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§1. Introduction.

Let (Q, F, P) be a probability space with an increasing family {Ft; t}>0} o1

sub-a-algebras of F and let W(t) be a ^-dimensional Brownian motion process

adapted to Ft. Then, we consider, on the Euclidean d-space Rd, the system ol

the stochastic differentialequations;

(1.1) dX'(t)=b(X£(t))dt+ell2o(Xs(t))dW(t), X%0)=x^Rd,

where s>0 is a small parameter, b(x)=(bi(x))i=u...tdis a <i-vectorfunction and

0(x)=(<Tij(x))i,j=;lt...'dis a cfXd-matrix function. Throughout the paper we assume

that b(x) and a{x) satisfy a local Lipschitz condition with respect to x<E.Rd.

We shall study the behavior of Xs(t) as e-≫0. This behavior will depend

on the behavior of solutions of the dynamical system;

(1.2) dX＼t)=b(X＼t))dt, X°(0)=x^Rd,

The system (1.1) can be considered as a small random perturbation of (1.2),

with randomness expressed by a diffusion term s1/2adW. Set a(x)=a(x)a*{x),

where the * means transpose. When a(x) is uniformly ellipticand bounded,

Freidlin and Wentzell [2] and also Friedman [3] obtain the large deviation

principle for X%t). The former assumes the boundedness condition on b(x) and

a{x) together with a global Lipschitz condition in Rd. The latter assumes the

boundedness condition on a(x) and b{x) together with a global Holder condition

with exponent 0<a^l in the whole space Rd. Recently, under the positive

defmiteness condition on a(x), Stroock [6] shows the large deviation principle,

only assuming that b(x) and o(x) satisfy a global Lipschitz condition in Rd.

The firstpurpose of this paper is to obtain a large deviation principle for

X£(t)under a satisfaction of some growth restrictionon b(x) and a{x). The

most illustrativeapplication is Theorem 3.1 with Example 2.1. It asserts that,

in the problem of large deviations, the classicalcondition of linear growth in

the phase variable of the coefficientscan be weakened bv allowing: a logarithmic
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factor.

Next, let f(u) and g(u) be scalar functions wnich satisfy a local Lipschitz

condition with respect to u^R1, and introduce the function

F(u)=["/(s)ds.
Jo

Then, we consider the following systems of the two-dimensional stochastic dif-

ferentialequations;

X'(t)=(Xl(t), XX!)),

| dXl(t)=lXi(t)-F(Xl(tmdt,

＼
dX*2(t)=-g(Xi(t))dt+e1!2dw(t),

X%0)=xe£R＼

X'(!)=(XX!), XX!)),

( dXl(!)=lXX!)-sF(XKt))-]dt,
(1.4)

i dXKt)=-g(Xl(t))dt+£1/2dw(t),

X%0)=x(eR2,

where w(t) is a one-dimensional Brownian motion process adapted to Ft. The

solutions of (1.3) and (1.4) can be regarded respectively as the responses of the

harmonic oscillatorsof the Lienard type

(1.3)' u+/(w)w+g(u)=e1/8u>

and

(1.4)' u+ef(u)u+g(u)=e1/2w

with damping / and restoring force g to the (formal) white noise w, where the

dotted notation stands for the symbolic derivative d/dt. The second purpose

of this paper is to get large deviation results for solutions of (1.3) and (1.4).

The results of Theorem 4.1 and Theorem 5.1 generalize the estimates of

Dubrovskii [1] which treats a special case of (1.3)' with /=0 and g satisfying

a global Lipschitz condition in R1. We note that (1.3)' and (1.4)' contain the

oscillatorof the Van Der Pol type;

f(u)=uz-l, g(u)=u,

where the deterministic system has a stable limit cycle in the Lienard plane

(u, v) with

v―u-＼-F(u) or v=u+eF(u).
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In accordance with Stroock [6, p. 23] and Varadhan [7, p. 3] we give the

following definitions.

Definition 1.1. Let I be a complete separable metric space with Borel

field <B. We say that the function /: X―>[0, oo] is a rate function if

(i) im°o,

(ii) / is lower semi-continuous,

(iii) for any /^0, {x; I(x)t^l) is compact.

Definition 1.2. A family {fjts;e>0} of probability measures on (X, S) is

said to satisfy the large deviation principle with a rate function / if

(1.5) lim sup slog a＼C)<- inf I(x)

for all closed sets C in X, and

(1.6) lim inf s log fi%S)^ - inf /(*)
s^o xe.S

for all non-empty open sets Q in X. When X is a metric space with metric p,

we shall use the equivalent estimates later on :

(I)e<] for any <5>0, r>0 and so>O there exists an £0>0 such that

ft°{y;p(x, 3>)<d}^exp{--J-(/(x)+r)}

(II)

for all s^e0 and all x6(P(s0), where &(s)={x; I(x)^s];

for any 8>0, r>0 and s>0 there exists an £0>0 such that

ft'iy;p(y, 0(s))^a}^exp{--(s-r)}

for all £^sSo, where p{y, @(s))= inf p{y, x).
ie*(≫)

The following remark follows from Freidlin and Wentzell [2, pp. 84-85].

Remark 1.1. When I(x) is a rate function on X, (1.5) is equivalent to (II)

and also (1.6) is equivalent to (I)en.

§2. Explosion and upper bound of solutions.

Here we evaluate the asymptotic probability with which the solutions of

(1.1),(1.3) and (1.4) leave the bounded domain. For this purpose we treat the

general form of the system;

(2.1; dX'(t)=bs(X%t))dt+e1/2a(X%t))dW(t), X%0)=x^Rd,



214 Kiyomasa Narita

where b%x)={b＼(x))i=l,...idis a rf-vectorfunction depending on s>0 and satisfy-

ing a local Lipschitz condition with respect to x^Rd. Denote by L£ the dif-

ferential generator associated with (2.1),i.e.,

(2.2) Ls=
d

≫'M-k +
1 <* 32

where a(x)=(aij(x))iij=u...idis defined by a(x)=e(x)<r*(x). We shall use the

following notations. For x^Rd and y<=Rd, let <x, 3;) be the inner product of

x and y and let ＼x＼be the Euclidean norm of x. For a dxd-matrix M=

(mtJ)t,j,..,d,define ＼M＼=(.S m＼3)ll＼ Denote by C＼Rd) the family of scalar
i,j―1

functions which are twice continuously differentiable with respect to x^Rd.

For the future use we give the following theorem.

Theorem 2.1. Let X°(t) be the solution of (2.1) with the initial state Xs(0]

―x^Rd, and let es(x) be the explosion time of X%t). Suppose that there exist

positive constants c and r and that there exist a non-negative function V^C2(Rd]

and a non-decreasing differentiable function /3: [0, oo)―>[0, oo), satisfying the fol-

lowing conditions;

(2.3) sup L'V(x)+11 a*{x) grad V{x)I2
)

o<ssi Z l-＼rp{y(x))

^cfi{V(x)) for all ＼x＼^r ,

where L$ is defined by (2.2),

(2.4)

(2.5)

vR= inf V(x) ―> oo as i?―>oo

f~ du

1
―QQ

Jo l + j8(u)

Then, for each 0<s^l we have

P(ee(x)=oo)=l for all x^Rd

Further, let us assume vr= sup LeV(x)<oo
IxlSr

Then, for each T>0

(2.6) Urn lim sup elog P( sup ＼Xe(t)＼̂i?)=-oo .
ie-oo e-o ostsr

Proof. For any constant ^>0, set H{x)=exp{Xk(V(x))}, where

rv
Kv)=＼

Jo

du

l+j8(u)
Then, a simple calculation yields
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L'H(x)=L'V(x)

+

<:

X
H(x)

2-e|<r*(x)gradFU)|2

l+j8(V(*))

U+/3(F(x))}2
H(x)

[L'V(x)+-e＼o*(x)gradV(x)＼2

1+/3(F(%))

]

H(x)
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for all x(ERd, since /3'^0 by the assumption. Now, take X―l/e with 0<s^l

so that

(2.7) LeH(x)£ ―

1

- e l+#7(x))

X
[L£F(x)+

― |a*(x) grad V(x) |2
1

l+j8(7(x))
]h(x)

for all x<ERd. Combine (2.7) with (2.3) and notice that £/(l+/3)^l. Then,

under our assurrmtions. we have

L*H(x)£― c!(l+H(x)) for all ＼x＼7>r

with a constant c>0 being independent of e. Define H(x)=l+H(x). Then,

(2.4) and (2.5) imply that inf H(x)->oo as i?^oo. Moreover, H(x) satisfies
ITl>P

(2.8)
L°H(x)^―cH(x) forallUl^r

This inequality, as follows from Narita [5, pp. 397-398], leads us to non-occur-

rence of the explosion for any initialstate in Rd. Put TR―'mf{t; ＼X*{t)＼^R}

if such a time exists,and let r^=oo otherwise. For each ^0, set tR=t/＼tRf

where aAb stands for the smaller of a and b. Apply Ito's formula concerning

stochastic differentialsto Xs{t) and H(x). Then, since we can choose c by the

assumDtion y.<oo so that (2.8) mav hold for every x<=Rd. we have

ElH(X%t%)n£H(x)+-c＼tElH(X%s%))-]ds
S Jo

So, the Gronwall-Bellman inequality yiek

E[H(X%t%m£H(x)exp (-ft) .

where Sr=sAtsr. So, the Gronwall-Bellman inequality yields

Put ff=l+H. Then

ElH(X%th))^E[H(X%th)); r^tl

^exp{-k(VR)}p(r%^t),
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where VR=
inf

＼X＼HR
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V(x). Accordingly, we get

P(T%£t)^exp＼--k(VR)+jct＼[l+exp{^-k(V(x))}^

Since log (1+0^log 2t for t^l, we see

slog P(tR^t)<-k(V R)+ct+slog 2+k(V(x)),

and so

lim sup £log P( sup ＼X$(s)＼^R)^-k(VR)+ct+k(V(x))
E―0 OSxSt

Since £(Vfl)->ooas R->co by (2.4) and (2.5), we obtain (2.6) and complete the

proof.

Remark 2.1. When b'(x)=b(x) and a(x)=0, (2.3) becomes

(#) F'a^^S^wl^-^c^yU)) for all |x|^r.

Then, the condition (#) together with (2.4) and (2.5) gives the existence of the

global solution of the dynamical system (1.2)(see LaSalle and Lefschetz [4; §24,

Chap. 4]).

Remark 2.2. In particular, we notice that for the function V(x)= |x|2,

L£V(x) has the form

L£F(x)=2<x, bB(x)>+s＼o(x)＼2.

Hence the condition (2.3) holds for V(x)=＼x＼2, once the following inequality is

satisfied:

(2.9) sup 2<x, b%xy>+ Ia(x) 12+21 o*(x)x ＼2
R] 8o<£Si l+p( ＼X )

^cfi(＼x＼2) for all ＼x＼^r.

Replacing b£(x)of (2.9) by b(x), we apply Theorem 2.1 to to the system

(1.1) and get the following result.

Corollary 2.1. Let Xe(t) be the solutionof (1.1) with the initialstate XE(0)

= xei?d, and let ez{x) be the explosion time of Xs(t). Suppose that there exist

positive constants c and r and that there exists a non-decreasing differentiable

function B: [0, oo)―>[0,oo),satisfying the following condition;

(2.10) 2(x, b(x)>+＼a(x)＼2+2＼o*(x)x＼2

1

l+j8(|*|2)
£cp(＼x＼2) for all ＼x＼^r

where /3satisfies(2.5). Then, for each 0<s^l we have

P(eHx)=cv)=l for all x<=Rd
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Moreover, for each T>0

lim lim sups log P( sup ＼X£(t)＼:>/?)= ―co .
ie-oo e^o ostsr

Example 2.1. Suppose that

(2.11) ＼b{x)＼2+＼a(x)＼2£KX(＼x＼*)forall|x|^r

with some constants K>0 and r>0, where A(m)=(1+m) log (1+m1/2). Then,

(2.10) holds with the function j8(m)=u+^(m). Therefore, the condition (2.10)

corresponds to a generalization of (2.11) which is a restrictionon growth of the

coefficientsin Yershov [8, Theorem 5.2].

In the following we consider the systems (1.3)and (1.4). Define the matrix

a and the Brownian motion process Wit) bv

3 /Wo(t)＼

and W(t)=＼

where wo(t) is a (dummy) Brownian motion process which is independent o:

w(t). Then, (1.3) and (1.4) can be written respectively as the following forms

(2.12) dX＼f)=KX*(t))dt+ell2odW{t), X£(0)=;cei?2,

(2.13) dXs(t)=b%XV))dt+£ll2odW(t), X£(0)=x(eRz ,

where for x=(xu x2)^R2, b{x) and bc(x) are given by

Kx)=[ and b%x)=＼
＼-gM I ＼ -g(Xl) I

We shall need the following assumption.

Assumption 2.1. (A1) ug(u)>0 for all u^O,

(A2) -g(u)F(u)Sa(l+G(u)) for all wei?1

with a constant a>0 and

(A3)

where G(u)=＼ g(s)ds
o

G(u) ―> oo as | u |―>oo

We shall use the function

(2.14) V(x)=G(x1)+xl/2 for x-{xu x2)e#2.

Denote by LE the differentialoperator associated with (2.12) or (2.13), and con-

sider LsV(x) for the function V(x) defined by (2.14). Then, by Theorem 2.1

we get the following result.
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Corollary 2.2. Under Assumption 2.1, denote solutionsXE(t) of (1.3), Xs(t)

of (1.4), by the same symbel Ye(t),and let e＼x) be the explosion time of Ye(t)

with the initialstate Ye(Q)=x<^R2. Then, for each 0<s^l we have

P(e'(x)-oo)=l for all x<=R＼

Moreover, for each T>0

lim lim sup £log F( sup ＼Ye(t)＼^R)= ―oo .

§3. Large deviation principle for non-degenerate diffusions.

Let us consider the system (1.1), and denote by Xe(t,x) the solution Xe(t)

of (1.1) with the initialstate X'(0)=x^Rd, i.e.,

X%t, x)= x+^Wis, xVds + e^'aiX'is, x))dW{s)
Jo Jo

Also, consider the solution X°(t)of the system (1.2),i.e.,

X＼t)= x+r&(*°(s))ds
Jo

Remark 3.1. Assume the same conditions as in Theorem 2.1 except that

b%x) is replaced by b(x). Then, Theorem 2.1 and Remark 2.1 imply that both

Xs(t, x) and X°(t)become global solutions.

Hereafter, by C([0, oo); Rd) (resp. C([0, T]; Rd)) we denote the space of

all continuous functions $(t), 0^t<oo (resp. O^t^T), with range in Rd. By

C°k(Rd) we shall denote the family of scalar functions which are infinitely dif-

ferentiable with respect to xeRd, having compact support. The main result

of this section is the following theorem.

Theorem 3.1. Under the same assumption as in Corollary 2.1, set a(x)=

o{x)o*{x)=(aij(x))i,j=i,...,d,and suppose that a{x) is positive definitefor all x&Rd

and that ais^C＼Rd) for all i, j=l, ■■■,d. Let X＼t, x) be the solution X＼t) of

(1.1) with the initial state Xe(0)=x^Rd, and let Pi be the probability measure

induced by X*(-, x) on C([0, oo); Rd). Define Iax＼bTon C([0, T]; Rd) by

(3.1) Iax:bT(<p)=j＼TQ<</>(t)-b(0(t)),a-＼<i>{t)){<i>{t)-b(<j){t)))>dt

if 0(0)=x and 0|[O,n is absolutely continuous,

IxItW^00 otherwise.

Then, Iax＼bTis a rate function. Moreover, for each T>0 and x^Rd, {Pj; e>0}

on C([0, T]; Rd) satisfiesthe large deviation principle with respect to 1%'t-
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Proof. Take a non-negative function yt^CcZc{Rd) such that

3(30=1 for 13'1^1, ^)=0 for ＼y＼^2,

satisfying 0^9(30^ 1 for all y<=Rd. For each i?>0, set r)R(y)=rj(y/R), and

define aR(y) and bR(y) by

aR(y)=7]R(y)a(y)+(l-7)R(y))I and bR(y)-r]R(y)b(y),

where / is the identity matrix. Then, we see that aR(y) is positive definitefor

all y^Rd. The (z,/)-element aRtij of aR belongs to C＼Rd) for alli, j=l, ･■･, d

and

SUP SUP -^ sr-^- ^Mfi
vefld i,j,*,i oykoyi

with a constant MR>0 depending on R. Thus, aR has a unique non-negative

square root aR which satisfiesa global Lipschitz condition with respect to y^Rd

(see Friedman [3, p. 129]). Combining this with the fact that bR(y) satisfiesa

global Lipschitz condition with respect to y<^Rd, we see that there exists a

pathwise unique solution Xe-R(t,x) of the system (1.1) with b=bR and a―aR,

starting from x^Rd. Denote by P£-R the probability measure induced by

X'-R(-, x) on C([0, oo); Rd). Then, as follows from Stroock [6, p. 85], {PiR;

s>0} on C([0, T]; Rd) satisfiesthe large deviation principle with a rate func-

tion IaxRiR, where IaxRfbRis defined by (3.1) with a = aR and b=bB. In the fol-

lowing let iGi?" and T>0 be arbitrary and be fixed. For (bgC([0, oo); Rd),

set

C≪=infU; ＼(o(t)＼^R}

and denote by MT the (T-algebra generated by {o){t);O^t^LT}. Then, we first

notice that

(3.2)

and that

(3.3)

PZ'R(An{£R^T})=P*(ArMCR^T＼) for any A^MT

IaxRtR{<j))=Iax'}{<j)) for any 0eC([O, T]; Rd) satisfying ＼＼<j>h^R,

where 11(4IIr=sup 10(01- For the proof of Theorem, we have only to show
OStiT

that Ix'.t satisfies(iii)of Definition 1.1 and that {Pj;; e>0} satisfies(1.5) and

(1.6) of Definition 1.2. Using the estimate of Corollary 2.1, we can proceed the

proof as in the proof of Stroock [6, p. 87].

Let Q be any open set in C([0, T] ; Rd). Then, we can see

(3.4) lim
e->

inf e log PBX{8)^- inf I%-bT{6)
0 (iFfl ' r
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if we can obtain the followingestimate:

(3.4)' liminf slog P&S)Z -Iax＼lim i: br(4>)

for all 0eC([O, oo); Rd)r＼S satisfying 0(0)=x. So, we show (3.4)'. In fact,

for such a $ we can choose R>0 so that ||$||r<i? and then set BR―

{$; ＼＼<j)＼＼T<R}.Apply the large deviation principle with respect to the family

＼Pi'R＼£>0). Then, bv (3.2) and (3.3) we have

lim inf e log Px£(5)^lim inf s log P£(anBR)

=lim inf e log P*-R(GnBR)

£->0

>- inf /2y*(0)

inf JS;K0)

<p<=Gr＼BR

and hence we get (3.4)'. We next show that /£;£satisfies(iii)of Definition 1.1.

Apply the estimate of Corollary 2.1 to XE(t, x). Then, for any /<oo we can

find an 7?>0 so that

(3.5) limsup e log Px((B
e-0

rYX-i

Combining this with (3.4), we have

inf /;:K0)>/,

and so {$; I%$($)^l}£BR. This relation and (3.3) yield

Since /"f/* is a rate function, the latter set of the above equation is compact

in C([0, T] ; Rd), which implies the compactness of the former set.

Finally, let C be any closed set in C([0, T] ; Rd) and let /<oo be arbitrary,

and choose R so as (3.5) holds. Then, by (3.2) and (3.3) we see

lim sup s log P≪(C)^lim sup elog{ PZ'R(cr＼BR)+P'((BRY)}
£-0 s-0

£{- inf_/2y*(0)}V(-Q

^-[{inf/S;^)}A/],

where sW=max{s, t} and sAf^minls, t}. Passing to the limit as /―>ooin the

above eauation. we obtain
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lim sup elog P£(C)£- inf I^hT{6).

Hence the proof is completed.

The following theorem deals with a slight generalization of Theorem 3.1.

Theorem 3.2. Under the same assumption as in Theorem 3.1, suppose that

b＼x)―{bi{x))i=li,..idsatisfies(2.9) and that b&x)―>bi(x)uniformly in all x^Rd as

e->0. Denote by Xe(t, x) the solution X%t) of (2.1) with the initial state Xe(0)=

x^Rd and let Pi be the probabilitymeasure induced by Xs{-, x) on C([0, oo); Rd).

Then, for each T>0 and x^Rd, {Pj; s>0} on C([0, T] ; Rd) satisfiesthe large

deviatian principle with a rate function Ix'.tof (3.1).

Proof. Freidlin and Wentzell's theorem [2, p. 154] states that the above

Theorem 3.2 holds for bounded smooth ai} and b＼. Noting that (2.6) holds under

(2.9) we can prove Theorem 3.2 in the same way as the proof of Theorem 3.1.

§4. Oscillators of the Lienard type.

Before proceeding to the systems (1.3) and (1.4) we shall need some pre-

parations. Let C([0, T]; R1) be the space of all continuous functions

(p: [0, T3-+i?＼ and set

C^i^eCCCCT];/?1);^)^}.

Let f(u) and g(u) be functions which satisfy a local Lipschitz condition with

respect to u<=R＼ For any x―(xlt x2)^R2 and T>0, we consider a solution of

the following system:

(4.1)

^(O=x1 +
ftC02(s)-F(01(s))]rfs,

Jo

associating with each function c£eCl, where F(u)
[Uf(s)ds.

When (4.1) has a
Jo

unique solution, we shall use the following notations and definition.

Notation 4.1. For x―{xu x2)^R2 and T>0, define an operator A=A(x, T)

on CT0 by A<p=fa where <f>=(fa,fa) satisfies(4.1). Define <W=<W(x, T)=A[CTO1,

which denotes the set of all admissible paths initiating from x.

Set A―AF-g and <W―cWF'g, in case we need to emphasize that the system

(4.1) depends on the functions F and g.

Definition 4.1. Define the functional on <W(x, T) as follows;
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mmL+nm*R

Sfx-U<f>)=

+g(fa(t))]2dt

if 0=(0W ^)e^(x, T), <f>is absolutely continuous

and the integral exists,

otherwise.

Notation 4.2. Define

||0||t= sup ||0(s)||
ossst

for x=(xlt x2)ei?2,

for 0eC([O, T];i?2)

and

||0||t=sup|0(s)| for <P<eCto,

where tf^T. Further, define

I<p(t)| =(01(O2+^2(O2)1/2 for 0=(&, <f>2)^C([0, T] ; i?2),

where f£T.

Remark 4.1. Suppose that F(u) and g(u) satisfy a global Lipschitz condi-

tion with respect to wei?1. Then, both (1.3) and (4.1) have unique solutions

denoted by Xe(t) and $(t) respectively, and X＼t) has the form

Xs=A(el'2w).

Further, the operator A is continuous from (C[, ＼＼-＼＼t)to CW, ＼＼-＼＼t),having its

inverse A'1. Therefore, according to Freidlin and Wentzell [2, p. 81] and

Varadhan [7, p. 5], Schilder's theorem of the large deviation for the Wiener

measure with covariance s min{s, t) can be transferred to the probability mea-

sure corresponding to Xs.

Dubrovskii [1] treats the special case of the system (1.3) when /=0 and g

satisfies a global Lipschitz condition in R1 by using the method referred in

Remark 4.1. Unfortunately, we cannot proceed as in Remark 4.1 because the

operator A may not be continuous in general. So we take a truncation proce-

dure in order to get around this difficulty.

For each R>0, let r)R(u) be a smooth function on R1 such that

rjR{u)=l for ＼u＼^R, rjR(u)=0 for ＼u＼^2R

satisfying 0^inR(u)^l for all u<=R＼ Now, set

c
fR{u)=f]R{u)f{u), gR(u)=7)R(u)g(u) and FR(u)=＼ fR(s)ds

o

Then, since FR(u) and gR(u) satisfy a global Lipschitz condition with respect to
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u^R＼ there exist pathwise unique solutions of the systems (4.1) and (1.3) with

{F, g) replaced by {FR, gR), initiating from xei?2, which are denoted by $R(t)

and Xs>R(t)respectively. First, define the function $(t) by

#O=0*(O for t<tR, R=l,2,-,

where tR=T/＼ud{t; ＼$R(t)＼^R}. Hereafter we call $(t) a solution of (4.1). In

general, <j>(t)may not be continued to t=T. The following lemma assures us

that <j)(t)can be continued to t―T for each T>0 under the assumption below

and hence the existence-and-uniqueness for the solution of (4.1) holds on every

finiteinterval [0, T].

We shall need the following assumption.

Assumption 4.1.

g{uf^B{l+G{u)) for allu^R1 with a constantB>0,

ru
where G(u)=＼ g(s)ds.

Jo

The folloing functions satisfy Assumption 4.1;

g(u)=u, g(u)= Iu In sgn (u) with 0<n<l

X

Lemma 4.1. Let Assumption 2.1 and Assumption 4.1 hold. Then, for any

―(x,,x,)gF and T>0, each solution of (4.1) can be continued to t=T.

Proof. To the contrary, we assume that (4.1) has a solution 0(0=

(0i(O> $W0) defined on [0, To) and satisfying

lim 16{t)| = oo for some T0<T .
Jtr0

Here by | I we mean the usual Euclidean norm. In the following we take such

a solution 0(0 on [0, To) and evaluate F(0(O), where V is the function defined

by (2.14).

Observe the first equation of (4.1), so that

rfG(01a))=^(01(ox02(o-i?(01(o))rf^

Notice that 2ab^a2+b2 for a^R1 and beR1. Then, (A2) of Assumption 2.1

yields

g{ 0i(O)(02(0-^(01(0) )^ f i tf(0i(O)'+&(O8}+≪(1+^(^(0)) ･

Next, apply the Schwarz inequality to the second equation of (4.1), so that

y&(Oa^ f[*i+{j^(0i(s))d4'+W]
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-
f[xl+c^1(s))2flfs+^(°2

ogether with the fact that G^

G(?J1(O)^c1(To)+c2fV(^(s))rfs
n

Then, Assumption 4.1 together with the fact that G^V yields the following

inequalities;

(4.2) G(01(O)^c1(To)+c8fV(<4(s))<is

for all 0St<T0 with some constants Ci(T0)>0 depending on T0 and c2>0,

(4.3) y02a)2^rf1(To)+rf2(To)jy^(s))rfs

for all 0St<Ta with some constants di(T0)>0 and d2(T0)>0 depending on To

Taking the sum of (4.2) and (4.3), we get

V^(jt))^k1(T0)+ k2(T0)
J V(0(s))ds

for all 0^t<T0 with some constants &i(T0)>0 and kz(TQ)>0 depending on To.

By the Gronwall-Bellman inequality we have

O^V(0(O)^£i(To)exp{Ar8(To)f}<°° for all Q£t<TQ,

which is a contradiction. Hence the proof is completed.

REMARK 4.2. The oscillatorof the Van Der Pol type with f(u)=u*―l and

g(u)=u satisfiesAssumption 2.1 and Assumption 4.1, and hence Lemma 4.1 is

applicable for the oscillator.

Notation 4.3. Let i?>0 be arbitrary and be fixed. For x=(xu x2)^R2

and T>0, define an operator AR=AR(x, T) on C＼ by A＼x, T)=AFr-br{x, T)

and set <wR=<WR(x, T)=A*[CT0]-

Remark 4.3. The solution X*-K(t)of the system (1.3) with F=FR and g=gR

can be expressed by Xe-R=AR(ellzw). The operator AR is continuous from

(CT0,||-lit)to CWR, ＼＼-＼＼t),and also AR is invertible such that

[(>lB)-10](O=^2(O-*2+j^(^1(s))ds for any 0=(^, ^)=<pR^='WR.

Now, we proceed as in Freidlin and Wentzell [2, Chap. 3].

Definition 4.2. Define the action functional on Cl for the Wiener process

as follows:

m<P)
jrr

2 Jo
I―%r―1- dt if <p is absolutely continuous

and the integral exists.
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J ((p)=oo otherwise.

Further, define the action along ^^Gf^ by

SR,T(<f>)=If(AR(x,T)-1^) for $=$R&W＼x, T).

In terms of Definition 1.1,If is a rate function on Co- Substituting the

expression for (A*)'1 and noting that

d(j>S)/dt=Ut)-FR{<l>m for 0=(0X, 02)ewfl(x, T),

we find that

(4.4) S*r(0)=S{:K0) with /=/* and g=gB

whenever <f>={<ftu<f>2)<=<wR,<j>is absolutely continuous and the integral exists.

Theorem 4.1. Under Assumption 2.1. and Assumption 4.1, /ef Zc~(£,x) 6^

/Ae solution X£(t)of (1.3) wz7/ithe initialstate Xe(0)=x^R2, and let Psx be the

probability measure induced by Xs(-,x) on C([0, oo); R2). Then, the function

Sx'.tgiven by Definition 4.1 is a rate function. Moreover, for each T>0 and

xGi?2, {Pxlw ',£>0} satisfiesthe large deviation principle with respect to S{＼t-

Proof. For any a>0, put

and consider 6

where

0a(x, T)={<p^<W{x, T);Sfx-j(0)£a}

=(^i> ^)g^(x, T). Then, <j>is absolutely continuous and

[T＼$x(f)＼*dt£B,

B is a constant independent of <f>

62)^0a(x, T) satisfies

|0i(H-/i)-0i(OI =

for z= l, 2. Notice that

0i(s)=02(s)―F(0i(s)), so that

If O£t<t+h^T, then

Jt +h . i Ct+h . 1 1/2
0i(s)ds ^VhU |^(s)|Ms|

0=(0i, &2) is absolutely continuous and that

|?i1(s)|2^2{|^(s)-^1(O)|2+|01(O)!2}

=2{

<2

^(r)dr |V 10,(0)|2}

{s^J £(r) 12dr+ |^(0) |2}

and also|02(s)|2=|01(s)+/(01(s))^1(s)|2.Thus, we get

I^CH-ZO-^COI^VAB' for i=l, 2 if 6=(Alt 62)(E&a(x,T)
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where B' is a constant independent of (j>. Namely, $a(x, T) is a class of equi-

continuous functions. These functions are also uniformly bounded since 0(0)―x

belongs to some bounded set in R2. Therefore, the compactness of @a(x, T)

follows from the lemma of Ascoli-Arzela, and hence S{;f is a rate function.

In order to prove (1.6) for Px＼<w we notice that (W, ＼＼-＼＼t)is a metric space,

and then by Remark 1.1 we have only to prove the following estimate;

for any 8>0, r>0 and a>0 there exists an £0>0 such that

(4.5) Pi(||JP-0||r<mexp{-j(S&K0)+r)}

for all £^£0and all <f>^^a(x, T).

Choose R0>0 so that ||^||r</?0. By the estimate of Corollary 2.2, for any />0

we can find an i?i>0 so that for all R>Ri

lim sups log P( sup ＼Xs(t)＼^R/V2)<-l.
£-0 OStsT

Thus, for every ^>0 and s sufficientlysmall, we have

£logP( sup ＼X%t)＼^R/V2)<-l+r,
ostsr

and so

(4.6) P( sup ＼X%t)＼^R/V2)<exp＼--(l-r)＼

Put R'=max{R0, R,＼and then considerany R such that R>R'. Let Xs-R(t)

be the solutionof (1.3)with F=FR and g=gR, and let P^R be the probability-

measure induced by Xe>R(t)initiatingfrom xei?2. Let d>0 be arbitraryand

observe that

{＼＼X*-<j>＼＼T<5}^{＼＼X'-X^R＼＼T<j

Then, we obtain

(4.7) P{ ＼＼Xs-0＼＼T<d)^P(＼＼X^R-0＼＼T<

＼＼X^-<f>＼＼T<j＼

4)_p(llM,xaf)

Since ||0j|r<.#'<./?,the definition of FR and gR implies that

F^l)=FR(^1) and g(<j>i)=gR(<j)i) for such a 0=(0i, 02),

and hence <fi<='WR(x,T). Moreover, it follows from (4.4) that

si:M)=s*.Ty) for u＼＼T<R.

Since FR and gR satisfy a global Lipschitz condition in R1, by Remark 1.1 we

can get
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P(＼＼X^-0＼＼T< |>exp{- j(s*At)+r)}

=exp{-^-(S{;f(0)+r)}

On the other hand, we have XS=X*'R on ＼＼X£＼＼T<Rand

{||;c||^/?}g{U|^/?/V2"} for x=(xl7 x2)^R2

where Ixl ―(xl+xi)1'2. Then, it holds

p(||Z£-Z^||r^|-)

=p(＼＼x*-x*-*＼＼T>± ＼＼x*＼＼t<r)+p(＼＼x*-&*＼＼t>y>ll*fll^*)

^P(＼＼X'＼＼T^R)

^P( sup ＼X%t)＼^R/V2 ).
ostsr

Apply (4.6) to the last term of the above equation. Then we get

(4.9) p(＼＼X°-X-≪＼＼T^j)<exp{-Ul-r)}

Combining (4.9) and (4.8) with (4.7), we obtain

P(||Z£-0||r<5)^exp{--(S{;^)+r)}-exp{--(/-r)}
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Let /1 co in the above equation. Then we get (4.5).

In order to prove (1.5) for P£＼<wwe consider the opposite inequality and

follow the same argument as in the preceding procedure. Then, for Px＼<w,we

can obtain the equivalent estimate (II) introduced by Remark 1.1, completing

the proof.

§5. Oscillators with damping multiplied by e.

Here we treat the system (1.4) and establish the same result as in Theorem

4.1. For this purpose, let us consider the systems (1.3) and (4.1) with F=0,

which have unique solutions under Assumption 2.1 and Assumption 4.1 on g,

since Corollary 2.2 and Lemma 4.1 hold. For each xei?2 and T>0, define CW―

<W(x, T) by cW=WF-g(x, T) with F=0, and then define the functional S8X＼Ton

<W as follows:
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(5.1) S>x.Tty)=
"2Jo
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[£ML+gi^dt

if 0=(0i, <f>2)<^cW(x,T), (j)is absolutely continuous

and the integral exists,

S8x,t{<}>)=co otherwise.

Further, define wR=cWR(x, T) by cWR='WF-g(x, T) with F=0 and g=gR, and put

(5.2) Sir(0)=5i:r(0) with g=gR

Then, we obtain the following theorem.

Theorem 5.1. Under Assumption 2.1 and Assumption 4.1 on g, let Xs{t, x)

be the solution XE(t) of (1.4) with theinitialstateXs{0)=x(eR2, and let Pj be the

probability measure induced by Xe(-, x) on C([0, oo); Rz). Then, for each T>0

and xGi?2, {Px＼<w
>£>0}

satisfiesthe large deviation principle with a rate func-

tion S|,r defined by (5.1).

Proof. Let X"-B(t) be the solution of (1.3) with F=0 and g―gR, and let

Xe-R(t)be the solution of (1.4) with F=FR and g=gR, initiating from the same

state xg]?2. Denote by P£>Rand P^R the probability measures induced by X£-R

and X£-Ron C([0, oo);i?2), respectively. Then, we can proceed as follows:

Step 1. For each T>0 there exists a constant if(T, /?)>0 depending on T

and i? such that

(5.3) P( ＼＼Xs-R-Xs'R＼＼TSsK(T,R))=l.

Step 2. Since Theorem 4.1 applies to PxR except that {S£;£,W] is replaced

by {SR,T, CWR), (5.3) implies that {Pj-S|#* ; s>0} satisfiesthe large deviation

principle with respect to SR,T> where SR,T is given by (5.2).

Step 3. The proof of the theorem from Step 2 is quite analogous as the

proof of Theorem 4.1, and we omit the details.
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