ON D-PARACOMRACT σ -SPACES

By

Takemi MIZOKAMI

1. Introduction.

Throughout this paper, all spaces are T_1 topological spaces and mappings are continuous and onto. The letter N denotes the set of natural numbers.

By a well-known theorem of Dowker, a Hausdorff space X is paracompact if and only if for every open cover \mathcal{A} of X there exists an \mathcal{A} -mapping of X onto a metrizable space. On the other hand, developable spaces are a nice generalization of metrizable spaces. Pareek [P] called a space X is *d*-paracompact if for every open cover \mathcal{A} . there exists an \mathcal{A} -mapping of X onto a developable space. Another nice generalization is σ -spaces in the sense of [O]. Especially, paracompact σ -spaces have important features in generalized metric spaces and dimension theories. We notice that the following properties of the class \mathcal{C} of paracompact σ -spaces: (1) \mathcal{C} is closed under any countable product and any subspace. (2) \mathcal{C} is closed under any image under perfect or closed mappings. (3) \mathcal{C} is closed under the domination.

In this paper, we call a space X is a σ -space if X has a σ -locally finite "closed" network, which is slightly different from the original definition in [O]. For regular spaces, both coincide with each other. The purpose of this paper is to study the class of d-paracompact σ -spaces, comparing with that of paracompact σ -spaces. We show that this class behaves well as to the subspaces and perfect images, but not as to the others. We show that d-paracompact spaces and s-paracompact spaces do not coincide, answering the question of Brandenburg [B_1 , Question 2].

2. D-paracompact σ -spaces.

DEFINITION 1. A space X is called *d*-paracompact if for each open cover \mathcal{U} of X, ther exists a \mathcal{U} -mapping f X onto a developable space Y, where a \mathcal{U} -mapping f means that there exists an open cover $\mathcal{C}V$ of Y such that $f^{-1}(\mathcal{C}V) < \mathcal{U}$.

Received December 18, 1989. Revised March 4, 1991.

DEFINITION 2. A family \mathcal{U} of open subsets of a space X is called *dissectable* in X [B₁], if there exists a function $D: \mathcal{U} \times N \rightarrow \{\text{closed subsets of } X\}$, called the *dissection of* \mathcal{U} in X, satisfying the following:

(1)
$$U = \bigcup \{ D(U, n) : n \in N \}$$
 for every $U \in U$.

(2) For every n∈N, {D(U, n): U∈U} is a closure-preserving family of closed subsets of X and if p∈∪{D(U, n): U∈U}, then

$$\cap \{U \in \mathcal{U}: p \in D(U, n)\}$$

is a neighborhood of p in X.

DEFINITION 3. A space X is called *d-expandable* $[B_2]$ if for each discrete family \mathcal{F} of closed subsets and for each family $\mathcal{U} = \{U(F) : F \in \mathcal{F}\}$ of open subsets of X such that $F \subset U(F)$ and $U(F) \cap F' = \emptyset$ if $F \neq F'$, $F, F' \in \mathcal{F}$, there exists a dissectable family $\{V(F) : F \in \mathcal{F}\}$ of X such that $F \subset V(F) \subset U(F)$ for every $F \in \mathcal{F}$.

We call the pair $\langle \mathcal{F}, \mathcal{U} \rangle$ a *d-pair* of X.

DEFINITION 4. A space X is called *semistratifiable* if there exists a function $S: \mathcal{T} \times N \rightarrow \{\text{closed subsets of } X\}$, where \mathcal{T} is the topology of X, such that:

(1) $U = \bigcup \{S[U, n] : n \in N\}$ for every $U \in \mathcal{I}$.

(2) If $U, V \in \mathcal{I}$ and $U \subset V$, then $S[U, n] \subset S[V, n]$ for every n.

The function S is called the semistratification of X.

As seen easily, every σ -space is semistratifiable. If we use the argument in [SN], then it is obvious that a space X is a σ -space if and only if X has a σ -discrete closed network if and only if X has a σ -closure-preserving closed network. We list up the facts as to d-paracompact spaces and developable spaces, which are known already and used later in our proofs.

FACT 1 ([B₁]). A space X is developable if and only if X has a σ -dissectable base.

2 ([G]). A space X is developable if and only if there exists a sequence $\{\mathcal{U}_n : n \in N\}$ of open covers of X such that if $x \in U$ for a point x of X and an open subset U of X, then there exists $n \in N$ such that ord $(x, \mathcal{U}_n)=1$ and $S(x, \mathcal{U}_n)\subset U$.

3 ([B₂, Theorem 1]). A space X is d-paracompact if and only if X is θ -refinable and d-expandable if and only if every open cover of X has a σ -dis-

sectable refinement.

4. Let X be a semistratifiable space and \mathcal{F} a closure-preserving family of closed subsets of X. Then there exists a σ -discrete closed cover \mathcal{H} of X such that $H \cap F \neq \emptyset$, $H \in \mathcal{H}$ and $F \in \mathcal{F}$ imply $H \subset F$. (The construction of \mathcal{H} is essentially stated in [SN].)

5 ([B₁, Theorem 2.3]). Every family of open subsets of a developable space is dissectable in it.

Before stating Lemma 1, we give definitions of (P_i) , $i=1, \dots, 5$. For a space X, let (P_i) $(i=1, \dots, 5)$ be the following statements:

 (P_1) X is d-paracompact.

 (P_2) For each *d*-pair $\langle \mathcal{F}, \mathcal{U} \rangle$ of *X*, there exists a \mathcal{CV} -mapping of *X* onto a developable space, where

$$\mathcal{V} = \mathcal{U} \cup \{X - \cup \mathcal{F}\}.$$

 (P_3) For each *d*-pair $\langle \mathcal{F}, \mathcal{U} \rangle$ of families of *X*, there exists a family $\{V(F) : F \in \mathcal{F}\}$ of open subsets of *X* and a sequence $\{\mathcal{U}_n : u \in N\}$ of open covers of *X* such that for each $F \in \mathcal{F}$, $F \subset V(F) \subset U(F)$ and such that if $p \in V(F)$, then there exists $n \in N$ such that ord $(p, \mathcal{U}_n) = 1$ and $S(p, \mathcal{U}_n) \subset V(F)$.

 (P_4) For each *d*-pair $\langle \mathcal{F}, \mathcal{U} \rangle$ of families of *X*, there exists a pair collection $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in N\}$ of *X* and a family $\{V(F) : F \in \mathcal{F}\}$ of open subsets of *X* such that $F \subset V(F) \subset U(F)$ for each $F \in \mathcal{F}$ and such that \mathcal{P} satisfies the following two conditions:

(1) For each n, $\{P_1: P=(P_1, P_2)\in \mathcal{P}_n\}$ is a discrete family of closed subsets of X and $\{P_2: P\in \mathcal{P}_n\}$ is a family of open subsets of X.

(2) If $p \in V(F)$, then there exists $P \in \mathcal{P}$ such that $p \in P_1 \subset P_2 \subset V(F)$.

 (P_5) X is d-expandable.

For the later use, we give the term to such a sequence of open covers as in (P_3) . Let $\{\mathcal{U}_n : n \in N\}$ be a sequence of open covers of a space X and \mathcal{V} a family of open subsets of X. Then we call $\{\mathcal{U}_n\}$ the *d*-development for \mathcal{V} if for each point $p \in X$ and each $V \in \mathcal{V}$ with $p \in V$, there exists $n \in N$ such that ord $(p, \mathcal{U}_n)=1$ and $S(p, \mathcal{U}_n) \subset V$. If $\{\mathcal{U}_n : n \in N\}$ is a sequence of families of open subsets of X with this property for \mathcal{V} , then we call $\{\mathcal{U}_n\}$ the *d*-quasidevelopment for \mathcal{V} .

LEMMA 1. For a space, $(P_1) \rightarrow (P_2) \rightarrow (P_3) \rightarrow (P_4) \rightarrow (P_5)$ holds. Moreover, if X is θ -refinable, then all (P_i) are equivalent.

PROOF. $(P_1) \rightarrow (P_2)$ is straightforward from Definition 1. $(P_2) \rightarrow (P_3)$ follows from the Fact 2. $(P_3) \rightarrow (P_4)$: Let $\{\mathcal{U}_n : n \in N\}$ be the sequence of open covers in (P_3) . For each *n*, let

$$\mathcal{P}_n = \{ (H(U), U) : U \in \mathcal{U}_n, H(U) \neq \emptyset \},\$$

where

$$H(U)=U-\cup\{U'\in \mathcal{U}_n: U'\neq U\}.$$

Then it is easy to see that $\{\mathcal{D}_n : n \in N\}$ has the required property. $(P_4) \rightarrow (P_5)$: For each *d*-pair $\langle \mathcal{F}, \mathcal{U} \rangle$, take $\mathcal{P} = \bigcup \{\mathcal{D}_n : n \in N\}$ and $\{V(F) : F \in \mathcal{F}\}$ by (P_4) . We define a function $D: \mathcal{CV} \times N \rightarrow \{\text{closed subsets of } X\}$ with $\mathcal{CV} = \{V(F) : F \in \mathcal{F}\}$ by

$$D(V(F), n) = \bigcup \{P_1 : P \in \mathcal{P}_n \text{ and } P_2 \subset V(F)\}.$$

Then D is the dissection of \mathbb{C} in X. If X is θ -refinable, then $(P_5) \rightarrow (P_1)$ follows from Fact 3.

We weaken the statement (P_3) to the following:

 $(P_{\mathfrak{s}'})$ For each *d*-pair $\langle \mathfrak{F}, \mathfrak{V} \rangle$ of families of *X*, there exist a family $\mathfrak{V} = \{V(F): F \in \mathfrak{F}\}$ of open subsets of *X* and the *d*-quasidevelopment $\{\mathfrak{U}_n: n \in N\}$ for \mathfrak{V} such that $F \subset V(F) \subset U(F)$ for every $F \in \mathfrak{F}$.

LEMMA 2. If X is a perfect space, i.e., every closed subset is G_{δ} , then (P_3') implies that X is d-expandable.

PROOF. Suppose we are given $\langle \mathcal{F}, \mathcal{U} \rangle$, $\{V(F) : F \in \mathcal{F}\}$ and $\{\mathcal{U}_n : n \in N\}$ in $(P_{\mathfrak{s}}')$. For each n, let

$$\cup \mathcal{U}_n = \cup \{ E_{nm} : m \in N \},\$$

where each E_{nm} is closed in X. For each n, $m \in N$, define

$$\mathcal{V}_{nm} = \mathcal{U}_n \cup \{X - E_{nm}\}.$$

Then it is easy to see that $\{\mathcal{O}_{nm}: n, m \in N\}$ is the *d*-development for $\{V(F)\}$ in X. Therefore, by the above, X is *d*-expandable.

LEMMA 3. Let X be a semistratifiable space. Then a family U of open subsets of X is dissectable in X if and only if there exists a d-development for U in X.

PROOF. The only if part: Let $D: \mathcal{U} \times N \rightarrow \{\text{closed subsets of } X\}$ be the dissection of \mathcal{U} . Since for each n, $\{D(U, n): U \in \mathcal{U}\}$ is closure-preserving family of closed subsets of X, by Fact 4, there exists a closed cover $\mathcal{F} = \bigcup \{\mathcal{F}_{nm}: m \in N\}$ of X such that each \mathcal{F}_{nm} is discrete in X and for each $F \in \mathcal{F}$ and each $U \in \mathcal{U}$,

 $D(U, n) \cap F \neq \emptyset$ implies $F \subset D(U, n)$. For each $F \in \mathcal{F}_{nm}$, $n, m \in N$, choose an open subset V_F of X such that

$$F \subset V_F \subset \cap \{U \in \mathcal{U} : F \subset D(U, n)\}$$

and $V_F \cap F' = \emptyset$ for $F' \in \mathcal{F}_{nm}$ with $F \neq F'$. Let

$$\mathcal{O}_{nm} = \{ V_F : F \in \mathcal{F}_{nm} \} \cup \{ X - \bigcup \mathcal{F}_{nm} \}, n, m \in N.$$

Then ti is easy to see that $\{\mathcal{O}_{nm}: n, m \in N\}$ forms the *d*-development for \mathcal{U} in X. The if part is similar to the proof of $(P_3) \rightarrow (P_4) \rightarrow (P_5)$ in Lemma 1.

LEMMA 4. If U is a σ -dissectable family of a space X, then U is dissectable in X.

PROOF. Let $\mathcal{U} = \bigcup \{\mathcal{U}_n : n \in N\}$, where each \mathcal{U}_n is dissectable in X. Let $D_n : \mathcal{U}_n \times N \rightarrow \{\text{closed subsets of } X\}$ be the dissection of \mathcal{U}_n in X. Let $\phi : N \rightarrow N^2$ be a bijection. As a dissection T of \mathcal{C} , we define T as follows:

$$T(U, n) = \begin{cases} D_m(U, k) & \text{if } \phi(n) = (m, k) \text{ and } U \in \mathcal{U}_m \\ \emptyset & \text{otherwise.} \end{cases}$$

Obviously T is the dissection of \mathcal{CV} in X.

LEMMA 5. If U is a dissectable family of a space X, then $\mathcal{CV} = \{ \bigcup U_0 : U_0 \subset U \}$ is also dissectable in X.

PROOF. Let $D: \mathcal{U} \times N \rightarrow \{\text{closed subsets of } X\}$ be the dissection of \mathcal{U} in X. For each $V = \bigcup \mathcal{U}_0$, $\mathcal{U}_0 \subset \mathcal{U}$, and each $n \in N$, let

$$T(V, n) = \bigcup \{ D(U, n) : U \in \mathcal{U}_0 \}.$$

Then T is obviously the dissection of $\neg V$ in X.

LEMMA 6. Let X be a semistratifiable space and $\mathcal{U} = \{U_{\alpha} : \alpha \in A\}$ a pointfinite family of open subsets of X. If for each $\alpha \in A$, \mathcal{V}_{α} is a dissectable family of the subspace U_{α} , then $\cup \{\mathcal{V}_{\alpha} : \alpha \in A\}$ is dissectable in X.

PROOF. Let Δ be the totality of

$$\delta(p) = \{ \alpha \in A : p \in U_{\alpha} \}, \qquad p \in \bigcup \mathcal{U}.$$

Then $\Delta = \bigcup \{ \Delta_n : n \in N \}$, where

$$\Delta_n = \{ \delta \in \Delta : |\delta| = n \}, \quad n \in \mathbb{N}.$$

Let $\delta \in \Delta_n$, $n \in N$. Since by Lemma 4

$$\mathcal{CV}(\delta) = \bigcup \{ \mathcal{CV}_{\alpha} : \alpha \in \delta \} \mid \cap \{ U_{\alpha} : \alpha \in \delta \}$$

is dissectable in $\cap \{U_{\alpha} : \alpha \in \delta\}$ by Lemma 3, there exists the *d*-development $\{\mathcal{CV}_{nm'}(\delta) : m \in N\}$ for $\mathcal{CV}(\delta)$ in the subspace $\cap \{U_{\alpha} : \alpha \in \delta\}$. For each *n*, *m*, $k \in N$, let

$$\mathcal{O}_{nmk}(\delta) = \mathcal{O}_{nm'}(\delta) \mid (X - S[\cup \{U_{\alpha} : \alpha \in A - \delta\}, k]),$$

where $S[\phi, k] = \emptyset$, $k \in N$, and let

$$\mathcal{OV}_{nmk} = \bigcup \{\mathcal{OV}_{nmk}(\delta) : \delta \in \Delta_n\}$$

We shall show that $\{\mathcal{O}_{nmk}: n, m, k \in N\}$ is the *d*-quasidevelopment for $\bigcup \{\mathcal{O}_{\alpha}: \alpha \in A\}$ in X. Let $p \in V \in \mathcal{O}_{\alpha}, \alpha \in A$. Since U is point-finite at p, $\delta(p) \in \Delta_n$ for some n. There exists $k \in N$ such that

$$p \in S[\cap \{U_{\alpha} : \alpha \in \delta(p)\}, k].$$

Take $m \in N$ such that $\operatorname{ord}(p, \mathcal{V}_{nm'}(\delta(p))) = 1$ and $S(p, \mathcal{V}_{nm'}(\delta(p))) \subset V$. Suppose $\delta \in \Delta_n$. If $\delta - \delta(p) \neq \emptyset$, then $p \notin \bigcup \mathcal{V}_{nm'}(\delta)$ because $\bigcup \mathcal{V}_{nm'}(\delta) \subset U_{\alpha}$ for each $\alpha \in \delta - \delta(p)$. If $\delta(p) - \delta \neq \emptyset$, then

$$p \in S[\cup \{U_{\alpha} : \alpha \in A - \delta\}, k].$$

From these observations, we have

$$p \in \bigcup [\bigcup \{\mathcal{OV}_{nmk}(\delta) : \delta \neq \delta(p) \text{ and } \delta \in \Delta_n\}].$$

Therefore ord $(p, \mathcal{O}_{nmk}) = 1$ and $S(p, \mathcal{O}_{nmk}) \subset V$. This completes the proof.

PROPOSITION 1. Let X be a d-paracompact semistratifiable space and let \mathfrak{F} be a locally finite family of closed subsets of X with its open expansion $\{U(F): F \in \mathfrak{F}\}$. Then there exists a dissectable family $\{V(F): F \in \mathfrak{F}\}$ of X such that $F \subset V(F) \subset U(F)$ for each $F \in \mathfrak{F}$.

PROOF. By Fact 4, from the cover $\mathcal{F} \cup \{X\}$ of X we can construct a closed cover $\mathcal{H} = \cup \{\mathcal{H}_n : n \in N\}$ of X such that each \mathcal{H}_n is discrete in X and such that if $H \cap F \neq \emptyset$, $F \in \mathcal{F}$ and $H \in \mathcal{H}$, then $H \subset F$. Since for each $H \in \mathcal{H}$,

$$\mathcal{F}(H) = \{F \in \mathcal{F} : H \subset F\}$$

is finite,

$$G(H) = \bigcap \{ U(F) : F \in \mathcal{F}(H) \}$$

is open in X. Since X is d-paracompact, for each n there exists a dissectable family $\mathcal{W}_n = \{W(H) : H \in \mathcal{H}_n\}$ of X such that $H \subset W(H) \subset G(H)$ for each $H \in \mathcal{H}_n$. For each $F \in \mathcal{F}_n$. For each $F \in \mathcal{F}$, let

$$\mathcal{H}(F) = \{ H \in \mathcal{H} : H \subset F \}.$$

Then obviously $F = \bigcup \mathcal{H}(F)$. For each $F \in \mathcal{F}$, set

$$V(F) = \bigcup \{ W(H) : H \in \mathcal{H}(F) \}.$$

Then $\{V(F): F \in \mathcal{F}\}$ is dissectable in X by Lemmas 4 and 5. This completes the proof.

LEMMA 7. Let \mathcal{U}, \mathcal{C} be dissectable families of X, Y, respectively. Then $\mathcal{U}\times\mathcal{C}$ is dissectable in the product space $X\times Y$.

PROOF. Let D, D' be the dissections of \mathcal{U} , \mathcal{C} in X, Y, respectively. Let $f: N \rightarrow N^2$ be a bijection. Define a function $T: (\mathcal{U} \times \mathcal{C} \mathcal{V}) \times N \rightarrow \{\text{closed subsets of } X \times Y\}$ by

$$T(U \times V, k) = D(U, n) \times D'(V, n)$$

for $U \in \mathcal{U}$, $V \in \mathcal{V}$, $k \in N$, where f(k) = (n, m). Then it is easy to see that T is the dissection of $\mathcal{U} \times \mathcal{C} \mathcal{V}$ in $X \times Y$.

Let \mathcal{U}, \mathcal{C} be families of subsets of a space. Then we call that \mathcal{U} is a weak refinement of \mathcal{C} if for every $U \in \mathcal{U}$ there exists $V \in \mathcal{C}$ such that $U \subset V$.

DEFINITION 5. A space X is called a P-space $[M_1]$ if for any family

 $\{G(\alpha_1, \cdots, \alpha_i): \alpha_1, \cdots, \alpha_i \in A, i \in N\}$

of open subsets of X such that

 $G(\alpha_1, \cdots, \alpha_i) \subset G(\alpha_i, \cdots, \alpha_i, \alpha_{i+1})$

for each $\alpha_1, \dots, \alpha_i, \alpha_{i+1} \in A$, $i \in N$, there exists a family

$$\{C(\alpha_1, \cdots, \alpha_i): \alpha_1, \cdots, \alpha_i \in A, i \in N\}$$

of closed subsets of X satisfying the following conditions:

(1) $C(\alpha_1, \dots, \alpha_i) \subset G(\alpha_1, \dots, \alpha_i)$ for each $\alpha_1, \dots, \alpha_i \in A$, $i \in N$.

(2) For each sequence $\{\alpha_i : i \in N\}$ such that $X = \bigcup_i G(\alpha_1, \dots, \alpha_i)$, then $X = \bigcup_i C(\alpha_1, \dots, \alpha_i)$.

Obviously, every perfect space is a P-space. As for the product theorem of d-paracompact spaces, we can settle the following theorem.

THEOREM 1. Let X be a d-paracompact P-space and Y a metacompact developable space. Then $X \times Y$ is d-paracompact.

PROOF. Though the procedure is due to the stereotyped method, we describe it to see how the properties of Y are used.

Let $\mathcal{F} = \{F(\alpha) : \alpha \in A\}$ be a σ -discrete closed network for Y. Since Y is metacompact, there exists a σ -point-finite family $\{H(\alpha) : \alpha \in A\}$ of open subsets of X such that $F(\alpha) \subset H(\alpha)$ for each $\alpha \in A$. Let \mathcal{G} be an open cover of $X \times Y$. For each $\alpha_1, \dots, \alpha_k \in A$, $k \in N$, let $\mathcal{G}(\alpha_1, \dots, \alpha_k)$ be the frmily of open rectangles $U_{\lambda} \times V_{\lambda}$ such that $U_{\lambda} \times V_{\lambda} \subset G$ for some $G \in \mathcal{G}$ and

$$\cap \{F(\alpha_i): i=1, \cdots, k\} \subset V_{\lambda} \subset \cap \{H(\alpha_i): i=1, \cdots, k\}.$$

Write

$$\mathcal{Q}(\alpha_1, \cdots, \alpha_k) = \{ U_{\lambda} \times V_{\lambda} : \lambda \in \mathcal{A}(\alpha_1, \cdots, \alpha_k) \}.$$

For each $\alpha_1, \cdots, \alpha_k \in A$, $k \in N$, let

$$U(\alpha_1, \cdots, \alpha_k) = \bigcup \{ U_{\lambda} : \lambda \in \Lambda(\alpha_1, \cdots, \alpha_k) \}.$$

Then $U(\alpha_1, \dots, \alpha_k)$ is an open subset of X such that

$$U(\alpha_1, \cdots, \alpha_k) \subset U(\alpha_1, \cdots, \alpha_k, \alpha_{k+1}).$$

Since X is a P-space, there exists a family

$$\{C(\alpha_1, \cdots, \alpha_k): \alpha_1, \cdots, \alpha_k \in A, k \in N\}$$

of closed subsets of X, stated in Definition 5. By the d-paracompactness of X, there exists a dissectable family $\mathcal{W}(\alpha_1, \dots, \alpha_k)$ of open subsets of X covering $C(\alpha_1, \dots, \alpha_k)$ such that $\mathcal{W}(\alpha_1, \dots, \alpha_k)$ is a weak refinement of $\{U_{\lambda} : \lambda \in \Lambda(\alpha_1, \dots, \alpha_k)\}$. Without loss of generality, we can write $\mathcal{W}(\alpha_1, \dots, \alpha_k)$ as the indexed family such that

$$\mathcal{W}(\alpha_1, \cdots, \alpha_k) = \{W_{\lambda} : \lambda \in \Lambda(\alpha_1, \cdots, \alpha_k)\},\$$

where $W_{\lambda} \subset U_{\lambda}$ for each λ . For each $\alpha_1, \dots, \alpha_k \in A$, $k \in N$, set

$$\mathcal{B}(\alpha_1, \cdots, \alpha_k) = \{ W_{\lambda} \times V_{\lambda} : \lambda \in \Lambda(\alpha_1, \cdots, \alpha_k) \},$$
$$\mathcal{B}_k = \bigcup \{ \mathcal{B}(\alpha_1, \cdots, \alpha_k) : \alpha_1, \cdots, \alpha_k \in A \},$$
$$\mathcal{B} = \bigcup \{ \mathcal{B}_k : k \in N \}.$$

Then we can show that \mathscr{B} is a σ -dissectable refinement of \mathscr{G} . To show that \mathscr{B} covers $X \times Y$, let $(x, y) \in X \times Y$.

Let $\{\alpha_i : i \in N\}$ be a sequence of A such that $\{F(\alpha_1) \cap \cdots \cap F(\alpha_k) : k \in N\}$ is a local network at y in Y. For this sequence, we easily see that $X = \bigcup \{U(\alpha_1, \dots, \alpha_k) : k \in N\}$. This implies $X = \bigcup \{C(\alpha_1, \dots, \alpha_k) : k \in N\}$. Therefore $x \in C(\alpha_1, \dots, \alpha_k)$ for some k. Since $\{W_k : \lambda \in \overline{A}(\alpha_1, \dots, \alpha_k)\}$ covers $C(\alpha_1, \dots, \alpha_k)$,

 $x \in W_{\lambda}$ for some $\lambda \in \Lambda(\alpha_1, \dots, \alpha_k)$. Hence we have $(x, y) \in W_{\lambda} \times V_{\lambda} \in \mathcal{B}$. Let $k \in N$ be fixed. For each $\alpha_1, \dots, \alpha_k \in A$, $\mathcal{B}(\alpha_1, \dots, \alpha_k)$ is dissectable in $X \times Y$ because $\{V_{\lambda} : \lambda \in \Lambda(\alpha_1, \dots, \alpha_k)\}$ is dissectable in Y by Fact 5, and we can use Lemma 7. Observe that

$$\cup \mathscr{B}(\alpha_1, \cdots, \alpha_k) \subset X \times (\cap \{H(\alpha_i) : i=1, \cdots, k\})$$

and that

$$\{X \times (\cap \{H(\alpha_i) : i=1, \cdots, k\}) : \alpha_1, \cdots, \alpha_k \in A\}$$

is a σ -point-finite in $X \times Y$. Hence by Lemma 6, \mathcal{B}_k is σ -dissectable in $X \times Y$, which means that \mathcal{B} is σ -dissectable in $X \times Y$. This completes the proof.

REMARK. The proof assures that the following is true: Let X be a P-space and Y a metacompact developable space. If X has the property that every family \mathcal{V} of open subsets of X has a dissectable family \mathcal{V} of X such that $\cup \mathcal{V} = \cup \mathcal{V}$ and \mathcal{V} is a weak refinement of \mathcal{V} , then $X \times Y$ is d-paracompact.

The properties of Y used actually in the above proof is just that Y is an almost expandable space with a σ -discrete closed network \mathcal{F} such that each $F \in \mathcal{F}$ has a dissectable outer base in Y, where a space Y is called *almost expandable* if for every locally finite family \mathcal{K} of closed subsets of Y there exists a point-finite family $\{G(H): H \in \mathcal{H}\}$ of open subsets of Y such that $H \subset G(H)$ for every $H \in \mathcal{H}$. But these properties give a sufficient condition for Y to be a meta-compact developable space.

PROPOSITION 2. A space Y is a metacompact developable space if and only if Y is an almost expandable σ -space with the property that every closed subset of Y has a dissectable outer base in Y.

PROOF. The if part: Let $\bigcup \{ \mathcal{F}_i : i \in N \}$ be a closed network for Y, where each \mathcal{F}_i is discrete in Y. For each i, there exists a point-finite family $\{U(F): F \in \mathcal{F}_i\}$ of open subsets of Y such that $F \subset U(F)$ for each $F \in \mathcal{F}_i$. Let $\mathcal{U}(F)$ be a dissectable outer base of F in Y such that $\bigcup \mathcal{U}(F) \subset U(F)$. Then by Lemma 6, $\bigcup \{\mathcal{U}(F): F \in \bigcup_i \mathcal{F}_i\}$ is a σ -dissectable base for Y. By Fact 1, Y is developable. Since an almost expandable σ -space is metacompact, Y has the required properties. The only if part is trivial.

COROLLARY. A space X is metrizable if and only if X is a paracompact σ -space with the property that every closed subset of X has a dissectable outer base in X.

We do not know whether a similar characterization is obtained for developable spaces, removing the terms metacompact and almost expandable from Proposition 2. That is, we do not know whether every σ -space (or even *d*-paracompact σ -space) with the same outer base property as in Proposition 2 is developable.

The metacompactness of Y cannot be dropped from Theorem 1. In fact, there exist a Lašnev space (i.e., a closed image of a metric space) and a nonmetacompact developable space Y such that $X \times Y$ is not d-paracompact, as seen in Example 1. It is shown that a space which is dominated by paracompact σ -spaces is also a paracompact σ -space [M₂ and O]. But this is not true for the case of d-paracompact σ -spaces. To state the counterexample, we sketch the space $Y(\kappa)$. Lət κ be a cardinal number and let $Y(\kappa)$ be a set

$$Y(\boldsymbol{\kappa}) = N \cup [0, \, \boldsymbol{\kappa}) \,,$$

which is topologized as follows: All points of N are isolated and basic neighborhoods of a point $\alpha \in [0, \kappa)$ are sets of the form:

$$\{\alpha\} \cup (N-F),$$

where F is a finite subset of N. The space $Y(\kappa)$ is a developable space. In fact, if $\{F_k : k \in N\}$ be the totality of finite subsets of N, then

$$\mathcal{U}_k = \{\{n\}: n \in F_k\} \cup [\{\alpha\} \cup (N - F_k): \alpha \in [0, \kappa]], \ k \in \mathbb{N},$$

is a development for $Y(\kappa)$.

We should remark that this space $Y(\kappa)$ is just T_1 , but unfortunately not Hausdorff. This leads that our examples stated here are T_1 but not Hausdorff since they contain $Y(\kappa)$ as the subspace. To simplify the examples, we prepare the following proposition:

PROPOSITION 3. Let z be a point of a space Z with the uncountable character τ . If $\kappa \geq \tau$, then the product space $Y(\kappa) \times Z$ is not d-paracompact.

PROOF. Assume the contrary to get a contradiction. Let $\{W_{\alpha} : \alpha < \tau\}$ be a local base at z in Z. It is easily observed that

$$\{(\alpha, z): \alpha \in [0, \kappa)\}$$

is a discrete closed subset of $Y(\kappa) \times Z$ and that for each $\alpha < \tau$, $(\{\alpha\} \cup N) \times W_{\alpha}$ is an open neighborhood of (α, z) in $Y(\kappa) \times Z$ such that

$$(\alpha', z) \in (\{\alpha\} \cup N) \times W_{\alpha}$$

if $\alpha \neq \alpha', \alpha, \alpha' < \tau$. By the assumption that $Y(\kappa) \times Z$ is d-paracompact and by

Lemma 1, there exist a family $\mathcal{CV} = \{V_{\alpha} : \alpha < \tau\}$ of open subsets of $Y(\kappa) \times Z$ and the *d*-development $\{\mathcal{U}_n : n \in N\}$ for \mathcal{CV} such that

$$(\alpha, z) \in V_{\alpha} \subset (\{\alpha\} \cup N) \times W_{\alpha}, \quad \alpha < \tau.$$

Let $\Pi: Y(\kappa) \times Z \rightarrow Z$ be the projection. We show that

$$\{\Pi(S((n, z), \mathcal{U}_k)): n, k \in \mathbb{N}\}$$

is a local base at z in Z. Suppose $\alpha < \tau$. We can take $n \in N$ such that $(n, z) \in V_{\alpha}$. Since $\{\mathcal{U}_n\}$ is the *d*-development for \mathcal{V} , there exists $k \in N$ such that $S((n, z), \mathcal{U}_k) \subset V_{\alpha}$. This implies

$$\Pi(S((n, z), \mathcal{U}_k)) \subset W_{\alpha},$$

which is a contradiction to the uncountability of the character τ of z in Z, This completes the proof.

For each $n \in N$, let S_n be the copy of the subspace

$$S = \{0\} \cup \{1, 1/2, 1/3, \cdots\}$$

of the real line with the usual topology and $S_n \cap S_m = \emptyset$ if $n \neq m$. We write by S_{ω} the quotient space obtained from $\bigoplus \{S_n : n \in N\}$ by identifying all limit points with a single point, which we denote by 0 again. Then S_{ω} is known to be a non-metrizable Lašnev space. Obviously 0 has a character *c* less than or equal to *c*, where *c* is the cardinality of the continuum.

EXAMPLE 1. There exist a non-metacompact developable space X and a Lašnev space Y such that $Z = X \times Y$ is not d-paracompact.

CONSTRUCTION. We take X=Y(c) and $Y=S_{\omega}$. Then by Proposition 3, $X \times Y$ is not *d*-paracompact. X is not metacompact because the open cover

$$\{\{\alpha\} \cup N : \alpha \in [0, c)\}$$

has no point-finite open refinement.

EXAMPLE 2. There exists a non-*d*-paracompact σ -space which is dominated by *d*-paracompact σ -spaces.

CONSTRUCTION. Let $\rho: \bigoplus \{S_n : n \in N\} \to S_{\omega}$ be the natural mapping. For each $n \in N$, let $Z_n = Y(c) \times \rho(S_n)$. Since both Y(c) and $\rho(S_n)$ are developable spaces, so is Z_n . Let Z be the same space $X \times Y$ as above. Then Z is a nond-paracompact σ -space, and is easily seen to be dominated by $\{Z_n : n \in N\}$.

For the proof of next lemma, we introduced the following notations: Let \mathcal{W} be an open cover of a space X. For each $W \in \mathcal{W}$, let

$$H(W) = W - \bigcup \{ W' \in \mathcal{W} : W \neq W' \}.$$

Then it is easy to see that

$$\mathcal{H}(\mathcal{W}) = \{H(W) : W \in \mathcal{W}\}$$

is a discrete family of closed subsets of X. We define the subset $H(\mathcal{W})$ and the family $\mathcal{W}^{(1)}$ by

and

$$H(\mathcal{W}) = \bigcup \mathcal{H}(\mathcal{W})$$

$$\mathcal{W}^{(1)} = \{ W \in \mathcal{W} : H(W) \neq \emptyset \}.$$

If f is a closed mapping of a space X onto a space Y, for each open subset U of X we define an open subset $f^*(U)$ of Y by

$$f^{*}(U) = Y - f(X - U)$$
.

LEMMA 8. Let $f: X \rightarrow Y$ be a perfect mapping. If X is a perfect d-paracompact space, then so is Y.

PROOF. Obviously Y is perfect. By Fact 3, X is θ -refinable. Since it is well known that θ -refinability is preserved by perfect mappings, Y is θ -refinable. By Fact 3 again, it suffices to show that Y is d-expandable. Let $\langle \mathcal{F}, \mathcal{U} \rangle$ be a d-pair of families of Y, where

$$\mathcal{F} = \{ F_{\lambda} : \lambda \in \Lambda \}, \qquad \mathcal{U} = \{ U_{\lambda} : \lambda \in \Lambda \}.$$

Since X is d-expandable, for the d-pair $\langle f^{-1}(\mathcal{F}), f^{-1}(\mathcal{U}) \rangle$ there exists a dissectable family $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ of X and the d-development for \mathcal{V} in X such that

$$f^{-1}(F_{\lambda}) \subset V_{\lambda} \subset f^{-1}(U_{\lambda}), \qquad \lambda \in \Lambda$$

By the same method as [Bu₂, Lemma 3.1], we can construct a sequence $\{\mathcal{W}_n : n \in N\}$ of families of open covers of X such that if $C \subset V_{\lambda}$ with C compact and $\lambda \in A$, then there exists $n \in N$ such that $C \cap H(\mathcal{W}_n) \neq \emptyset$ and

$$C \cap H(\mathcal{W}_n) \subset \mathcal{W} \subset V_\lambda$$

for some finite $\mathcal{W} \subset \mathcal{O}_n^{(1)}$. For each $t, s \in N^r$, $r \in N$, with $t = (t_1, \dots, t_r)$, $s = (s_1, \dots, s_r)$, define a family $\mathcal{W}(t, s)$ of subsets of X by the following:

$$\mathcal{W}(t, s) = \{ W(\mathcal{W}_i', \cdots, \mathcal{W}_r') : \mathcal{W}_i' \subset \mathcal{W}_{s_i}^{(1)} \}$$

and

On *d*-paracompact σ -spaces

 $|\mathcal{W}_i'| = t_i$ for each $i=1, \cdots, r$,

where

$$W(\mathcal{W}_{1}', \cdots, \mathcal{W}_{r}') = \bigcup \left[\bigcup \mathcal{W}_{i}' - \bigcup \left\{ H(\mathcal{W}_{s_{i}}^{(1)} : j < i \right\}; i \leq r \right]$$

Then $\{\mathcal{W}(t, s): t, s \in N^r, r \in N\}$ has the following properties:

(1) $\mathcal{W}(t, s)$ is a family of open subsets of X.

(2) If $C \subset V_{\lambda}$ with C compact and $\lambda \in \Lambda$, then there exist $t, s \in N^{\tau}, r \in N$, such that C is contained in only one element $W_{c} \in \mathcal{W}(t, s)$ and $W_{c} \subset V_{\lambda}$.

We show (2). Let s_1 be the first number such that there exists a finite minimal subfamily $\mathcal{W}_{1'}$ of $\mathcal{W}_{s_1}^{(1)}$ such that

$$\emptyset \neq C \cap H(\mathcal{W}_{s_i}) \subset \bigcup \mathcal{W}_1' \subset V_\lambda.$$

Let $|\mathcal{W}_1'| = t_1$ and

$$C_2 = C - \bigcup \mathcal{W}_1'.$$

Let s_2 be the first number such that there exists a finite minimal subfamily \mathcal{W}_{2}' of $\mathcal{W}_{s_2}^{(1)}$ such that

$$\emptyset \neq C_2 \cap H(\mathcal{W}_{s_2}) \subset \bigcup \mathcal{W}_2' \subset V_\lambda.$$

Let $|\mathcal{W}_2| = t_2$. Repeating this process and using the compactness of *C*, we can obtain two finite systems

$$s = (s_1, \cdots, s_r), \quad t = (t_1, \cdots, t_r) \in N^r$$

for some $r \in N$ such that

$$C \subset W(\mathcal{W}_1', \cdots, \mathcal{W}_r') = W_C \subset V_\lambda$$
 and $W_C \in \mathcal{W}(t, s)$.

Then W_c is seen to be the required one by the some argument as in [Bu, Lemmas 4.2 and 4.3]. Thus (2) is satisfied. Set

$$\mathcal{G}(t, s) = \{ f^*(W) : W \in \mathcal{W}(t, s) \}$$

for each t, $s \in N^r$, $r \in N$. It is easy to see that

$$\{\mathcal{G}(t, s): t, s \in N^r, r \in N\}$$

forms a *d*-quasidevelopment for $\{f^*(V_{\lambda}): \lambda \in A\}$ in Y. Since Y is perfect, Y is *d*-expandable by Lemma 2. This completes the proof.

THEOREM 2. Let f be a perfect mapping of a space X onto a space Y. If X is a d-paracompact σ -space, then so is Y.

But closed mappings do not have this property.

EXAMPLE 3. There exists a closed mapping of *d*-paracompact σ -space \hat{X} onto a non-*d*-paracompact σ -space Z.

CONSTRUCTION. We show that the same space Z as in Example 1 is the image of a *d*-paracompact σ -space \hat{X} under a closed mapping. For each $n \in N$, let S_n be the same as in the preceding section to Example 1, and let Z_n' be the set $Y(c) \times S_n$. Set

$$\hat{X} = \bigcup \{ Z_n' : n \in N \} \cup Y(c) .$$

Topology of \hat{X} is defined as follows: For each n, each point $p \in Z_n'$ has a neighborhood V in \hat{X} if and only if $V \cap Z_n'$ is a neighborhood of p in Z_n' . Each $n \in N \subset Y(c)$ is isolated. For each $\alpha \in [0, c)$ has a neighborhood base

$$\{\{\alpha\} \cup (N-F) \cup (\cup\{(\{\alpha\} \cup (N-F)) \times W_k : k \ge m\}):$$

 W_k is a neighborhood of 0 in S_k for each $k \ge m$,

F is a finite subset of N and $m \in N$.

It is easy to see that Y(c) is a σ -discrete closed subset of \hat{X} and each Z_n' is a developable clopen subspace of \hat{X} . Therefore Z_n' , $n \in N$, has a σ -ciscrete closed (in \hat{X}) network \mathcal{F}_n for Z_n' . Thus we have a σ -discrete closed network

$$\cup \{\mathcal{F}_n: n \in N\} \cup \{\{p\}: p \in Y(c)\}.$$

for \hat{X} , proving that \hat{X} is a σ -space. To see that \hat{X} is *d*-paracompact, let \mathcal{U} be an open cover of X. For each $n \in N$, $\mathcal{C}_n = \mathcal{U} | Z_n'$ is a dissectable (in X) weak refinement of \mathcal{U} because Z_n' is a clopen developable subspace of \hat{X} . For each $p \in Y(c)$, we take a basic neighborhood V(p) in \hat{X} , as defined just above, such that $V(p) \subset U$ for some $U \in \mathcal{U}$. Since for each n the family $\{V(p): p \in Y(c)\} | Z_n'$ is dissectable in \hat{X} and since $q \notin V(p)$ if $p \neq q$ and $p, q \in Y(c) - N$, $\mathcal{C}_0 =$ $\{V(p): p \in Y(c)\}$ is dissectable in \hat{X} . Hence

$$\mathcal{O}_0 \cup \bigcup \{\mathcal{O}_n : n \in N\}$$

is a σ -didissectable refinement of \mathcal{U} . Let $g: \hat{X} \rightarrow Z$ be a mapping defined by

$$g|(\bigcup \{Z_n': n \in N\}) = f$$

and

$$g(p) = (p, 0)$$
 if $p \in Y(c)$,

where f is a natural mapping of $\bigoplus \{Z_n' : n \in N\}$ onto Z. g is obviously continuous and onto. We show that g is a closed mapping. For the purpose, it suffices to show that for each point $p \in Y(c)$ and each open set V of \hat{X} , if $g^{-1}((p, 0)) \subset V$, then there exists a neighborhood O of (p, 0) in Z such that

 $g^{-1}(O) \subset V$. If $p=n \in N$, then by the definition of the topology of \hat{X} , we can easily take neighborhoods W_k of 0 in S_k , $k \in N$, such that

$$g^{-1}((n, 0)) \subset \cup \{\{n\} \times W_k : k \in N\} \cup \{n\} \subset V$$
,

Let

$$O = f(\bigcup \{\{n\} \times W_k : k \in N\})$$

Then O is a neighborhood of (n, 0) in Z such that $g^{-1}(O) \subset V$. Let $p = \alpha \in [0, c)$. Then there exist a finite subset F of N and neighborhoods W_k of 0 in S_k , $k \in N$, such

$$g^{-1}((\alpha, 0)) \subset \{\alpha\} \cup (N-F) \cup (\cup \{(\{\alpha\} \cup (N-F)) \times W_k : k \in N\}) \subset V,$$

Letting

$$O = f(\bigcup \{(\{\alpha\} \cup (N-F)) \times W_k : k \in N\}),$$

we obtain a neighborhood O of $(\alpha, 0)$ in Z such that $g^{-1}(O) \subset V$. This completes the proof of the closedness of g.

We do not know whether the perfectness of X can be dropped from Lemma 8. That is, it is still open whether perfect mappings preserve *d*-paracompactness [C, 181p], [B₂, Question 1]. The next gives a sufficient condition for a closed image of a *d*-paracompact σ -space to be a *d*-paracompact σ -space.

THEOREM 3. Let $f: X \rightarrow Y$ be a closed mapping and let Y be a first countable space. If X is a d-paracompact σ -space, then so is Y.

PROOF. Since Y is obviously a σ -space, we show that Y is d-expandable. Let $\langle \mathcal{F}, \mathcal{U} \rangle$ be a d-pair of families of Y. Then for the d-pair $\langle f^{-1}(\mathcal{F}), f^{-1}(\mathcal{U}) \rangle$ of families of a d-paracompact space X, by Lemma 1, there exist families

 $\mathcal{CV} = \{ V(F) : F \in \mathcal{F} \}, \quad \mathcal{H} = \{ H_{\alpha} : \alpha \in A \}, \quad \mathcal{W} = \{ W_{\alpha} : \alpha \in A \}$

of subsets of X satisfying the following:

(1) For each $F \in \mathcal{F}$, V(F) is an open subset of X such that

$$f^{-1}(F) \subset V(F) \subset f^{-1}(U(F)).$$

(2)
$$A = \bigcup \{A_n : n \in N\}$$
 and for each $n, A_n \subset A_{n+1}$,

 $\mathscr{H}_n = \{H_\alpha : \alpha \in A_n\}$ is a locally finite family of closed subsets and $\mathscr{W}_n = \{W_\alpha : \alpha \in A_n\}$ a family of open subsets of X such that $H_\alpha \subset W_\alpha$, $\alpha \in A_n$.

(3) For each $F \in \mathcal{F}$ and each point $p \in X$, if $p \in V(F)$, then there exists $\alpha \in A$ such that

$$p \in H_{\alpha} \subset W_{\alpha} \subset V(F)$$
.

Moreover, since X is a σ -space, without loss of generality we can assume that

(4) $\{H_{\alpha}: \alpha \in A\}$ satisfies that for each $F \in \mathcal{F}$ and each point $p \in V(F)$, the family $\{H_{\alpha}: p \in H_{\alpha} \subset W_{\alpha} \subset V(F), \alpha \in A\}$ is a local network at p in X.

For each $n \in N$, let Y_n' be the set of all points $y \in Y$ such that $\operatorname{ord}(y, f(\mathcal{H}_n))$ is infinite. Then each Y_n' is a σ -discrete closed subset of Y because Y is a first countable space and $f(\mathcal{H}_n)$ is a hereditarily closure-preserving family of closed subsets of Y. Set

$$Y_1 = \bigcup \{Y_n' : n \in N\}, \quad Y_0 = Y - Y_1.$$

For each *n*, let Δ_n be the totality of finite subsets δ of A_n such that $H(\delta) \subset$ Int $W(\delta)$, where

$$H(\delta) = \bigcap \{ f(H_{\alpha}) : \alpha \in \delta \},\$$
$$W(\delta) = \bigcup \{ f(W_{\alpha}) : \alpha \in \delta \}.$$

Claim 1: For each point $p \in Y_0$ and each $F \in \mathcal{F}$, if $p \in f^*(V(F))$, then there exists $\delta \in \Delta_n$, $n \in N$, such that

$$p \in H(\delta) \subset \operatorname{Int} W(\delta) \subset U(F)$$
.

Proof of the claim: Let $p \in Y_0$ and for each n, let

$$\delta_n = \{ \alpha \in A_n : f^{-1}(p) \cap H_\alpha \neq \emptyset \text{ and } W_\alpha \subset V(F) \}.$$

Then obviously $p \in H(\delta_n) \subset W(\delta_n) \subset U(F)$ for each *n*. First we show the following:

(5)
$$p \in \operatorname{Int} W(\delta_n)$$
 for some n .

Throughout the proof of the theorem, for each $y \in Y$ let $\{O_n(y) : n \in N\}$ be the decreasing local base of y in Y. Assume the contrary to (5). Then

$$O_n(p) - W(\delta_n) \neq \emptyset, \quad n \in \mathbb{N}$$

Take a sequence $\{p_n : n \in N\}$ of points of Y such that

$$p_n \in O_n(p) - W(\delta_n), \quad n \in N$$

Since f is a closed mapping, $(f^{-1}(p_n): n \in N)$ clusters at a point of $f^{-1}(p)$. Hence by (3) there exists $\alpha \in \delta_n$, $n \in N$ such that $p \in f(H_\alpha)$ and $f(W_\alpha)$ contains infinitely many p_n . But this is a contradiction to the fact that $p_k \notin W(\delta_n)$, $k \ge n$. Thus we have $p \in \operatorname{Int} W(\delta_n)$ for some n.

Next, we show the following:

(6)
$$H(\delta_n) - \{p\} \subset \operatorname{Int} W(\delta_n)$$
 for some n .

Assume the contrary. If $H(\delta_n) - \{p\} - \operatorname{Int} W(\delta_n)$ is finite for some *n*, then by (4) we easily have

$$H(\boldsymbol{\delta}_m) - \{p\} \subset \operatorname{Int} W(\boldsymbol{\delta}_m)$$

for some m > n. Therefore we can assume that

$$H(\boldsymbol{\delta}_n) - \{p\} - \operatorname{Int} W(\boldsymbol{\delta}_n)$$

is infinite for each n. Take a sequence $\{p_n : n \in N\}$ of points of Y such that for each n

$$p_n \in H(\boldsymbol{\delta}_n) - \{p\} - \operatorname{Int} W(\boldsymbol{\delta}_n) - \{p_1, \cdots, p_{n-1}\}.$$

Since Y is a Fréchet space, for each n there exists a convergent sequence Z(n) to p_n in Y such that

$$Z(n) \cap W(\delta_n) = \emptyset$$
.

Since p has the decreasing local base $\{O_n(p): n \in N\}$ in Y, by (4) $p_n \rightarrow p$ as $n \rightarrow \infty$. Therefore by Fréchet-ness of Y, we can take a sequence $Z \subset \bigcup \{Z(n): n \in N\}$ such that $Z \rightarrow p$. Since $p_n \neq p$, $n \in N$, $Z \cap Z(n) \neq \emptyset$ for infinitely many n. The closedness of f implies that there exists $\alpha \in \delta_n$, $n \in N$, such that $f(W_\alpha)$ contains infinitely many points of Z, but this is a contradiction, proving (6).

We observe by (2) that $\{H(\delta_n): n \in N\}$, $\{W(\delta_n): n \in N\}$ are decreasing, increasing, respectively, families of subsets of Y. By (5) and (6), we can conclude Claim 1.

Claim 2: There exists a pair collection

$$\mathcal{P}_1' = \{ (F_\beta, U_\beta) : \beta \in B_1 \}$$

of Y satisfying the following conditions:

- (7) $\{F_{\beta}: \beta \in B_1\}$ is a σ -discrete family of closed subsets of Y and for each $\beta \in B_1$, U_{β} is an open subset of Y such that $F_{\beta} \subset U_{\beta}$.
- (8) For each $p \in Y$ and each $F \in \mathcal{F}$, if $p \in f^*(V(F))$, then there exists $\beta \in B_1$ such that

$$p \in F_{\beta} \subset U_{\beta} \subset U(F)$$
.

The proof of the claim: For each n, $m \in N$, let \mathcal{P}_{nm} be the pair collection of Y

$$\mathcal{P}_{nm} = \{(\{y\}, O_m(y)) : y \in Y_n'\}$$

and set

$$\mathcal{P}' = \bigcup \{ \mathcal{P}_{nm} : n, m \in N \}.$$

Obviously \mathscr{P}' satisfies (7) and (8) for each point $p \in Y_1$. Using the fact that Y

is semistratifiable, by the method of Fact 4, from the closure-preserving family $\{H(\delta): \delta \in \Delta_n\}$ of closed subsets of Y, we can construct a σ -discrete closed cover $\{K_{\lambda}: \lambda \in \Lambda_n\}$ of Y such that $K_{\lambda} \cap H(\delta) \neq \emptyset$, $\lambda \in \Lambda_n$ and $\delta \in \Delta_n$ imply $K_{\lambda} \subset H(\delta)$.

Suppose that $\lambda \in \Lambda_n$ has the property that

$$\Delta_n(\lambda) = \{ \delta \in \Delta_n : K_{\lambda} \subset H(\delta) \}$$

is finite. Take an open subset G_{λ} of Y such that

$$K_{\lambda} \subset G_{\lambda} \subset \cap \{ \operatorname{Int} W(\delta) : \delta \in \Delta_n(\lambda) \}.$$

Write

$$\mathcal{P}' \cup \{ (K_{\lambda}, G_{\lambda}) : \lambda \in \Lambda_n \text{ with } \Delta_n(\lambda) \text{ finite, } n \in N \}$$
$$= \mathcal{P}_1'$$
$$= \{ (F_{\beta}, U_{\beta}) : \beta \in B_1 \}.$$

Then by Claim 1, it is easy to see that \mathcal{P}_1' satisfies the conditions (7) and (8). This proves Claim 2.

Now, write $B_1 = \bigcup \{B_{1n} : n \in N\}$, where for each $n \{F_\beta : \beta \in B_{1n}\}$ is discrete in Y. We apply countably many times the arguments of Claims 1 and 2 to the countable *d*-pairs

$$\langle \{F_{eta}:eta\!\in\!B_{1n}\}, \{U_{eta}:eta\!\in\!B_{1n}\}
angle, n\!\in\!N,$$

of families of Y. Consequently, we get pair collections

$$\mathcal{P}_1 = \{ (F_\beta, V_\beta) : \beta \in B_1 \}$$

and

$$\mathcal{P}_{\mathbf{2}}' = \{ (F_{\beta}, U_{\beta}) : \beta \in B_{\mathbf{2}} \}$$

of Y satisfying the following conditions:

(9) For each $\beta \in B_1$, V_β is an open subset of Y such that $F_\beta \subset V_\beta \subset U_\beta$.

- (10) $\{F_{\beta}: \beta \in B_2\}$ is a σ -discrete family of closed subsets of Y and for each $\beta \in B_2$, U_{β} is an open subset of Y such that $F_{\beta} \subset U_{\beta}$,
- (11) For each point $p \in Y$ and each $\beta_1 \in B_1$, if $p \in V_{\beta_1}$, there exists $\beta_2 \in B_2$ such that

$$p \in F_{\beta_2} \subset U_{\beta_2} \subset U_{\beta_1}.$$

For each $F \in \mathcal{F}$, let $W_1(F) = f^*(V(F))$. Then $W_1(F)$ is an open subset of Y such that

 $F \subset W_1(F) \subset U(F), \quad F \in \mathcal{F}.$

For each $F \in \mathcal{F}$, set

On *d*-paracompact σ -spaces

$$W_2(F) = W_1(F) \cup (\bigcup \{ V_\beta : \beta \in B_1, F_\beta \cap W_1(F) \neq \emptyset \text{ and } U_\beta \subset U(F) \}.$$

Then $W_2(F)$ is an open subset of Y such that

$$F \subset W_1(F) \subset W_2(F) \subset U(F), \quad F \in \mathcal{F}.$$

Moreover, by (8) and (9), it is obvious that:

(12) For each point $p \in Y$ and each $F \in \mathcal{F}$, if $p \in W_1(F)$, then there exists $\beta \in B_1$ such that

$$p \in F_{\beta} \subset V_{\beta} \subset W_2(F).$$

From the definition of $W_2(F)$ and (11) it follows that:

(13) For each point $p \in Y$ and each $F \in \mathcal{F}$, if $p \in W_2(F)$, then there exists $\beta \in B_2$ such that

$$p \in F_{\beta} \subset U_{\beta} \subset U(F).$$

Again, we apply countably many times the arguments of Claims 1 and 2 to the countable *d*-pairs contained in \mathcal{P}_{2}' and get two pair collections

$$\mathcal{P}_2 = \{ (F_\beta, V_\beta) : \beta \in B_2 \}$$

and

$$\mathcal{P}_{\mathbf{3}}' = \{ (F_{\beta}, U_{\beta}) : \beta \in B_{\mathbf{3}} \}$$

of Y satisfying the conditions corresponding to (9). (10) and (11) with B_1 , B_2 replaced by B_2 , B_3 , respectively. For each $F \in \mathcal{F}$, let

$$W_{3}(F) = W_{2}(F) \cup \left(\bigcup \{ V_{\beta} : \beta \in B_{2}, F_{\beta} \cap W_{2}(F) \neq \emptyset \right)$$

and $U_{\beta} \subset U(F) \right\}.$

Then for each $F \in \mathcal{F}$, $W_{\mathfrak{s}}(F)$ is an open subset of Y such that

$$F \subset W_1(F) \subset W_2(F) \subset W_3(F) \subset U(F)$$
.

It is easily seen that:

(14) For each point $p \in Y$ and each $F \in \mathcal{F}$, if $p \in W_2(F)$, then there exists $\beta \in B_2$ such that

$$p \in F_{\beta} \subset V_{\beta} \subset W_{3}(F).$$

Repeating these processes, we can easily settle the following claim:

Claim 3: For each $F \in \mathcal{F}$, there exists a sequence $\{W_n(F) : n \in N\}$ of open subsets of Y such that

$$F \subset W_1(F) \subset W_2(F) \subset \cdots \subset U(F)$$

and at the same time there exists a pair collection

$$\mathcal{P}_n = \{ (F_\beta, V_\beta) : \beta \in B_n \}$$

of Y satisfying the following conditions:

(15) For each point p by Y, each $F \in \mathcal{F}$ and each $n \in N$, if $p \in W_n(F)$, then there exists $\beta \in B_n$ such that

$$p \in F_{\beta} \subset V_{\beta} \subset W_{n+1}(F).$$

Set

$$W(F) = \bigcup \{ W_n(F) : n \in N \}, \qquad F \in \mathcal{G}$$

and

$$\mathcal{P} = \bigcup \{ \mathcal{P}_n : n \in N \}$$
$$= \{ (F_\beta, V_\beta) : \beta \in B \}$$

where $B = \bigcup \{B_n : n \in N\}$. Then obviously, for each $F \in \mathcal{F}$, W(F) is an open subset of Y such that $F \subset W(F) \subset U(F)$. By the construction, it is true that for each point $p \in Y$ and each $F \in \mathcal{F}$, if $p \in W(F)$, then there exists $\beta \in B$ such that

$$p \in F_{\beta} \subset V_{\beta} \subset W(F).$$

The family $\{F_{\beta}: \beta \in B\}$ is a σ -discrete one of closed subsets of Y. Therefore by Lemma 1, Y is d-expandable. This completes the proof of the theorem.

PROPOSITION 4. Let $f: X \rightarrow Y$ be a closed mapping and Y a first countable space. If X is a d-paracompact semistratifiable space having the property that every closed subset of X has a dissectable outer base in X, then every closed subset of Y has a dissectable outer base in Y.

PROOF. We proceed referring to the proof just above. Let M be a closed subset of Y. Then by the assumption $f^{-1}(M)$ has a dissectable outer base \mathcal{V} in X. By the proof of Lemma 1, there exist families

$$\mathcal{H} = \{ H_{\alpha} : \alpha \in A \}, \qquad \mathcal{W} = \{ W_{\alpha} : \alpha \in A \}$$

of subsets of Y satisfying the following (3)' besides (2) in the proof above:

(3)' For each $V \in \mathcal{V}$ and point p of X, if $p \in V$, then there exists $\alpha \in A$ such that

$$p \in H_{\alpha} \subset W_{\alpha} \subset V$$
.

Let Y_n' , Y_1 , Y_0 are the same as above. For each n, let Δ_n be the totality of finit subsets δ of A_n such that $H(\delta) \cap \operatorname{Int} W(\delta) \neq \emptyset$, where

On *d*-paracompact σ -spaces

$$H(\boldsymbol{\delta}) = \bigcap \{ f(H_{\alpha}) : \boldsymbol{\alpha} \in \boldsymbol{\delta} \},\$$
$$W(\boldsymbol{\delta}) = \bigcup \{ f(W_{\alpha}) : \boldsymbol{\alpha} \in \boldsymbol{\delta} \}.$$

By the same argument as in the proof of (5) above, we can show the following:

(4) For each $p \in Y_0$ and each $V \in \mathcal{CV}$, if $p \in f^*(V)$, then there exists $\delta \in \Delta_n$, $n \in N$, such that

$$p \in H(\delta) \cap \operatorname{Int} W(\delta) \subset f(V)$$
.

Claim 1: There exists a pair collection

$$\mathcal{P}_1' = \{ (F_\beta, U_\beta) : \beta \in B_1 \}$$

of Y satisfying the following conditions:

- (5) $\{F_{\beta}: \beta \in B_1\}$ is a σ -discrete family of closed subsets of Y and if $\beta \in B_1$, then U_{β} is an open subset of Y such that $F_{\beta} \subset U_{\beta}$.
- (6) For each point $p \in Y$ and each $V \in CV$, if $p \in f^*(V)$, then there exists $\beta \in B_1$ such that

$$p \in F_{\beta} \subset U_{\beta} \subset f(V).$$

The proof of the claim: Since Y is semistratifiable, for each $\delta \in \Delta_n$, $n \in N$, Int $W(\delta)$ is a countable union of closed subsets $F_m(\delta)$, $m \in N$. Note that

$$\mathcal{H}(n, m) = \{ H(\delta) \cap F_m(\delta) : \delta \in \Delta_n \}$$

is a closure-preserving family of closed subsets of Y. Therefore by the method of Fact 4, from $\mathcal{H}(n, m)$. $n, m \in N$, we can construct σ -discrete closed covers $\{K_{\lambda} : \lambda \in \Lambda_{nm}\}$, of Y, $n, m \in N$. For each $\lambda \in \Lambda_{nm}$, $n, m \in N$ with the property that

$$\Delta_{nm}(\lambda) = \{ \delta \in \Delta_{nm} : K_{\lambda} \subset F_m(\delta) \}$$

is finite, take an open subset G_{λ} of Y such that

$$K_{\lambda} \subset G_{\lambda} \subset \cap \{ \operatorname{Int} W(\delta) : \delta \in \Delta_{nm}(\lambda) \}.$$

Let \mathcal{P}' be the same pair collection of Y as in the proof of Claim 2 above. Then we can easily see that

$$\mathcal{P}_{1} = \mathcal{P}' \cup \{ (K_{\lambda}, G_{\lambda}) : \lambda \in \bigcup \{ \Lambda_{nm} : n, m \in N \} \}$$

is the required pair collection of Y.

Using the *d*-paracompactness and semistratifiability of *Y* and applying the ergument of the proof above, we can get from $\mathcal{P}_1' = \{(F_\beta, U_\beta) : \beta \in B_1\}$ two pair collections

$$\mathcal{P}_1 = \{ (F_\beta, V_\beta) : \beta \in B_1 \}$$

and

$$\mathcal{P}_{2}' = \{ (F_{\beta}, U_{\beta}) : \beta \in B_{2} \}$$

of V satisfying the same conditions (9), (10) and (11) of the proof above. For each $V \in \mathcal{C}V$, set $W_1(V) = f^*(V)$ and

$$W_2(V) = W_1(V) \cup (\cup \{V_\beta : \beta \in B_1, F_\beta \cap W_1(V) \neq \emptyset \text{ and } U_\beta \subset f(V)\}),$$

Then for each $V \in \mathcal{CV}$, $W_1(V)$, $W_2(V)$ are open subsets of Y such that

$$M \subset W_1(V) \subset W_2(V) \subset f(V)$$

and it is obvious that if $p \in W_1(V)$, then there exists $\beta \in B_1$ such that

$$p \in F_{\beta} \subset V_{\beta} \subset W_2(V)$$
.

Repeating these processes, we can get a sequence $\{W_n(F): n \in N\}$, $V \in \mathcal{V}$, of open subsets of Y such that

$$M \subset W_1(V) \subset W_2(V) \subset \cdots \subset f(V)$$

for each $V \in \mathcal{V}$ and at the same time there exists a pair collection

$$\mathcal{P}_n = \{ (F_\beta, V_\beta) : \beta \in B_n \}$$

of Y such that

- (7) $\{F_{\beta}: \beta \in B_n\}$ is a σ -discrete family of closed subsets of Y and if $\beta \in B_n$, V_{β} is an open subset of Y such that $F_{\beta} \subset V_{\beta}$.
- (8) For each point $p \in Y$, each $V \in \mathcal{V}$ and each $n \in N$, if $p \in W_n(V)$, then there exists $\beta \in B_n$ such that

$$p \in F_{\beta} \subset V_{\beta} \subset W_{n+1}(V).$$

For each $V \in \mathcal{CV}$, set

$$W(V) = \bigcup \{ W_n(V) : n \in N \}.$$

Then it is easy to see that $\{W(V): V \in \mathcal{V}\}$ is an outer base of M in Y. By (8) and the proof of Lemma 1, it is dissectable in Y. This completes the proof.

The above proof assures the following: Let $f: X \to Y$ be a closed mapping of a *d*-paracompact semistratifiable space X onto a first countable space Y. If X has the property that every discrete family \mathcal{F} of closed subsets of X has a dissectable family $\bigcup \{\mathcal{W}(F): F \in \mathcal{F}\}$ of X such that each $\mathcal{W}(F), F \in \mathcal{F}$, is an outer base of F in X, then Y has the same property. On the other hand, it is obvious that a space X is developable if and only if X is a *d*-paracompact σ -space with this property.

From both observations, we can get the following as the corollary to Proposition 4:

COROLLARY. Let $f: X \rightarrow Y$ be a closed mapping of a developable space X onto a space Y. Then Y is developable if and only if Y is first countable.

This corresponds to the well known Hanai-Morita-Stone theorem that a closed image of a metric space is metrizable if and only if it is first countable.

THEOREM 4. If X is a d-paracompact σ -space and $X_0 \subset X$, then X_0 is also a d-paracompact σ -space.

PROOF. Let \mathcal{U} be an open cover of X_0 . We take a family \mathcal{U}' of open subsets of X such that $\mathcal{U}|X_0=\mathcal{U}$. Let \mathcal{F} be a σ -discrete closed network for X. For each $F \in \mathcal{F}$, we choose $U(F) \in \mathcal{U}'$ such that $F \subset U(F)$, if possible. Since X is d-paracompact, there exists an open set V(F) of X such that $F \subset V(F) \subset$ U(F) and such that $\{V(F): F \in \mathcal{F}\}$ is σ -dissectable in X. Then $\{V(F): F \in \mathcal{F}\}|X_0$ is a σ -dissectable refinement of \mathcal{U} . This proves the d-paracompactness of X_0 .

In the above, the condition " σ -space" cannot be omitted [B₂, 23p].

3. The comparison with s-paracompact spaces

A space X is semimetrizable if there exists a distance function $d: X \times X \rightarrow \mathbf{R}$ such that $d(x, y) \ge 0$, d(x, y) = d(y, x), d(x, y) = 0 if and only if x = y for all x, $y \in X$ and $\overline{A} = \{x \in X : d(x, A) = 0\}$ for each $A \subset X$, where

$$d(x, A) = \inf \{ d(x, y) \colon y \in A \}.$$

It is known that a space X is semimetrizable if and only if X is a first countable, semistratifiable space [Gr, Theorem 9.8]. Brandenburg called a space sparacompact if for every open cover \mathcal{A} of X, there exists an \mathcal{A} -mapping of X onto a semimetrizable space. Since every developable space is semimetrizable, every d-paracompact space is s-paracompact. He proposed the question whether every semimetrizable space is d-paracompact [B₂, Question 2]. If the positive answer would be given, both of d-paracompact spaces and s-paracompact spaces coincide. But we can give the negative answer to it. Thus, we can conclude that both are different.

To state Example 4, we propare the following:

PROPOSITION 5. Let Z be a space such that Z has the weight and cardinality

 $\leq \tau$. If $Y(\kappa) \times Z$ is d-paracompact for some $\kappa \geq \tau$, then Z is a developable space.

PROOF. Let Z bas a base \mathscr{B} with $|\mathscr{B}| \leq \tau$. Let $\{(p_{\alpha}, O_{\alpha}) : \alpha < \tau_1\}$ be the totality of the pairs (p_{α}, O_{α}) with $p_{\alpha} \in O_{\alpha} \in \mathscr{B}$, where $\tau_1 \leq \tau$. Note that

$$\{(\alpha, p_{\alpha}): \alpha < \tau_1\}$$

is a discrete closed subset of $Y(\kappa) \times Z$, and that $(\{\alpha\} \cup N(\times O_{\alpha} \text{ is an open neighborhood of } (\alpha, p_{\alpha}) \text{ in } Y(\kappa) \times Z$ such that

$$(m{eta}, \, p_{m{eta}}) \oplus (\{ m{lpha} \} \cup N) imes O_{m{lpha}}$$
 ,

if $\alpha \neq \beta$. Since $Y(\kappa) \times Z$ is *d*-paracompact, by Lemma 1 there exist a family $\mathcal{W} = \{W_{\alpha} : \alpha < \tau_1\}$ of open subsets of $Y(\kappa) \times Z$ and the *d*-development $\{\mathcal{U}_n : n \in N\}$ for \mathcal{W} in $Y(\kappa) \times Z$ such that

(*)
$$(\alpha, p_{\alpha}) \in W_{\alpha} \subset (\{\alpha\} \cup N) \times O_{\alpha}$$

for each $\alpha < \tau_1$.

Let $\pi: Y(\kappa) \times Z \rightarrow Z$ be the projection. For each $n, m \in N$, let

$$\mathcal{U}_{nm} = \pi(\mathcal{U}_n | \{m\} \times Z).$$

By (*), we can easily show that $\{\mathcal{U}_{nm}: n, m \in N\}$ is a development for Z. This completes the proof.

COROLLARY. For a space Z, the following are equivalent:
(1) Z is a developable space.
(2) Z×Y is d-paracompact for every developable space Y.

PROOF. $(1)\rightarrow(2)$ is obvious from the facts that the product of two developable and that every developable space is *d*-paracompact. $(2)\rightarrow(1)$ follows from the above proposition and the fact that $Y(\kappa)$ is developable.

EXAMPLE 4. There exists a semimetrizable space which is not d-paracompact.

CONSTRUCTION. Let $X = \mathbb{R}^2$ be the space with the bowtie topology. For each point $p = (x, y) \in X$, $\{B(p, \varepsilon, \delta) : \varepsilon, \delta > 0\}$ is a neighborhood base of p in X, where

$$B(p, \varepsilon, \delta) = \{p\} \cup \{(x', y') \in X:$$

$$0 < |x'-x| < \varepsilon$$
 and $|(y'-y)/(x'-x)| < \delta$.

Then X is a semimetrizable, non-developable space [Gr, Eemple 9.10]. Let

 $Z=Y(c)\times X$. Then by Proposition 6, Z is not d-paracompact. But Z is semimetrizable because semimetrizable spaces have the countably productive property.

The author should appreciate the referee's valuable suggestions, especially for the examples.

References

- [B₁] Brandenburg, H., Some characterizations of developable spaces, Proc. Amer. Math. 80 (1980), 157-161.
- [B₂] Brandenburg, H., On *d*-paracompact spaces, Top. Appl. 20 (1985), 17-27.
- [Bu] Burke, D.K., Perfect images of spaces with δθ-base and weakly θ-refinable spaces, Top. Appl. 18 (1984), 81-87.
- [C] Chaber, J., On d-paracompactness and related properties. Fund. Math. 122 (1984), 175-186.
- [G] Green, J. W., Completion and semicompletion of Moore spaces. Pacific J. Math. 57 (1975), 153-165.
- [Gr] Gruenhage, G., Handbook of set-theoretic topology (North-Holland), Chap. 10.
- [M₁] Morita, K., Products of normal spaces with metric spaces. Math. Ann. 154 (1964), 365-382.
- [M₂] Morita, K., Paracompactness and product spaces. Fund. Math. 50 (1962), 223-236.
- [O] Okuyama, A., A survey of the theory of σ -spaces. General Top. Appl. 1 (1971), 57-63.
- [P] Pareek, C. M., Moore spaces, semi-metric spaces and continuous mappings connected with them. Canada. J. Math. 25 (1972), 1033-1042.
- [SN] Siwiee, S. and Nagata, J., A note on nets and metrization. Proc. Japan Acad. 44 (1968), 623-627.

Joetsu University of Education Joetsu, Niigata 943 Japan