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3-DIMENSIONAL ISOTROPIC SUBMANIFOLDS
OF SPHERES

By

Luc VRANCKEN®

1. Introduction

In this paper, we study 3-dimensional isotropic submanifolds in spheres.
The notion of an isotropic submanifold of an arbitrary Riemannian manifold was
first introduced by B. O’Neill in [0],. The basic equations for isotropic sub-
manifolds are recalled in Section 2.

Isotropic immersions of submanifolds into spheres have been studied by,
amongst others, T. Itoh, H. Nakagawa, K. Ogiue and K. Sakamoto in [I], [N-1J,
[I-O7 and [S]. Here, we will prove the two following theorems.

THEOREM 3.1. Let x: M—S™ be a constant isotropic immersion such that
dim(im(h))<3. Then, one of the following holds:

(a) M 1s totally geodesic in S™,

(b) There exists a totally geodesic S* in S™, such that the image of M is an
open part of a small hypersphere of S*,

(¢) There exists a totally geodesic S* in S™, such that the image of M is con-
gruent with an open part of ]'(RXSZ(\/—%)) in S7, where j is defined in
Section 3.

THEOREM 3.2. Let M be a 3-dimensional, minimal, isotropic submanifold in
S*®.  Then, M has constant sectional curvature.

2. Preliminaries

In this section M will always denote a 3-dimensional totally real submani-
fold of S™(1). We will denote the curvature tensor of M by K. The formulas
of Gauss and Weingarten are given by

(2.1) DxY=VxY+h(X,Y) and Dx{=—AX+V%L,
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where X and Y are tangent vector fields and { is a normal vector field on M.
The space spanned by the image of A, will be called the first normal space.
The equations of Gauss, Codazzi and Ricci for a submanifold of S*(1) are given
by :

(2.2) R(X, Y)Z=Y, Z)X—X, Z)Y+ Arw.s X—Ancx.n Y,
(2.3) (Va)X, Y, Z)=Nh)Y, X, Z),
2.4) RHX, Y, pp=<[A, 4,1X, 7>,

for tangent (resp. normal) vector fields X, Y and Z (resp. ¢ and y) and R+
(resp. R) denotes the curvature tensor of V* (resp. D).

From now on, we will also assume that M is an isotropic submanifold, i.e.
in each point p of M, ||A(v, v)| is independent of the unit vector v. Hence, we
obtain a function 2 on M by

(2.5) Ap)=llhv, ),

where v&€UM,. If the function 2 is also independent of the point p, we say
that M is constant isotropic. In that case, we obtain from [(Q], the following
conditions for orthonormal tangent vectors X, Y, Z and W :

(2.6) <h(X; Y)> h(X’ /Y)>:O’
2.7) A2—<h(X, X), h(Y, YH—=2Ch(X, Y), h(X, Y))=0,
(2.8) (Y, Z), h(X, X)»+2{h(X,Y), h(X, Z)>=0,

2.9) (WX, Y), h(Z, W)X, Z), h(W, Y))+<(X, W), k(Y , Z),=0.

3. Proof of the theorems

Let M be a 3-dimensional, isotropic submanifold of S™(1) and let p=M.
Then, we choose an orthonormal basis {e;, e,, e;} of T,M in the following way.
Let S={(u, v)|u, ve T,M with <{u, v>=0and |Ju|=|jv]|=1}. We define a function
fon S by

F((w, v)=1hu, v)|*.

Since S is compact, we can choose (e, ¢,) as a point in which the function f
attains a maximum. To conclude the choice of our basis, we choose e; such
that e; is orthogonal to both e; and e,. Since (e, ¢,) is an absolute maximum
we obtain that

{hles, e2), h(ey, e))>=0,

<h(ey, e,), he,, e,)>=0.
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LEMMA 3.1. Let M be a 3-dimensional isotropic submanifold with dim(im(h))
=3 and let p&M. Then there exists an orthonormal basis {es, es, es} of T M
such that one of the following holds.

3.1 (a) h(ey, e;)=nh(e,, e;)="h(es, e5)=0.
h(es, e;)=h(e,, e;)=h(e,, ;)=0,

or
(3.2) (b) h(ey, e,)=h(e,, e;)=h(es, e;)#0,
hiey, es)=h(ey, es)=h(es, e5)=0,
or
3.3) (c) ey, e,)=—h(es, e;)=h(e;, es)=2Ag,,
h(es, e:)=2g:,
hiey, e;)=0,

h(es, es)=4g;,

where g, g., g; are unit normal vectors at the point p and 2+0.

PRrOOF. First, we assume that dim(im(h,))=0. This means that p is a
totally geodesic point. Therefore, we obtain (a).

Next, we assume that dim(im(h,))=1. Since i is symmetric, this implies
that A(p)#0. We choose an orthonormal basis of T ,M as shown above. Then,
it follows from the first isotropy condition (2.6) that h(e,, ¢,) is orthogonal to
h(ey, e;). Since dim(im(h,))=1 and A(p)=0 this implies that h(e,, ¢;)=0. Similarly,
we alsc obtain that A(e;, e;)=h(e,, e;)=0.

From the second isotropy condition it then follows that

0=2—<h(ey, 1), h(es, e2)) .

Hence, since M is isotropic and 1s0, we obtain by applying the Cauchy Schwartz
inequality that i(e,, e;)=h(e,, e,). Similarly, we also obtain that h(es, e;)=h(e;, e,).
This proves (b).

Next, we assume that dim(im(h,))=2. First, we assume that the function
f defined above is identically zero. In this case, we obtain similar as in the
previous case that (b) holds. This is in contradiction with the assumption that
dim(im(hp))=2. Therefore f is not identically zero. Thus, if we choose an
orthonormal basis indicated above, we obtain that [|A(e;, ¢,)|=p+#0. Therefore
h{ey, e,) and h(e,, ¢,) span the first normal space at the point p. By our choice
of orthonormal basis and by the isotropy conditions, we know that h(e,, ¢;) and
h(e,, e;) are orthogonal to h(e;, e;) and Aley, e,). Thus Ale,, e;)=h(e,, e;)=0.
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From the isotropy conditions and the Cauchy-Schwartz ineqality it then follows
that h(e,, e;)=h(e;, es)=h(e,, e,). By applying then again (2.7), we obtain that
©=0, which is again a contradiction.

Finally, we assume that dim(im(h))=3. By a similar argument as in the
previous case, we obtain that the function f is not identically zero. Therefore,
if we choose an orthonormal basis in the same way as in the previous case,
we have that ||h(e;, e,)||=p+0. Then, we obtain from the isotropy conditions
that

<h(ey, e3), h(e,, eo)>=—2<N(e,, e5), h(es, €5)>=0.

Thus we see that h(e,, ¢,) and h(e,, e;) are orthogonal to h(e,, e;), h(es, e.) and
hiey, e,). If h(ey, e.), h(e,, ¢,) and h(e,, e,) span the first normal space, we obtain
that h(e,, es)=h(e,, ¢;)==0. From this, we obtain in the same way as in the
previous case that g=0. Therefore, we may assume that h(ei, e,), Ale;, e.) and
h(es, e,) are linearly dependent. The first isotropy condition then implies that
h(e,, e,) only has a component in the direction of h(e,, ¢;) and the second isotropy
condition then implies that p=24 and that A(e, e;)=—h(e,, ¢,). These formulas
imply that there exist orthonormal normal vectors fj, f, and f; such that

ey, e)=4f1,

hes, ex)=—4f1,

hes, es)=4fy,

ey, es)=w1 1,

ez, e)=v2 fs,

h(es, es)=af,+Bf..

Then, the isotropy conditions are equivalent with

20i=A—al,
2v3=A+al,
BA+-2v,0,=0.

From the first two equations, we see that we can put y;=sin(#)4 and v,=cos(§)A.
But then it is clear from the last two equations that a=(2cos*(§)—1)4 and
B=—2sin(f) cos(€)2. But then if we put u;=e;, g:=/;, g1=c0s(26)f,—sin(20)f,,
g.=c05(20)f,+sin(20)f,, u,=cos(f)e,—sin(f)e, and wu,=sin(f)e,+cos(fle, we
obtain (c¢). This completes the proof of the lemma. [ ]
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LEMMA 3.2. Let M be as in Lemma 3.1.

(a) If (3.1) holds at a point of M, then K,=1,

(b) If (3.2) holds at a pownt p of M, then K,=1-+2,

(¢) If (3.3) holds at a point p of M, then the sectional curvatures K of M
at the point p satisfy 1—-2P=<K=1+2* Furthermore, K,=1—22 for
every plane through e, and K,=1+42* only for the plane through e, and

es.

PROOF. (a) and (b) immediately follow from (3.1) and (3.2). To prove (c),
we take an arbitrary tangent plane ¢ at p. Then, we can find an orthonormal
basis {X, Y} of ¢ such that X=cos fe,+sinfe; and Y =—cos¢sin fe,+sinde,
+cos@cos fe;, where 6, g=R. Then

(R(X, Y)Y, X>=co0s?0{R(e,, Y)Y, e;>-+2cos @ sin 0{R(e,, Y)Y, es>
+sin?0<{R(e,, Y)Y, ey>
=(14+A*)cos’¢—3A%sin’p .

From this formula, (c) follows immediately. =

Let us now assume that M is constant isotropic, i.e. 4 is a constant on M.
Then it follows from Lemma 3.1, Lemma 3.2 and the connectedness of M that
either

(a) (3.1) holds everywhere on M, i.e. M is totally geodesic,
or

(b) (3.2) holds everywhere on M, i.e. M is totally umbilical,
or

(¢) (3.3) holds everywhere on M.

Totally geodesic and totally umbilical submanifolds of spheres are well known
([C], [01,). So the only case we still have to consider is the case that (3.3)
holds everywhere on M with 1+£0. Let p=M. Since in that case the sectional
curvature equals 144* only for the plane through e, and e;, we see that at
each point p the vector e, is uniquely determined, namely e, is the vector
orthogonal to the unique plane with sectional curvature 1+4*. From this it
follows that we can choose differentiable vector fields E,, E,, E;, defined on a
neighbourhood U of p, such that {E(q), E.(q), Eq)} satisfies (3.3) for every
g=U. Therefore, we also obtain orthonormal normal vector fields g,, g, and g,
such that
E,, E))=—E,, E))=hE,, E)=12g:,

h(E;, Ez)'-:'zgz »
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h(Ely ES)ZO »
h(Es;, Ey)=4g;.

Then, we have the following lemma.

LEMMA 3.3. Let us assume that (3.3) holds on M, where 2 is a constant
different from zero. Then 2:\/—1»2:, M is locally isometric with RX SZ(%) and

after identification E, is tangent to R. Further, VxE,=0, for every tangent
vector field X and we can still choose locally E, and E; in such a way that they
satisfy (3.3) and such that Vg,E:=Vg,E,=0. Finally, (Vh) is orthogonal to im(h).

Proor. Let p=M. First, we will prove that (VA)LAh. In order to do so,
it is sufficient to prove that (VA) is orthogonal to g;, g, and g,. In order to do
so, we first extend e, ¢,, ¢, to local orthonormal vector fields Uy, U, U such
that U;(p)=e; and verizo, where 7, j&M. Since M is constant isotropic, we
know that

Ui, Uy), KU, Uy=2,

where /< {1, 2, 3}. By differentiating this we obtain that
(3.4) {(Nh)ey, e, €;), h(es, ¢;)y=0.

Similarly, using the previous equations, we find from <k(U;, U;), h(U;, Uy)>=0,
for different 7 and 7, that

(3.5) (Th) ey, e, ;), h(e;, e)>+<{(Th) ey, e, ), h(es, e;>=0.

So, if we take /=1, ;=3 and k=2, we find that

(3.6) {(Vh)(e,, ey, e5), g1>=0.

Then (3.4) together with (3.6) implies that (VhA) 1 g,. Therefore, (3.5) becomes

{(Nh)(er, e, e:), hle;, e;)>=0,

where 7, j, k{1, 2, 3}, i#J. Since (3.3) holds at the point p this implies that
{(Vh)ex, ez, €s), gor=L{(Vh)(ex, e, 1), &2>=0,
{(Vh)er, €2, 2), 8> ={(Vh)(er, s, ¢5), g»=0.

Then, if we take the local orthonormal frame {E,, E,, E;} previously defined,
we find that

<h(E1y EZ)’ h(Ely E2)>:22 .

Hence by deriving this with respect to F;, we obtain that
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0={(VAXEs, Ey, E2), W(Es, B4V Es, Ea), W(Ess Eo))
+<h(Ey, Vi,Es), MEs, Eb)) .

Thus (VAXE,, Ei, E,) is also orthogonal to g,. Similarly, starting from
{WE,, Ey), h(E,, E;)y=2*, we obtain that (VA E,, E., E;) is also orthogonal to
g;. Using similar arguments, we also can prove that

(VhXE,, Eq, E3), 8>={(hXEs, E;, Es), g0=0,
{(Vh)E,, Ey, Es), g3>={(Vh)Es, E., E)), g>=0.

Therefore in order to prove that (VAh)Lh, it only remains to prove that
(VhY(E,, E;, E;) is orthogonal to g, and that (VA)E,, E,, E;) is orthogonal to
g;. In particular, we already know that (VAXE,, E., E,) is orthogonal to im(h)
for every k. But on the other hand, we have that

(VRXE+, Ei, EQ)=—h(g,Ey, Ed)—hEy, Vg, Es)
:‘—<VEkE1, E»2gs—<Es, VEkE3>Xg2
*(<VEkE1; E3>+<VEkE3: E)Ag:

Thus Vg,E.,=0, where k=1,2,3. But then if follows by deriving

WEs, Es), h(Ey, Eo)»=0 and {W(E;, Ey), h(E,, E)»>=0 that also (VAXE., Es, Es)

is orthogonal to g, and that (VAXE, E,, E,) is orthogonal to gs. So (Vh)Lh.
Since Vg, E,=0, k=1, 2, 3, it follows that R(E,, Eo)E.=0. Hence from the

Gauss equation we find that 0=1—24°. Thus 2:%.
Now, we can define two orthogonal distributions T; and T, by
T,: pr—> Ti(p)=vect{E¥p)},
To: p—> To(p)=vect{ EX(p), Es(p)} .

Since Vg, E.=0, k=1, 2, 3, we find that V7, T,CT;, Vr,T.CT1. Since T'; and
T, are orthogonal distributions, we find from the de Rham decomposition the-
orem ([K-N7J) that M is locally isometric with RxM', where T, is tangent to

. . . 3
R and T, is tangent to M’. Since M’ has constant Gaussian curvature 5

we also have that M’ is locally isometric with a sphere of radius %//-g—

Finally, since M is locally isometric with a product, it is clear that we can
choose locally vector fields E, and E,, orthogonal to T,, such that Vg, E,=Vg,E;
=0. -]

In the following lemmas, we will compute the normal connection on M and
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prove that M lies linearly full in a 7-dimensional sphere. Let p=M and let
{E,, E,, E;} the local orthonormal basis given by Lemma 3.2. Then, if we
define local functions « and 8 on M, by

Ve, Es=akE,,
Ve, E1=BE;,
we have the following lemmas.
LEMMA 3.4. If we denote the corresponding orthonormal normal vector fields
by g1, &, and gs; we obtain that
Vi, 8:=VE,8:=V%,8:=V4,8,=0,
Vi gs=ags,
VE8:=B4gs,
Vi,81=/,
Vi g=—ags+f,
Vi gs=—Bg+f,

where [ is a normal vector field to M which is also normal to g,, g, and g,.

PRrROOF. First, we notice that
(VRXEw, Eiy, E)=—h(Vg,E,, Es)—h(E,, Vg, E;)=0.
Therefore, if we put k=1 and apply the Codazzi equation, we obtain that
0=2V%,8.—2h(Vg,E,, E\)=2V%,8:.

Similarly, if we put £=3, we obtain that Vt,8:=0. Finally, if we put ~=2,
we find from the Codazzi equations that

OzN,élga—ah(En Ez) »
OZZVEagz—ﬁh(Ez; Ea) .

From the Codazzi equation (VhA)E,, E,, E;)=(Vh)E', E,, E,), we then obtain
that
AN, g, =—AEg,g,=0.

Similarly, we obtain from the Codazzi equation (VA)E,, E;, E))=(Vh)E,, E,, E,)
that Vz,g,=0. Then, we define a normal vector field f by

F=VEg:.
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It follows from the fact that (VA)E., Ei, E,) is orthogonal to im(h) that the
normal vector field f is orthogonal to g;, g, and gs;. Then, it follows from
the Codazzi equations (VA)XE., E., E.)=(h)E,, E;, E\) and (Nh)E:, E;, E;)=
(VhXE,, E,, E;) that

Vi, 8.=—agst+f,

Vi, 8:=—Bg:+f .

This completes the proof of this lemma.

LEMMA 3.5. Let pcM and let E,, E,, E;, g1, 82, s and [ be local vector
fields (normal or tangent) as defined above. Then

(i) <f, fr=1
(i) Vg f=—gs,
vigf:_g3'

ProoF. First, we take a local normal vector field  which is orthogonal
to im(h), i.e. which is orthogonal to g,, g, and g,. Since 7 is orthogonal to
im(h), it follows from the Ricci equation that

(3.7) <RL<EU EZ)gb 72>:O)
(3.8) (R(E,, Eg)gr, 7=0,
(39) <R‘L(E2y El)gi’ 7]>:0-

On the other hand, using Lemma 3.4, we find that
R(E\, E2)g:1=VEVt,8:— Vi VE 81— Vi, 181

=Vg.f.
Combining this with (3.7) and Lemma 3.4, we find that

Ve f=—Lf, [78:.
Similarly, we find from (3.8) and (3.9) that

BS=—Xf, 1281,
Vi S =—Lf5 [78s.

From these formulas, it is immediately clear that f has constant length. But,
we have first that

(R*(E:, E2g1, 80=%,f, 8>=—<f, >.
On the other hand, by applying the Ricci identity, we obtain that
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<RL(E1) Eﬁ)gb g2>:<[Agly AgZ:]E) E2>
:<Ag2Elr Ag1E2>_<Ag1E1: Ag2E2>
—A2=2=—1.

This completes the proof of this lemma. B

From these lemmas, it is clear that (Vi) only has a component in the
direction of f. Furthermore, by applying all these lemmas, we see that the
space spanned by im(h) and im(Vh) is parallel with respect to the normal con-
nection and has constant dimension 4. Therefore, by the reduction theorem of

J. Erbacher [E], there exists a totally geodesic S of S”, such that M is
contained in S?. The following example then shows that this case is possible.

ExaMPLE 3.1. Let us consider S* as a hypersurface in C* Then, it is
well-known that starting from the complex structure on S7, one can induce a
Sasakian structure ¢ on S? with structure vector field {. Then, we consider

the following immersion j from RX SK%) into S7:

Iy Y15 Yoo Y)=1s Jos T35 Ja J5s Jes J1s Js)s
where

+—;)—cos(\/—2_u)

V2 'n( ! )y1+ sin(+/ 2 u)

VA e W)

Jg_\/gsin(% )yl ‘/Zsin(«/7u)
=g cos( )y Y costv Zw)
-——COS(Lu

Is V2r)
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where yi+4y3+ y%:—?}—. Then, a straightforward computation shows that { isa
V2

normal vector field on RXSZ<\/3) Hence the immersion is a totally real

immersion. Furthermore, if we choose coordinates in such a way that

V1 ://zcos(\/3 )cos(\/3 )

V2 v
y2=$ sin(%%v cos(:—//%w
V2 . (V3
)]

it is easy to check that j is an isotropic immersion.

THEORFM 3.1. Let x: M—S™ be a constant isotropic immersion such that
dim(im(h))<3. Then, one of the following holds:
(a) M is totally geodesic in S*,
(b) There exists a totally geodesic S* in S™, such that the image of M is an
open part of a small hypersphere of S*,

(¢) There exists a totally geodesic S in S™, such that the image of M

congruent with an open part of ](RXS%&% ) in S

PrROOF. From Lemma 3.1 and Lemma 3.2 it follows that either (3.1) or
(3.2) or (3.3) holds on M. 1If (3.1) or (3.2) holds on M, M is totally umbilical.
Therefore, by the classification of totally umbilical submanifolds of spheres
([C1), we obtain (a) and (b). Therefore, we may assume that (3.3) holds on M.
V2
V37

Further from the remark following Lemma 3.5, we know that there exists a

Then, we know from Lemma 3.3 that M is locally isometric with R><52(

totally geodesic S” in S™ such that the image of M is contained in S’. Now,
let pM and let U be a neighbourhood of p on which M is isometric with

V2

RXS’(V§~). Then, on U, we can consider the two following immersions
x
M——s 5
V2
2f Y &~ 7

From Lemma 3.3, Lemma 3.4 and Lemma 3.5, it then follows that we can
apply the uniqueness theorem ([Sp], volume 4). Thus there exists an isometry



290 Luc VRANCKEN

A of S such that on U
Aex=j.

Since the immersion j is an analytic immersion, it follows immediately that the
isometry A is indepenent of the point p. ]

THEOREM 3.2. Let M be a 3-dimensional, minimal, isotropic submanifold in
S™(1). Then, M has constant sectional curvature.

PROOF. Let p&M and let us assume that p is not a totally geodesic point.
Then, it follows by combining Lemma 3.1 with the minimality of M that
dim(im(h)) is greater than or equal to 4. On the other hand, it follows from
the minimality of A/ that dim(im(h)) is less than or equal to 5. Let us choose,
as indicated at the beginning of this section, an orthonormal basis {ei, e, ¢}
of T,M. Clearly im(h) is spanned by h(e, e,), h(ey, e5), h(es, ¢,), h(e, ¢;) and
h(e,, e,).

Since h(e,, ¢;) is orthogonal to hle;, e;) and h(e,, e,), it follows from the
minimality M that h(e;, ¢;) is orthogonal to h(e;, e;). Furthermore, by the
choice of our basis, we also know that h(e;, ¢;) is orthogonal to h(e,, e,).
Similarly, we also obtain that h(e,, e,) is orthogonal to ey, e,), h(es, ¢,) and
h{e,, e,).

From (2.8) and the minimality of M, it than follows that

{hey, es), h(es, 93)>:—%<h(21: e:), hies, e3)>

=3 Ches, @), hiey, e +5Chles, ex), hes, o))
=0.

On the other hand, it follows from (2.7) and the Cauchy Schwartz inequality
that A(e,, e;)#=0+#h(e,, ¢;). By the choice of our basis, this implies that A(e,, ¢,)+0.
By combining these information, we see that there orthonormal normal
vector fields gi, g, g5, g« and a normal vector field g;, which is orthogonal to
g1, 82, 8s and g, such that
h(ey, en)=2g1,

h(ey, es)=p1g,,
hey, es)= g5,
h(ez, e5)= 18,
h(es, es)=prag1+gs.-
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Then, we find from (2.7) that
2#§:lz_<h(ely el): h(e:b 63)>
:222+<h(el) €1>, h(eh 22)>

=224+ —244.
Similarly, we find that
2p5=32"—2u%.

The minimality and (2.7) also imply that
2=(h(e,, ey), h{es, e5))
=22°+2<h(e,, 1), h(e,, ¢3)>

=425 —4 45,
Thus, we may assume that ,u;—-%l. Hence, we may assume that p,= p3=%.

From (2.7) it then follows that y4=—%2. Finally, it follows from <A(e,, e,),
h(es, e;)y=2A% that {gs, g5>=7i—12. We can summarize this as follows. There
exists orthonormal normal vector fields f,, f:, fs, f: and f; such that:

hiey, er)=4f1,
h(elx eg):‘\/T_S“Zfz >

-
hew, e)=—5f1+ Y2211,

e, en=" 211,

hes, e0=":22s,
h{es, @3):_‘,22—][1—%2](3-

Using the Gauss equation, we find from these formulas that

R(es, er)es=R(es, ey)e,=R(e;, e;)e,=0,
5
{R(ey, es)es, erp=<R(e,, es)es, e.y=<{R(e,, ¢;)e,, e2>=1——4—i2.

Hence, M has constant sectional curvatures. B
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