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IDEMPOTENT RINGS WHICH ARE EQUIVALENT
TO RINGS WITH IDENTITY

By

J. L. GARCIA!

Let A be a ring such that A= A? but which does not necessarily have an
identity element. In studying properties of the ring A through properties of
its modules, it is pointless to consider the category A-MOD of all the left A-
modules : for instance, every abelian group -with trivial multiplication- is in
A-MOD. The natural choice for an interesting category of left A-modules
seems to be the following: if a left A-module 4M is unital when AM =M, and
is A-torsionfree when the annihilator :4(A) is zero, then A-mod will be the
full subcategory of A-MOD whose objects are the unital and A-torsionfree left
A-modules. The category A-mod appears in a number of papers (for instance,
[7-9]) and when A has local units [1, 2] or is a left s-unital ring [6, 12], then
the objects of A-mod are the unital left A-modules. A-mod is a Grothendieck
category and we study here the question of finding necessary and sufficient
conditions on the ring A for A-mod to be equivalent to a category R-mod of
modules over a ring with 1. This was already considered for rings with local
units in [1], [2] or [3], and for left s-unital rings in [6]. Our situation is
therefore more general.

In this paper, all rings will be associative rings, but we do not assume
that they have an identity. A ring A has local units [2] when for every finite
family a;, -+, a, of elements of A there is an idempotent e= A such that ea;=
a;=aje for all j=1, ---, n. A left A-module M is said to be unital if M has
a spanning set (that is, if AM=M); and M has a finite spanning set when
M=3Ax; for a finite family of elements x,, ---, x, of M. The module M
will be called A-torsionfree when 14(A4)=0. A ring A is said to be left nonde-
generate if the left module 4A is A-torsionfree, and A is nondegenerate when
it is both left and right nondegenerate (see [10, p. 88]). Clearly, a ring with
local units is nondegenerate. The ring A will be called (left) s-unital [12] in
case for each a< A (equivalently, for every finite family a,, ---, a, of elements
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of A) there is some uc A such that ua=a (respectively, ua;=a,, for alli): see
[12, Theorem 1]. Any left s-unital ring is idempotent and left nondegenerate.

We will say that a ring A is generated by the element a= A in case A=
AaA. The above mentioned results of Abrams and Anh-Marki [1], [2], and Koma-
tsu [6] may be stated as follows: if A has local units, then A-mod is equivalent
to a category of modules over a ring with 1 if and only if A is generated by an
idempotent e [2, Proposition 3.57; if A is left e-unital and A-mod is equivalent
to the category of left modules over a ring with 1, then A is generated by some
element a [6, Proposition 4.7].

In the seguel, we will be dealing with left modules, and so we follow the
convention of denoting the composition g-/f of two module homomorphisms as
the product fg. On the other hand, if R is a ring with 1, zM is a left R-
module and E=End(zM) is its endomorphism ring, then we will denote by
E,= f End(zM) the following subring -in general, without identity- of E: E,=
{feE|f: M—M factors through a finitely generated free module}.

We now state and prove the following result.

THEOREM. Let A be an idempotent ring. Then the category A-mod is eqi-
valent to the category R-mod of left modules over a ring R with 1 if and only
if there is some integer n=1 such that the matrix ring M,(A) is generated by
an idempotent.

Proor. We divide the proof in several steps.

Step 1. For any idempotent ring A, let us put ann(A)={x=A|AxA=0}
and A’ :=A/ann(A). Then A’ is a nondegenerate idempotent ring and A-mod
and A’-mod are equivalent categories.

The fact that A’ is nondegenerate is easy to verify. On the other hand,
if ¢: A—A’ is the canonical projection, then one may see that the restriction
of scalars functor &4 gives indeed a functor from A’-mod to A-mod. Now, if
M belongs to A-mod and a<ann(A4), then AaM=AaAM=0, so that aM &
wz(A4), and aM =0, because M is A-torsionfree. As a consequence, there is a
functor F: A-mod— A’-mod which views each 4M of A-mod as a left A’-module.
Then F and ¢4 are inverse equivalences and hence A-mod and A’-mod are
equivalent categories.

Step 2. For each n=1, let A be the matrix ring M,(A). Then A-mod and
A-mod are also equivalent categories.

To see this, consider the bimodules (A", and 4(A™, and the natural
mappings @ : A"Q.A—A, U: A"Q A"~ A. It is clear that they are bimodule
homomorphisms which give a Morita context between A and A (if we represent
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elements in ,(A"), in row form, and elements of 4(A4"), in column form, then
® and ¥ are induced by products of matrices). Also, the fact that A is idem-
potent allows us to deduce that @ and ¥ are surjective. Then, by [7, Theorem],
A-mod and A-mod are equivalent categories.

Step 3. We prove now the sufficiency of the condition of the Theorem.
Assume that A=M,(A) is generated by an idempotent. By step 1, A is equi-
valent to A’=A/ann(A). But A=AeA for the idempotent ¢ implies that A'=
A’¢’A’ for the idempotent e¢’=e+ann(A); so, we can assume that A is a nonde-
generate ring. Then A belongs to the category A-mod and is a generator of
this category. But ,(Ae¢) generates A, so that it is also a generator of A-mod.
Ae, being finitely spanned, is clearly a finitely generated object of A-mod [11,
p. 121]. Finally, let p: Y—X be an epimorphism in A-mod, and put U=Im b,
V=X/U, W=V /w(A). Then W belongs to A-mod and hence the canonical
projection from X to W must be 0; thus, AV=0 and X=U, so that p is a
surjective homomorphism. If f:Ae—X is now a homomorphism, then f(e)=ea
for some a=X, and a(e):=ey, with y such that p(y)=ca, gives a morphism
a with f=a-p. This shows that Ae is projective. It follows that A-mod is
equivalent to the category of left modules over the ring End (Ae)=eAe. By
step 2, A is equivalent to a ring with 1.

Step 4. Let us now suppose that A is an idempotent and left nondegenerate
ring and that there is an equivalence F: A-mod—R-mod, R being a ring with
1. We are to show that M,(A) is generated by an idempotent, for some n=1.

By [4, Theorem 2.4], there exists a generator M of R-mod with the
property that, if E=End(zM), and E,=fEnd(zM), then A is isomorphic to
some right ideal T of E, such that E,T=E,.

We now point out that we can further assume that there is an epimorphism
of left R-modules m: M—R. Indeed, this is true for some M*, and we put
S: =End(zM*), Sq:=f End(zM#), so that there is an isomorphism S=M,(E).
We assert that, in this isomorphism, S,=M,(E,); in fact, the inclusion S,<
M (E,) is obvious, and the inclusion M,(E,)SS, depends on the easily verified
fact that morphisms M™—M or M—M?* factor through free modules of finite
type whenever they are induced by endomorphisms of zM belonging to E,. By
substituting M*, S and S, for M, E and E,, we have that the matrix ring
M.(A) is still (isomorphic to) a right ideal of S, in such a way that -assuming
the obvious identification- S,-M,(A)=S,. So, by replacing A4 by M,(A4) if
necessary (note that M,(A4) is again idempotent and left nondegenerate), we
may indeed assume that m=: M —R is an epimorphism.

Let xeM be such that n(x)=1. Since E,A=E, and 2loer, Imo=M we
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deduce that Sl,es Im =M. Therefore there exists a homomorphism a: Mr—
M such that x<Ima; and each component a;:=p; @, With g;: M—M" being
the canomical inclusion, satisfies a;=A. So we have that a¢-7: M"—R is an
epimorphism and hence there is g: R — M" with gar=1z and arg=e an
idempotent in the ring End(zM™)=M,(E). Moreover, each of the components
of e, when considered as a matrix, consists of gangp,=amgpr)Ea;ESA
(where the p, are the canonical projections M"—M). This means that ec M,(A).

As before, we may put S:=End(zM™=M,(E), So:=f End(zM")=M,(E,)
so that M,(A) is an idempotent right ideal in S, which satisfies S,M,(A4)=S..
Thus, ¢ is an idempotent element in M,(A)ES, and is an endomorphism of M™
such that Im e is a direct aummand of M?* isomorphic to R. Consequently, Ime
generates M™ and hence, if we let ¢ range over all the elements in eS,, we
have 3, Imt=M". This shows that ¢S, is a right ideal of S which satisfies
M™-(eSy)=M™. If we apply now [5, Proposition 2.5], we see that this implies
SeeSe=S,.

Since A= A?, M,(A)-Se=M,(A) and so we have: M,(A) e M,(A)=M(4)-
Soe-So=M,(A)-Se=M,(A). This proves that M,(A) is generated by an idem-
potent element.

Step 5. Now we complete the proof of the Theorem. Let A be an idem-
potent ring (but not necessarily left nondegenerate), and assume that there is
an equivalence of categories between A-mod and R-mod for R a ring with 1.
Put 14(A)={acA|Aa=0}, and A*=A/14(A). In a way analogous to that of
Step 1, we may show that A and A* are equivalent rings, so that we can
deduce from stea 4, that for some n=1, the matrix ring M,(A*) is generated by
an idempotent. Thus, all that is left to show is that this property can be lifted
from M,(A*) to M,(A). But we have that M,(A*) = M,(A/(A)=(M,(A))/
(M,(:4(A)), and this last quotient is nothing else than M.(A)/wu,w(Ma(A)),
that is, (M,(A))*. Therefore, it will suffice to prove that if a ring of the form
A*= A/ ,(A) is generated by an idempotent, then so is the ring A.

So, let us assume that A¥=A*.e.A* for some idempotent ¢. There is ue
A with u+4(A)=e, and then u?—u<,(A), from which we see that u’=wu’=u’.
Therefore, w=u? is an idempotent of A such that w-+:4(A)=e. Now, let q,
be A; by hypothesis, b+:4(A)=3a;-e-B; in the ring A*, so that b—2a;-w-b;=
14(A), for some a; and b; in A. Then ab=3laa,wb; and abe AwA. But since
A is idempotent, we have finally that A=AwA and A is generated by an
idempotent.

REMARKS. 1) It follows from the Theorem that an idempotent ring A
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which is equivalent to a ring with 1 must be finitely generated as a bimodule
over A: the coordinates of the idempotent matrix e in the adequate M,(A) give
the family of generators. When A is left s-unital this gives as a consequence
the already mentioned resuit of Komatsu [6, Proposition 4.7]. If A has local
units, we get [2, Proposition 3.57.

2) However, the condition that A be finitely generated as a bimodule over
itself is not sufficient for A to be equivalent to a ring with 1. To see this,
take a ring A such that A=A? A is finitely generated as an A— A-bimodule,
is nondegenerate and coincides with its Jacobson radical (Sasiada’s example
[10, p. 314] of a simple radical ring fulfills these requirements). It is not
difficult to show that the Jacobson radical of such a ring is the intersection of
all the subobjects of A in A-mod which give a simple quotient of A in A-mod,
so that A has no simple quotients in A-mod. Suppose that the category A-mod
were equivalent to R-mod for R a ring with 1. Then, if gM corresponds to
A in this equivalence, we would have that zM is a generator of R-mod without
simple quotients. But this is absurd, since R is isomorphic to a summand of
some M*,

3) It may happen that A be an idempotent ring such that A-mod is equi-
valent to a category R-mod for a ring R with 1 but, nevertheless, A is not
generated by an idempotent. For instance, let R be a simple domain which
is not a division ring and let I be a right ideal of R such that [0, [#R.
Then RI=R, I=IR=1I? and [ is a faithful right ideal of R, so that we can
view I as a left nondegenerate and idempotent ring contained in R=f End(zR).
By [4, Theorem 2.4], we see that I-mod is equivalent to the category R-mod.
But / contains no idempotent other than 0, so that / is not generated by an
idempotent.
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