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AN ACCESSIBILITY PROOF OF ORDINAL DIAGRAMS

IN INTUITIONISTIC THEORIES FOR ITERATED

INDUCTIVE DEFINITIONS

By

Toshiyasu Arai

Let (/, -<) be a non-empty well-ordered system with the least element 0, and

/ be /W{co} with the largest element oo. Let A be a non-empty well-ordered

set. Then 0(1, A) denotes the system of ordinal diagrams (o.d.'s) based on /

and A. (cf. [9, §26].) The accessibility proof for 0(1, A) in [9, pp. 298-309]

shows that every o.d. from 0(1, A) is accessible with respect to <t for every i

in /.

The central notions in this proof are /-fans and /-accessibility for i in /.

Roughly speaking, an o.d. ft is an /-fan if for every /-</ and every /-section v

of fi,v is /-accessible, and an o.d. is /-accessible if it is accessible in /-fans with

respect to <*.

Consider the case when the order type of (/, -<) is a successor ordinal £+1.

If we formalize this accessibility proof for O(£+l, 1) (=0(1, 1)) naturally, then

this proof can be done in the intuitionistic theory lD＼+i for £+l-times iterated

inductive definitions.

The purpose of this paper is to show the following fact: the accessibility of

each o.d. from 0(6+1, 1) with respect to <0 is derivable in DDL (Theorem)

In the case when £ equals o), this theorem will complement the consistency-

proof in [1] in the following sense. We will give in [1] a consistency proof for

the subsystem (TI＼―CA)+(BI) of classicalanalysis by the accessibilityof O((o+1,1)

with respect to <0. It follows from the well-known equivalence between the

classical version ID^ of IDlw and (77J―CA)+(BI) that this consistency proof is

optimal.
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heart-feltthanks to Prof. N. Motohashi for reading this paper in manuscript and

suggesting a number of linguisticimprovements.
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Let -< be a primitive recursive well-ordering-with the least element 0 and

the largest element £, and / be the primitive recursive domain of -<. Let

Ix. x01 and Xx. x01 be primitive recursive successor and predecessor function

with respect to ≪<, respectively. And we will assume throughout this paper

that the above facts except the well-orderedness of -< are all derivable in the

primitive recursive arithmetic PRA, that is to say, we will assume that the

following formulae are all derivable in PRA:

x<y―>I(x)Al(y),

J(x)―> V(x<x),

x-KyAy-Kz ―> x-^z,

I(x)Al(y) ―> x-^y＼/x = y＼/y<x ,

1(0),I(x)―>0^x, (x^y: = x<yVx=y)

/(x)―>x^f,

I{x)―>x^x01,

x<$ -^ x<xm ,

y<x -^ j>cl^x ,

I(x)―^xQl^x,

x<$―+(xRl)Ql = x,

xQl<x―+x=(xQl)Rl.

Then the following formulae are also derivable in PRA:

*<£ -^ (y<x@l <-^ y^x),

x<£ ―> (x^3/^xcl ― -> y = xVy = xRl),

y<S ―* (y@l=x ―> xQl<x).

Further let Sue and Lim be unary predicate constants with their defining axioms :

Suc(x) <―> x01-<x ,

Lim(x) <―> I(x) Ax^0 A~7Sue(x).

Then the following formulae are also derivable in PRA:

/(x)･―> (x=O＼/Suc(x)VLim(x)).

Lim(x)Ay-Kx ―> y@l-Kx .

Next, we will consider the system of o.d.'sO*(I, 1). O*(I, 1)is an inessential
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modification of 0(1, 1). In contrast with 0(1, 1), O*(I, 1) has an identity 0 with

respect to %. For the precise definition of O*(I, 1), we refer to Levitz [7].

We will assume an arithmetization of the o.d.'s in O*(I, 1). Thus we have

the following predicate constants for primitive recursive predicates :

'* is an o.d.', '*xis a component of *2＼

*1= *2 for '*!, *2 are o.d.'s and *x is equal to *2.',

*iC#3*2 for '*!, *2 are o.d.'s, *3^f and *x is a *3-section of *2.',

*i<*3*2 for '*!, *2 are o.d.'s, *3^| and *j is smaller than *2

with respect to <*g.＼

In the following, we will employ the following syntactical variables:

i, j, k vary through the elements in /,

[i, v, p, 1 vary through o.d.'s.

Following Kreisel [6], we will define the notion of /-accessibility for z-<^ in

IDi(Sl) for some positive operator form St. Let %(X, Y, i, pi) be the following

positive operator form:

%(i, [x, Y)AVv<t[i(W, ≫,Y) ―> X(v))

where §(/, p, Y) is the formula V£<z"V'pdkfiY(k, p).

Let Prog IX, R, 7] be the formula

Vft{X(ft)AMR(v, fi)AX(v) ―> Y(v)) ―> Y(fjt)).

If we write A for the set constant P%, and Fi(fi)for Vj-<(i VvC^/i Aj(v), then

the axioms (P31.l)f and (Pn. 2)f in [4, p. 307] become the following (A. l)f and

(A. 2)f, respectively:

(Al)f VK?Prog[Ft, <u A{],

{A.2)e VKf (ProgCF,, <,, Q] ―≫i4,EQ),

for each formula Q in ID|(?I).

And further ID|(?I) has the following (TI)? going beyond the Heyting's

arithmetic:

(TI)f VKf (Vy</Q(7) ―> Q(z)) ―> VKf(?(0

for each formula Q in ID|C2l).

The intended meanings of At(fj.)and Fj(v) are that // is /-accessible and v is

a /-fan in the sense of introduction.

The following proposition is easily verified:
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Proposition 1. The following formulae are all derivable in ID'i(9I):

1.1. VKK^gF*);

1.2. VK£ V^(Ai(^HVv<^(Fi(yHAi(y)));

1.3. Vi^VfiVvift^vAFAti^Fib));

1.4. VKf V/i Vv(^ = vA^i(/i)->^i(y));

1.5. W-<£ ＼tfi(Vv('vis a component of fj~>Ai(v))-j>Ai(ft)).

Lemma 2. Let r＼k<iAk(fjt)be the formula Vk<j Ak(u). Then

Vt^(yj<i(AjQnk<jAk)-+Prog[Fi, <t, r＼k<iAkJ)is derivablein HM).

Put

Proof.

2.1. The case *=0. Trivial.

2.2. The case Sucii).

io=iQl,

then

i=*o01 and fo-<2

Assume that

then we have

r＼k<iAk=Aio.

Now we have to show

Prog[Fio91, <h91, Aio].

But the proof of lemma 26.32 in [9] can be regarded as the proof of

Prog [F^, <<o91, Ai0] inID|W.

2.3. The case Lim{i).

We can read the proof of lemma 26.33 in [9] as the proof of this case in ID|(9I).

Lemma 3. Let A be ni<?Ai. Then Prog [Ff, <f, A] is derivable in ID|(9l).

Proof.

From (A 2)$we have

VK£(Prog lFJf <jt r＼k<jAk]―+ AjGr＼k<jAk).

Hence it followsfrom lemma 2 that

W^CVK/ProgLF,, <j, r＼k<JAk2―>ProglFit <it r＼k<iAkD

It followsfrom thisand (TI)fthat

VK? Prog IFu <i, r＼k<iAk~],
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and

VKf Prog IFU <t, r＼k<iAk~]―> Prog [Fe, <Q, A]

Therefore the assertion follows.

Lemma 4. V≪<f (£,O)(F?(u)^A(^)) is derivable in ID|(2I).

213

Proof.

Let Ri(v) be the formula:

＼fp<z(i,v)(Fs(p) ―- 3(ju)).

Firstly we will prove the following 4.1. :

4.1. VKf (/?i(0) ― Prog [Fif <if /?≪]).

For this, suppose that Kf, #i(0), F,^), Vv<i/o(Fi(y)->i?i(y)), ju<{(*, p) and Fe(//).

Now we want to show that j4(//). We may assume ft is connected by pro-

position 1.5.

Furthermore we may assume

by the assumptions i?i(0) and /n<$(i, p). Therefore p. must be of the form (z,p,').

/-<| and (/, fi')<s(i, p) imply //''<tp. Fs{(i, p')) implies Ai(pf). It follows from

proposition 1.1. that Fi(p'). It follows from these and the assumption

Vv<i/o(Fi(v)->/?i(v)) that Rt{p'), i.e.,

V^<fiu(W)―>^W))-

It follows from this and lemma 3 that A(p).

4.1. and (A2)e imply that

VK6(i?,:(0)―> AtQRt).

Since for some primitive recursive function /, we have:

VKS V/*(/i<f (*c1, 0)A%) ―■> /i<?(z, /(*, tiVAAiifti, ft)))

we have the following 4.2. :

4.2. VKK^(O) ―> RtUO)).

On the other hand, R0(fl) and Vi<.HLim(i)AVj<iRj(O)^RM) clearly hold.

Hence from (TI)^ we have:

4.3. W<^((0).

If LimCE) holds, then the assertion follows from 4.3. Assume that Sue(£), i.e..
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£=(£c1)01. By 4.3. and 4.2. we have i?f01(O), i? ei(O)->/?f(O), hence also /?e(0).

TI [X, i?, F, //] abbreviates the formula:

Z(/i)A(Prog [X, /?, F] ―> Vv(/?(v, pt)AX(v) ―* F(v))

and TI [X, i?, /*] denotes the schema {TI [X, i?, Q, //]}e. Namely, TI IX, R, pi]

Is derivable in ID|(2I)' means that TI ＼_X,R, Q, pi] is derivable in ID|(?l) for every

formula Q in ID|(?l).

Lemma 5. TI [Ff, <b (£,0)] fs derivable in ID|(?I).

Proof.

5.1. The case Lim( ).

For each formula Q, let (?*(//) be the formula:

{j<z(i,O)―>Q(pi).

Since pt<^(i, 0) implies that ^ has no /-section for all j^i, the following is easily

verified:

P<e(t, 0) ―> (v<tpiAFt(v)Av<e(i, 0) <―> vK^AF^v)).

It follows from this that:

Prog [Ff, <f, Q] ―> VK^Prog [Ft, <f, <?4] .

This and (A2)$ imply that:

Prog [Ff, <f, (?] ―> VK£ MiSO*) ･

That is,

Prog [Ff, <e, Q] ―> Vf<? V//<f (z, 0)(^<(//) ―> (?(^

Thus by lemma 4 we have the assertion.

5.2. The case Swc(f).

We have easily the following 5.2.1. :

5.2.1. V/i Vy (v<au<e(£, 0) ―> v<eei^).

Put

i?(i≪):=^<f(£, 0)―^>Q(pt),

then we have the following 5.2.2. by 5.2.1.:

5.2.2. Prog [Fff <f, (?] ―> Prog [F?ei, <e01, fl] .

It follows from 5.2.2. and (A.2)s that:

Prog [Fe, <e, (?] ―> V≪<5(|, 0)(^IQl(≪) ―> (?(≪)).
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Thus by lemma 4 we have the assertion.

Let ft be the numeral corresponding to n for each natural number n. Let

1%. $(x, 0) be the primitive recursive function defined by:

£(0,0)=0, £U+1, 0)=(£,£U, 0)).

Next, we will show that TI [_FS,<e, £(n,0)] implies TI [i> <=, £(n+I, 0)]

for n^l, following Gentzen [5].

Let Xfiv.[x+^v be a primitive recursive function such that:

Suppose fj^O, v^0 and

Let / be the number such that

0^/^w and ^ ^v1 {>pti+1.

Then

Lemma 6. For each formula Q, let £[(?](//)be the formula

＼/p(Fi(p)-^{yv<ip(F^vy>Q(v))^Mv<iP+sfi(F^)^Q(v)))). Then

Prog[Ff, <*, Ql-^Prog[Fs, <e, t[QB is derivablein ID|(W).

Proof.

Obvious.

Lemma 7. For each formula Q, let s[(?](/*) be the formula f[Q]((f, //)),z.<?.,

V^/^o) -―> Wv<sP(F&) ―> Q(v)) ―> Vv<^+f(f, ^(^(y) ―> Q(v)))).

T/zen

Prog [Ff, <6, Q] ―> Prog [_Fb <6, s[(?]]

/s derivable in ＼D＼{%＼).

Proof.

By induction on x, we have:

7.1. FlU)As[(?]U)AFl(/?)AVv<^(/'≫ ― > Q(v)) ―>

―> Vx Vv<eio+e(^ X)'x{Fs(v) -~->Q{v))

where u-x ―a% ■･■%a{x times).
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Since we can defineprimitiverecursivefunctions/ and g such that:

^0Ay<^ + *(?,fi)AFs(v)―>Ff(/(v,p, fi))Af{v,p, pt)<^A

AK5]o+f(^ f(v,p, fi))-g(v,p, ft),

it followsfrom 7.1.that:

7.2. ttmAF&)An<sft(F&) -+ s[Q]U)) ―> slQJfi).

By lemmata 5 and 6, we have:

7.3. Prog [Fe, <,,(?] ―> s[Q](0).

7.2.and 7.3.imply that:

Prog IF,, <?> Q] ―> Prog [Fe, <f, s[(?]].

From lemmata 5 and 7, we have the followinglemma by metainductionon n

Lemma 8. TI [F-, <f, £(w, 0)] is derivable in ID£(9l)/or eac/z natural number n.

Theorem. A0(＼[jl＼)is derivable in ID|(2t) for each o.d. pi from O*(I, 1),

where T≪l is the godelnumber of a.

Proof.

For some primitive recursive function /, we have in PRA v5go£(/(v)>0)- By

lemmata 3 and 8 we have J4(£(/(l>1),0)) in ID|(W). In particular AMf^f^), 0)).

Hence from proposition 1.2. A0(Jti＼)is derivable in ID|(9I).

Remarks.

1. Let T1 be the theory ID£(9t)and ProvTi be a canonical proof-predicate

for T!. Then we have constructed a primitive recursive function p such that:

PRA proves that 'x is an o.d. from O*(I, 1)'―> ProvT＼{p{x),r^40(i:)l),

where fA0(x)~lis a term whose value is the godelnumber of A0(n) when the

numeral n is substituted for the variable x.

2. Let the order type of -< be 2 or o+l, T be the classicalversion of T£

and T* be the subsystem (BI) or (ZT[―CA)+(BI) of classicalanalysis,respectively.

Then by the well-known translation * (cf. [4].), we have

ThAoifi) implies T*＼-At({i)

and also

T*h-/!?(/*)―>TI<0[>]

where TI<0[≪] is the formula
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VXWv<opWp<ovX(p) ―> X(v))―^ Vv<0//X(y)).

Hence from the remark 1, we have:

PRA proves that 'x is an o.d. from O*(I, 1)'―> Provr>(p*(x), TI<0[i])

for some primitive recursive function p*.

On the other hand, we will prove in [1] the consistency of (BI),(77i―CA)+

(Bl) by the accessibilityof 0(2, 1), 0(≪y+l,1) with respect to <o, respectively.

3. From the remark 2, we have

|IDi,|= |ID.| = |(/7i-CA)+(BI)| = |0(a≫+l, 1)|<,

where |IDL1 denotes the order type of the least unprovable recursive well-

ordering in 1DL, etc., and |0(a>+l, 1)]≪,denotes the order type of the system

0(<w+l, 1) with respect to <0.

Following Buchholz and Pohlers [2], and Pohlers [8] the common ordinal

equals to &sqcii+10. Thus we have indirectly:

|0(o>+l, l)＼<o=ee0m+10.

This is an analogue to the fact:

＼O(n+ l, l)|<0―@£on+iQ for every n such that l^n<co.

But note that the latter was established directlyin Levitz [7] and Buchholz and

Schiitte [3],

4. By [2] and [8]

|ID|| = |IDf[=6>£^+10 for S<9QOl0,

and

]ID^| = |ID<j|=6>i2fO=supc<l0££C+1O for limit q^0Q.QlO.

On the other hand, for limit $ and £<£,the subsystem {jkgO^, 1):^<o(C+1, 0)}

of O(£,1) is nothing but O(C+1, 1),

Hence we have:

|O(^, l)|<0=supc<e|O(C+l, l)|<o for limit £.

So one may conjecture that

|O(|+1? l)I<o-0£^+1O,

＼O& l)|<o=0!2fO, |; limit,

for appropriately small $.

But we have not verifiedthis conjecture in any way.
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