Then, we find from (2.7) that

2ftl=Xt-<h(e1, ed, h(e3,es)>

=2F+<h(eu ed, h(e2>e2)>

Similarly, we find that

=2X2+X2-2ft＼

2fil=3X*-2fth

The minimality and (2.7) also imply that

X*=(h(es, e3),h(es>e3)>

=2X2+2(h(e1, ei),h(e2,e2)>

=U2-Au＼.
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Thus, we may assume that(ii=―^―X.Hence, we may assume that ^2=^3=――

From (2.7) it then follows that fi4=―^-1. Finally, it follows from </i(e2,ez),

3 Z

h(ez, e2)>=/l2 that (g5, g5>=-r-X2. We can summarize this as follows. There

exists orthonormal normal vector fieldsfu f2, fs, ft and /5 such that:

Keu ei)=Xfi,

Keu ea)=―y-Xfs,

Kettet)=~fi+^-Xftt

Keu es)=―^-Xfi,

h(et, es)― V 5 ,

p

2

Ket,et)=~fx-^-Xft.

Using the Gauss equation, we find from these formulas that

R(elt e2)ez―R(e2,e3)e1=R(e3, e,)e.=0,

</?(ei, e2)ez, eC>= (R{eu es)e3,eC> ―iR{eit es)e3, e2> = l―― ^2

Hence, M has constant sectional curvatures.
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