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1. Introduction. For paracomparactness and u-paracompactness (¢—an infinite
cardinal), many characterizations have heen obtained until now. In particular, for
countable paracompactness the following simple characterization is known:

A normal space (a topological space) X is countably paracompact if and only if,
for each countable increasing open cover {U,}, there exists a countable closed (open)
cover (Vi) such that Vo U, (V,cU,) for each n (Dowker [4], Ishikawa [5]).

In this paper we shall give new characterizations of paracompactness and p-
paracompactness in terms of “well-ordered increasing cover”, and using these charac-
terizations we shall obtain some results with respect to normality of product spaces.

Here a space X is paracompact (pu-paracompact), if each open cover (with car-
dinality <p) of X has a locally finite open refinement.

Let 2 be an ordinal. We say that a space X has the property P(2), if for each
open cover {U./a< 2} of X with length 2 satisfying

(1) U.CUssy,

(2) Us= U U, for each limit ordinal f<(2,
there exists ar:\(;pen cover {Ven|a<2,7=0,1,2,--} of X such that

(3) VanC Vasrm

(4) Van= ”%V,,,n for each limit ordinal g<2,

(5) VenC Ve,

(6) VancCU..

Our characterizations for paracompactness and g-paracompactness are as follows:

TueEOREM 1. 1. Consider the following statements about a space X :

(a) X has the property P(2) for each rvegular ordinal A.

(b)Y Each well-ordered incveasing open cover U of X has an open rvefinement
Y= Goq;” such that CU, is cushioned in Uy (in the sense of Michael [8]) for

n=
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each n.

(¢) X is paracompact.
Then (a) implies (b) and (b) implies (c). If X is a normal (regular or Hausdorf7)
space, then (a), (b) and (c) are equivalent.

THEOREM 1.2. Consider the following statements about a space X and an in-
Sfinite cardinal (=an initial ordinal) q.:

(@) X has the property P(2) for each regulav ovdinal X such that A< p.

(B) Each well-ordeved increasing open cover U of X with length <p has an
open refinement C|)= OCJ CVn Such that C7, is cushioned in CJ,., for each n.

(c) Xis ,u-pamc;;zopact.

Then (a) implies (b) and (b) implies (¢). If X is a normal space, then (a), (b) and
(c) are equivalent.

Theorem 1.1 follows immediately from Theorem 1.2; Theorem 1.2 will be proved
in section 2.

In sections 3 and 4, we shall have some applications of Theorems 1.1 and 1.2;
each of them is related to the normality of the product space of a normal space
with a compact Hausdorff space. Specifically, in section 4, the following is proved:

If the product XX Y of a space X with a compact Hausdorff space Y is normal,
then X is p-paracompact for each infinite cardinal p such that p<¥(Y). If, fur-
theremore, {(Y) is not weakly inaccessible, then X is (Y )-paracompact.

Here #Y') denotes the tightness of ¥ [1].

Theorems 1.1, 1.2 and the contents of section 3 were announced at the Fourth
Prague Topological Symposium in 1976.

2. Proof of Theorem 1.2. Throughout this paper, the Greek letters a, 8, -,
A, 4, -+ denote ordinal numbers, and each ordinal is the set of its predecessors. Thus,
ael>a< The cofinality of 1,¢f(2), is defined by c¢f(A)=min {¢|2 has a cofinal
subset of order type u#}. As is well-known, for each ordinal 2, ¢f(2) is a cardinal
(=an initial ordinal). An ordinal A is regular if ¢f(1)=4 Hence each regular or-
dinal is a cardinal, and ¢f(4) is regular for each ordinal 7. The successor of 1 is
denoted by i1+1; namely, 2+1=2U{1} = {ala<i}. As usual, o denotes the first in-
finite ordinal. An element of w (=a natural number) is denoted by % or .

First, for convenience, we introduce the following terminology. An indexed
cover {U,|ae} of a space X is a A-increasing cover, if it satisfies the following con-
ditions

(1) Ui Uy

(2) U,;=“Uﬁ U, for each limit fex.
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Of course, a J-increasing cover is a monotone increasing cover of length 1, and a
(2+1)-increasing cover of X contains X as the last member.

A double indexed cover {V..lael, new} of X is a (2, @)-increasing cover (resp.
a (1, )-increasing cover), if it satisfies the following conditions

(3) VanC Veitn

(4) Vaa= RUFV,._,, for each limit gez,

(5) VanC Vaner (resp. VaorC Vanar)-
A double indexed cover { V. .|la€d, new} is called an indexed refinement of an indexed
cover {U.lael}, if for each ael and each new

(6) VaacU.
Thus, a space X has the property P(2) if and only if each Z-increasing open cover
of X has a (1, @)-increasing open indexed refinement. An arbitrary space X has the
property P(2-+2) for each ordinal 1; indeed, the cover {Vinla€i+2, new}, given by
Ven=¢ for a<i,new and Vi.=X for new, is a (2+2, @)-increasing open indexed
refinement of any (2+42)-increasing open cover of X.

Lemma 2.1, For a limit ordinel 2,
PQ+1) 5 P@).

Proor. Let X be a space with the property P(1+1), and let U ={U.|a€a} be
a J-increasing open cover of X. We put U,= UX U{=X) and let U*={U.|aci+1}.
Then J* is a (A+1)-increasing open cover onfE X, and hence UJ* has a (1+1, &)-
increasing open indexed refinement C*={V.nla€l+1, new}. Since 2 is a limit,
Via= U1Va,n for new. Hence the subcollection €V ={V, »la€l, new} of C* is a cover
of X, :nd so CPV is a (1, @)-increasing open indexed refinement of ¢/. Thus X has
the property P(2).

Lemma 2.2. P)+Pw) = PG+1).

Proor. Since any space has the property P(1+1) for a non-limit ordinal 2, we
may assume that 2 is a limit ordinal. Let X be a space with the properties P(2)
and P(w), and let ¢J ={U.|lee2+1} be a (i+1)-increasing open cover of X. Since 2
is a limit ordinal, the subcollection U’ ={U,|ae2} is a i-increasing open cover of X.
Hence 97’ has a (4, @)-increasing open indexed refinement U’'={V}.lacl, new}.
If we put V. = UXVR',,,L for each new, then {V./|necw} is an w-increasing open cover
of X. Since X h"aels the property P(w), there exists an open cover {Wpa|m,new} of
X such that

Wi Wt Wanon © Winr and . Wa, oS Vi
Let us define
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Va/.nn Wn.n If a<2,

Vﬂ-n’: PVn,u if Cl':/z .

It is easily seen that the collection {V, .la€i+1,new} is a (A+1, @)-increasing open
indexed refinement of the given (2+1)-increasing open cover ¢J. Therefore X has
the property P(1+1).

LemMa 2.3. Let 2 and p be two limit ordinals with the same cofinality. Then

we have the following equivalences:

PO P() and PA+1)EESP(p+1).

Proor. Let ¢f(A)=cf(;)=v. (Since 2 is a limit, the ordinal v is also a limit).
Then the set A={aja<(2} has a cofinal subset A={x:|€€v} such that a:<a¢ provided
E<C<yv. Without loss of generality, we may assume

a'(l=07
s 1s a non-limit ordinal, if £ is a non-limit ordinal,
ae=sup {az] <&}, if £ is a limit ordinal.

Similarly, there exists a cofinal subset B={f|fev} in p with the same property.

We prove first the implication P(A)=2>P(y). Let X be a P(A)-space. (Hereafter,
a space with the property P(2) is also called a P(2)-space.) Let U ={Us|pep} be a
q-increasing open cover of X. For each wel, let us put U,/=U},, where & is the
unique element of v such that a:<a<a:,. Then U’={U.|aci} is a A-increasing
open cover of X. Consequently, ¢J’ has a (2, &)-increasing open indexed refinement
{Vinlae2, new}. 1f we define Vi, =V, afor Sep, where { is the unique element of
v such that 3<pf<pf:.1, then we can show without difficulty that the collection
{Vaalfep, new} is a (i, @)-increasing open indexed refinement of the given cover
U. Hence X is a P(p)-space, and so the implication P(2) = P(u) is proved. The
proof of P(p)=>>P(2) is the same to that of P(A)=>P(x). Thus we have the equiva-
lence P(2)<=> P (p).

The proof of the equivalence P(A+1)& P(p+1) is omitted; it is a slight mo-
dification of the proof of P(1)&=P(p). Consequently the proof of the lemma is
concluded.

Here, furthermore, we introduce the following two terms. We say that a space
X has the property Q(2) or X is a Q(A)-space, if each A-increasing open cover ¢J of
X has an open refinement Ci/= UC}/, such that C(/, is cushioned in CV,;; for each
new; and we say that X has réeﬁve property R(2) or X is an R(1)-space, if for each
A-increasing open cover qJ of X there exists a g-locally finite open cover ¢V of X
such that CP={V|Vecy} refines ¢J. If 2 is a non-limit ordinal, then it is obvious
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that any space has the properties Q(2) and R(2).
LEmma 2.4. PQ+1) = Q).

Proor. We may assume that 1 is a limit ordinal. Let X be a P(2+1)-space,
and let ¢J ={U.|la€} be a Aincreasing open cover of X. As has been mentioned
in the proof of Lemma 2.1, there exists a (1+1, &)-increasing open cover Cy*=
{Vanla€d+1,new} of X such that the subcollection iV ={V,, .|a€2, n€w} is an index-
ed refinement of ¢J. Let C,,={V,.n|a€a} for new, then (V= U C,. To prove that

n€w

1, is cushioned in <1/,,,, it is sufficient to prove that

U Vanc UVanl
agd

for each subset A of 2. Let us put g=sup A, then 3<i (i.e., pea+1). In case feA,
3 is the largest element of A, and hence U Vam=Vsm In case peA, g is a limit,

and hence Y Vem= U Van=Van In exther case, U Veom=Vam for each meo.
Therefore, we have

U Va.nzvﬁ,nc V_ﬂ,n+1= u sz.n+l’
acd a€A
Thus X is a Q(a)-space.
Lemma 25, PQ+1) = R(A).

Proor. We may assume that 1 is a limit ordinal. Let X be a P(1+1)-space,
and let 7 ={U,laei} be a i-increasing open cover of X. After the proof of Lemma
24, we have a (2141, @)-increasing open cover C*={V, .laci+1,ncw} whose sub-
collection €V={V,.,|ael, new} is an indexed refinement of ¢J. We need a ¢-locally
finite open cover @ such that & refines ¢J. The collection ¢ is constructed as

follows: g = U g, Gu={Ge nlacd} for new, and
Vo.n 1f 01=0 N
Gan=1{0 if o is a limit,

Ven—Ve-1.ne1  otherwise.

Here a—1 denotes the predecessor of «, in case that « is a non-limit, non-zero or-

dinal. Obviously, each member G.., of ¢ is open in X. Since GanCVanC Vinn

c U, for aed and new, G ={G. nlacl, new} refines ¢J. Hence, to complete the proof

of the lemma, it is sufficient to prove the following two assertions (i) and (ii).
(i) & is a cover of X: Let z¢X, and let

alz)=min {e€l|zeV, . for some new}.
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Since CUV is a cover of X, a(z) is well-defined. Then there exists an element #(z)€w
such that z€ Vo(z,nemy. From the condition (4) in the definition of a (4, @)-increasing
cover, it is seen that a(z) is a non-limit ordinal. In case a(x)x0, from the defini-
tion of a(z), we have ¢ Vaa-1. @ » and so 28V woy-1.nez,. 1. Hence, in this case,
2€Glacay, newye I case alz)=0,2€ Vo, nay =Goa. Thus ¢ is a cover of X.

(ii) @ is locally finite (more precisely, discrete) for each new: For each
new and for each xeX, let us construct an open neighborhood N(x) of & which in-
tersects at most only one member of &, The neighborhood N(«) is defined by

X-‘Vi.n if .’L‘EF V-;‘n,.l,
N(z)= Vo.nst if zeVin.o,
Vin(z). Nl Vﬁn(a:)—l. . Otherwise,

where Bx(z)=min {ee2+1|ze Vina}. In case z€ Vi a1, falz) is well-defined, and ju(e)
is a non-limit ordinal by the condition (4). Moreover, if x4V, .1, then we have the
predecessor Bu(z)—1 of B.(x) and 24 Vs, xy-1.n 1. Since VuaC Vin.: for each aei+1,
N(x) is surely an open neighborhood of z in any case. From the definition of G..n,
we have GunN Vani=¢ for 0<<a<2, and G,.C Vs, for 0<a<f<2. Hence it
follows that N(x) intersects at most one member of &,; indeed, G...NN(x)=¢ for
all aei provided ¢V, 4.1, and G NN(z)=¢ for all a=xj5.(z) provided xe V.1
Therefore ¢, is discrete and so locally finite for each new.
Thus the proof of the lemma is completed.

LemMma 2.6. If c¢f(Q)>w, then
Q) > Pa+1).

Proor. Let X be a Q(2)-space, and let ¢J={U,Jaci+1} be a (2+1)-increasing
open cover of X. Since 1 is a limit ordinal, the subcollection U’={U.|ael} is a
cover of X and so it is a ZA-increasing open cover of X. Hence 9/’ has an open
refinement G =nléJ g7, such that 9§/, is cushioned in 94/,., for each new. Let us

fn: Wa—>TWas be the cushioned function for mew. For each mew and for each
Wedy,, we define ordinals ax( W) and B.(W) as follows:
an(W)=min {ee ]| W U}, Bu(W)=sup {@n.n{ fr.a(W))|mew},
where fnom: Wa—>Warm, 8, MmEw, is the function given by
fn+m—1°'“°fn if m>0,
fn,m= .
the identity if wm=0.

Since G refines U/, an(W) is well-defined and a,{W)<{A By the assumption ¢f(1)
>0, we have S(W)<2 for Wegy,. Now, we put
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Ven=U{We Wa| o W)<a}

for ee2+1 and new, and let CU={V,.laci+l,new}. Let us show that €I is a
(A+1, @)-increasing open indexed refinement of /. It is obvious that [/ is an open
cover of X. Since an(W)<p(W) and Wc Us,ow, for Weqn, we have V..U,
for el and new. As a matter of course, V., ,C U (=X) for new. Hence CV is an
indexed refinement of /. It is obvious that C{/ satisfies the conditions (3) and (4).
So it is remained to examine V. ,C Va.n.1 for aei+1 and mew (the condition (5)).
Since f, is a cushioned function, we have

U{IWe Wo[p(W)<alC U{fu W) We W, g W)a} .

And the inclusion
UL (W) We W, B WH<al U{ W' e Wi fran( W)<a}

follows from the fact Fne:i( fu(W)L3(W) for Wegy,, which is directly proved
from the definition of 3.(W). Hence V.. ,C Vi n., for aei+1 and new. Thus X is
a P(2+1)-space and the proof is completed.

Levmma 2.7. Let 4 and p be two ovdinals with the same cofinalily, then we have
the following equivalences:

QI Q) and R R(1) .

This lemma is more easily proved than Lemma 2.3.
LemMA 2.8. Q1) = R(2).

Proor. If ¢f()<w (ie., 1 is a non-limit ordinal), the lemma is obvious. The
implication @(w)=>R(w) is easily proved. Hence, by Lemma 2.7, the implication Q(2)
>R(4) is true for any ordinal 1 with ¢f(Q)=w. If ¢f(2)>w, then, from Lemmas 2.6
and 2.5, we have the implications Q)=>P(1+1)=>R(2). Therefore the lemma holds
for all ordinals 2.

LemmMa 2.9. In countably paracompact normmal spaces,

R(2) > Pa+1).

Proor. We may assume that 1 is a limit ordinal. Let X be a countably para-
compact normal space with the property R(1). We shall show that X has the fol-
lowing property which is stronger than P(1+41): FEach Ji-increasing open cover
{U.laed} of X has a (4, ®)-increasing open indexed refinement {V. »la€l, new} such
that {Ve.n.|a€d} is a cover of X for each new. Let U ={U.|acl} be a A-increasing
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open cover of X. Since X is an R(A)-space, ¢J has a ¢-locally finite open refinement.
Fach o-locally finite open cover of a countably paracompact space has a locally finite
open refinement, and each locally finite open cover of a normal space is shirinkable.
Therefore we have a locally finite open cover & ={G.|ael} and a closed cover F =
{Folaed} of X such that F,cG.c U, for each aeld. Furthermore, by the normality
of X, there exists a sequence {W,..|new} of open sets of X for each awel such that

FoC Wao CW o o C Wit C oo  C W n CWoan S Wonn © o C G

We put Va,n=ﬁu Wa,n for ael, neo, and let U ={V.,.nla€l, new}. It is easily proved

that €7 is a (4, @)-increasing open cover of X; in particular, from the local finiteness
of ¢, we have

V:r.n= U VVﬁ.n:ﬁu Wﬁuxcﬁu T‘Vﬁ‘nu:Va.m—l .

Be
Since

Ven= U WsaC U GsC U U U,,
f<a f<a B e

CY is an indexed refinement of qJ. Finally, since & is a cover of X, {Va.|lacd}
is a cover of X for each mew. This completes the proof.
The following lemma is essentially due to Mack [7].

Lemma 2.10. Let u be an infinite cardinal. Then the following are equivalent
for a space X:

(1) X is p-paracompact.

(ii) For each well-ovdered increasing open cover U of X with length <y, there
exists a o-locally finite open cover CU of X such that G ={V|Vec} refines .

(ili) X hkas the property R(2) for each ordinal A< p.

(iv) X has the property R(X) for each regular ordinal 2<p.

Proor. The equivalence (i)¢&=>(ii) was proved by Mack [7]. Since each J-increas-
ing open cover is a well-ordered increasing open cover with length %, the implica-
tion (ii)=(iii) is obvious. The implication (iii)=>(ii) is also obvious, since each well-
ordered increasing open cover with length 1 has a 2-increasing open refinement.
Finally the equivalence (iii)¢<=>(iv) follows from Lemma 2.7.

Proor orF THEOREM 1.2. The statement (b) in Theorem 1.2 is equivalent to
that X has the property @Q(2) for each (regular) ordinal 2<p (cf. (il)&= (1) &= (iv)
in Lemma 2.10). Therefore the implications (a)=>(b) and (b)=>>(c) follow from Lem-
mas 2.2, 24 and Lemmas 2.8, 2.10, respectively. It remains only to show the im-
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plication (¢)=>(a) under the normality of X. Assume that X is g-paracompact and
normal. Of course, X is countably paracompact, since y is an infinite cardinal. By
Lemma 2.10, X has the property R(1) for each (regular) ordinal 2<yg. Hence, by
Lemmas 2.9 and 2.1, X has the property P (1) for each (regular) ordinal A< . This
completes the proof of Theorem 1.2.

3. Application (I). First we prove a lemma used not only in this section but
also in the next section.

LemmA 3.1, Let X be a space and Y be a compact space. Let {C.lacl+1} and
{Gulnew} be respectively a decveasing sequence of length 2+1 by closed sets of Y
and an increasing Sequence of lengtlh w by open sets of the product XX 'Y such that

Cs= N C. for each limit ordinal fei+1,
a’ B
GuC Gy for each neo, and

XXCic UGy.
new

Then the collection { V. .|laei+1,new), defined by
Ven={xe X|{x} XC.CG,} for aecitl,necvw,

is a (A+1, @)-increasing open cover of X.

Proor. The lemma follows directly from the following five assertions.

(1) Van is open in X: This assertion is obvious, because C, is compact in
Y and G, is open in XX Y.

(1) VaanC Vi n provided a<p: This follows from the fact C.2C; provided
a<lp.

(iii) Vi nC n Ve,n for each limit ordinal fe2+1: Let xe Vg a4 then {2} X GG
By assumption, Cﬁ— ﬁ Ce and so ﬂ ({z} X C)c Gr. Since {{z} X Ci|la< B} is a decreas-
ing sequence of compact closed sets and G, is open in XX Y, as is easily shown,
there exists an element a,<g such that {z}xC,,cG, Hence zeV,...C U Varne
Thus the assertion is verified.

(iv) VanC Vianei: From the definition of V,,., we have V. .XC.CGn Hence

VanXCaC VanXCoaC GaCGris s

and hence V,.2C Vi i1
(v) {Vinlnew}isa cover of X: Let zeX. Then {z} XC,c XX C;c U G, Hence

new
{z} X C;C G, for some no€w, because {G,|ncw} is an increasing sequence of open sets
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which covers the compact set {z}XC,. Hence ze Vi x,

Thus the lemma is completed.

A subset G of a space X is said to be perfectly open, if there exists a sequence
{Gnlnew} of open sets of X such that G= U G, and G,cG,., for each nem. Ob-
viously, e

cozero = perfectly open = open F,,

and the converses are true in normal spaces.
Let X be a subspace of a compact Hausdorff space Y. For each open cover J
of X, we define a subset C(J) of Y (more precisely, Cy(UJ)) by

)= 0 Clr(X~0).

(For a subset A of X, ClyA denotes the closure of A in Y'; on the other hand, the
closure of A in X is denoted by A as usual.) Obviously, C(9/) is a closed set of
Y such that C(U )N X=¢. Hence, in the product Xx ¥, XxC(qJ) and the diagonal
4 (={(z, z)|ze X}) are disjoint closed sets. (Since Y is a Hausdorff space, J is closed
in XxY)

THOREM 3.2. Let X be a subspace of a compact Hawusdovff space Y. If, for
each infinite regulay cardinal 2 and for each i-increasing open cover U of X, there
exists a perfectly open set G of the product XX Y such that

XXCWU)CG, Gnd=¢,

then X is paracompact.

- Proor. By Theorem 1.1 (together with Lemma 2.1), it is sufficient to show
that X has the property P(A1+1) for each infinite regular cardinal 2. Let U=
{U.Jaea+1} be a (1+1)-increasing open cover of X, and let us construct a (141, @)-
increasing open indexed refinement € of ¢J. Since 2 is a limit ordinal, the sub-
collection J/={U.|laea} of qJ is a A-increasing open cover of X. By assumption,
there exists a perfectly open set G of XX Y such that XXCU')cG and GNd=g.
Put

C‘,:paCIY(X— Uy for ae2+1,

then {C.|la€2+1} is a decreasing sequence of closed sets of ¥. Moreover, Cs= an.x
a<

for each limit ordinal pel+1. By definition, we have a sequence {G.|new} of open

sets of Xx Y such that G= U G, and G,.c G, for each new. In particular, XxC,

new

=XXC(U)C U Gr Therefore, by Lemma 3.1, the collection C={V, .laci+1,
new
new}, defined by
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Ven=lzeX|{x}XC.CGrn} for aecitl, neow,

is a (1+1,@)-increasing open cover of X. It remains only to see that ¢/ is an
indexed refinement of ¢J. To do this, assume that there is a point z in X such
that z€ Vi, a, and z¢U,, for some aei+1 and some #€w. Then 24U, for each
A< ay, and soO reag CIY(X U;)=Ca,. Since x€ Vi, o, we have {z}xXC,,CG,CG. Hence

(z,2)eG. This is contradictory to GN4d=¢. Therefore V. .c U, for each aci+1
and new; that is, €/ is an indexed refinement of qJ. Thus the proof is completed.

CoroLLARY 3.3. Let X be a subspace of a compact Hausdorff space Y. If, for
each closed set C of Y with CNX=¢, there exists a perfectly open set G of the pro-
duct XX Y such that

XxCcG, GNd=¢,

then X is paracompact.

CoroLraRry 3.4 (Morita [9]). Let X be a subspace of a compact Hausdorff space
Y. If the product XX Y is novmnal, then X is pavacompact.

The converse of Corollary 3.4 is true by Dieudonné [3]; consequently the con-
verses of Theorem 3.2 and Corollary 3.3 are also true.

Next we give a characterization for the property P(2+1). For an ordinal 2,
we denote by W (1) the set 2={a]a<} topologized with the order topology. As is
well-known, W(+1) is a compact Hausdorff space for each ordinal A

THEOREM 3.5. A space X has the property P(2+1) if and only if, for each open
set H of XX W(Q+1) containing XX {4}, there exists a perfectly open set G of XX
WQ+1) such that

Xx{A}cGcH.
Proor. To apply Lemma 3.1 to the proof of the theorem, first, we define sub-
sets Co,a€2+1, of W(+1) by
={fla<pLi}.

Then the collection {C.Jaci+1} is a decreasing sequence of closed sets of W(1+1)
such that Cp-— n C. for each limit ordinal pei+1. In particular, C;={a}.

Necessity : Assume that X is a P(A+1)-space, and let H be an open set of
Xx W(+1) such that Xx{2lcH. If we put

U.={zeX|{z}xC,cH} for ae€i+l,

then the collection ¢/ ={U,|ae2+1} is a (1+1)-increasing open cover of X; this is
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more briefly proved than Lemma 3.1. By assumption, ¢J has a (1+1, @)-increasing
open indexed refinement {V. .|a€i+1,new}. Let us put

G'ﬂ= U (Va.nXCa) for new.

a€i-t+1
Since U n= Uﬁ Van for each limit pe2+1, we have

Gn= ] (Va.nxcm);

ag(i+1)*

where (1+1)*={ax€i+1|e is a non-limit ordinal}. In case that « is a non-limit or-
dinal, C, is open in W(A+1). Hence G, is open in XX W(a+1) for each new. To
see that G,CGuu for new, let (z,a)eG,. For the nonce, we shall prove zeV.. ..
Since O{e)={B|f<a} is an open neighborhood of « in W(i+1), for an arbitrary
neighborhood N(z) of z, N(x)XO(a)NGa=¢. Hence there exists an element gei+1
such that (N(z) X O(@)) N (Ve nXCs)¥ ¢, ie., N(@)N Vs x ¢ and Ol@)NCs = ¢. From
the definitions of O(e) and C;, we have f<a. Consequently, N(z)N Vaia = ¢, and
hence 2€V.n. Then (z,0)eVunXCiC Vaniy XCoCGa-y. This verifies GuCGuii
Therefore, if we put G= U G,, then G is a perfectly open set of Xx W(2+1). It
is easily seen that XX {Z}"émGCH

Sufficiency: Let 9J ={U.|aci+1} be a (A+1)-increasing open cover of X. We
put

H= U (U.xC.).

a€+1

Then, as well as G, above, H is open is XX W(2+1), since U5=aué U, for each limit
pea+1. Obviously, Xx{i}c H. Therefore, by assumption, we have a perfectly open
set G of XX W(1+1) satisfying Xx{2}cGc H, and so we have a sequence {G,|#€w}
of open sets of X'x W(1-+1) such that Xx{#}c U GocH and G,CGpy for new. By
Lemma 3.1, if we define Va,n={meXI{a;}><CacGZ§mfor acl+1 and new, then the col-
lection CV={V,ala€l+1,ncew} is a (1+1, @)-increasing open cover of X. To see
that <17 is an indexed refinement of J, let ze Vi,.n for aci+1l,new. Then (z,a)e
{z}x C.cGrC H, and hence (%, a)e UsXC; for some fei+1. By aeC; we have g<a,
and consequently xzeU;c U,. This prove that V,.c U, for aei+1 and new, and
g0 €1/ is an indexed refinement of 9J. Therefore X is a P(1+1)-space.

The proof .of Theorem 3.5 is completed.

Let ¢ be an infinite cardinal, and let 2 be an arbitrary ordinal with A<p. Then
W(u+1) contains W(a+1) as a closed subspace. Consequently, if XX W(u+1) is
normal, then XX W(1+1) is normal. Therefore the following corollary is a direct
consequence of Theorems 1.2 and 3.5 (together with Lemma 2.1).

CoroLLARY 3.6 (K. Kunen). Let p be an infinite cardinal. If the product XX



Characterizations of Paracompactness by Increasing Covers 39

W(n+1) of a space X with W (u+1) is normal, then X is p-parvacompact and normal.
The converse of Corollary 3.6 is also true by Morita [9, Theorem 2.2].

4. Application (IT). Let X be a normal space and ¥ be a compact Hausdorff
space. As for the normality of the product X x Y, the following result is well-known :

(A) If X is w(Y )-paracompact, then XX Y is normal (Morita [9]).

Here w(Y') is the weight of Y. Recently, in [6], the author introduced a car-
dinal function » such that (Y )<w(Y '), and he obtained a result which covers the
above result (A); namely,

(B) if X is v(Y )paracompact and w(Y )-collectionwise normal, them XX Y is
normal.

While, as a necessary condition, there is the following remarkable result:

(C) If XXY is normal, then X is w(Y )-collectionwise normal (Rudin [12], or
Morita and Hoshina [10]).

In this section we shall give another necessary condition for the normality of
XxY.

Let 2 be an infinite cardinal. According to Arhangel'skii [1], a well-ordered set
{y.la€a} consisting of points of a space Y is said to be a free sequence of length 2
in Y, if {ys|p<latnN{ysla<pl=¢ for each aei Let 1 and p be two infinite cardinals
such that A<p. If Y contains a free sequence of length p, then Y contains that
of length 2; indeed, the subset {y.|eci} of a free sequence {y./wep} of length p in
Y is obviously a free sequence of length 1 in Y.

THEOREM 4.1. Let p be an infinite cardinal, and let Y be a compact Hausdorff
space in which there exists a free sequence of length p. If the product XX Y of a
space X with Y is normal, then X is p-paracompact.

Proor. Let 1 be an arbitrarily fixed infinite cardinal with 1<y Let {y.|ae}
be a free sequence of length 1 in ¥; Y contains a free sequence of length 24, since
it contains a free sequence of length p. For each aei+1, we define

Ca=sp {v,1p<7},  De=Y—{yslp<la} .
Then the collection {C,|ae2+1} (resp. {D.la€i+1}) is a decreasing sequence of closed
(resp. open) sets of Y. Moreover, C;= n C. for each limit ordinal fea+1.

Now, to prove that X has the property P), let U7 ={U,la€i} be a A-increasing

open cover of X. Put

I{: U (UaXDu’) y
agd

then H is an open set of XX Y. For each wel, we have
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Cicca £1 ={y5[(¥Sﬁ‘}C Y_{7/.3{I9<(1}=Dﬂ -

Hence XxC,c H, because {U,|acz} is a cover of X. From the assumption of the
normality of X'x ¥, we have a sequence {G.|ncw} of open sets of XX Y such that

XxC,cGycGycG c--cG,cG,.cGuc-CH.
Define
Ven={zeX|{2}xC.cG,} for waei+l,newm,

then, by Lemma 3.1, the collection (/" ={V,, .,|aci+1,ncw} is a (2+1, @)-increasing
open cover of X. Since 2 is a limit ordinal, the subcollection CV={V. .|a€l, new}
of € is a cover of X, so that €|/ is a (4, @)-increasing open cover of X. It re-
mains to prove that <7 is an indexed refinement of 7. To do this, let z€ V.. for
aeld and new. Then {2}xXC,cG,cH. TFrom the definition of C, we have y.€C.,
and so (x,y.)eH. Hence (x,v.)e Uyx D; for some jel From the definition of Dj
and the fact y.€D; we obtain f<a. Hence weU;c U.. This prove that €1 is an
indexed refinement of ¢J. Hence X is a P(4)-space.

Thus it is proved that X has the property P(4) for each infinite (regular) car-
dinal 1< Therefore, by Theorem 1.2, X is p-paracompact.

Remark. Corollary 3.6 is also a corollary to Theorem 4.1, since the space
W(p+1) contains a free sequence of length s

LemMA 4.2 (Arhangel’skii [1]). For a non-discreate compact Hausdorff space Y,
HY )=sup {A|there is a free sequence of length 2 in Y}.

Let ¢ be an infinite cardinal. A space X is said to be p~-paracompact, if each
open cover with cardinality < g has a locally finite open refinement. Obviously,
p-paracompactness (in the usual sence) is equivalent to (p*)-paracompactness, where
e+ denotes the cardinal successor of y; that is, x* is the smallest cadinal greater
than g It is also obvious that X is g—-paracompact if and only if X is i-paracom-
pact for each infinite cardinal i1<[p.

LevmMa 4.3. If an infinite cardinal p is singular (=non-regular), then
u-paracompact < p~-pavacompact .

This follows from Lemma 2.10.

Let Y be a non-discrete compact Hausdorff space. Temporarily, we say that
Y has the property (*), if it satisfies either one of the following two conditions:

(*); There exists max {1|there is a free sequence of length 21 in Y}.

(™. #Y) is singular.
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LemMa 44. Let Y be a non-discvete compact Hausdorff space. If H(Y) is not
weakly inaccessible, then Y has the property (*).

Proor. Each non-discrete compact Hausdorff space contains at least a free
sequence of length w. Hence, in case #(Y)=w, by Lemma 4.2, Y satisfies the con-
dition (*), so that it has the property (*). If #Y) has the cardinal predecessor g,
ie, #(Y)=p, then it is obvious from Lemma 4.2 that Y satisfies (*¥); and hence Y
has the property (*). Of course, in case that #(Y) is singular, ¥ has the property
*). Therefore, in case that #Y) is not weakly inaccessible, Y has always the pro-
perty (*).

THEOREM 4.5. Let Y be a non-discrete compact Hausdorff space. If the product
XX Y of a space X with Y is normal, then X is Y )--paracompact. If, furthermore,
Y has the property (*), then X is Y )-paracompact.

Proor. By Lemma 4.2, for each infinite cardinal p<#(Y'), there exists a free
sequence of length g in Y. Therefore, by Theorem 4.1, X is p-paracompact, and
hence X is # Y ) -paracompact. Consequently, if #(Y) is singular, X is #(Y )-para-
compact by Lemma 4.3. On the other hand, in case that Y satisfies the condition
(*);, (Y )=max {2|there is a free sequence of length 1 in Y} by Lemma 4.2. Hence
Y contains a free sequence of length #(Y"), and so X is #(Y )-paracompact by Theorem
4.1. In either case, X is # Y )-paracompact when Y has the property (¥).

CoroLLARY 4.6. Let Y be a non-discrete compact Hausdorff space such that
1Y) is not weakly inaccessible. If XX Y is normal, then X is (Y )-paracompact.

As is well-known, the space W (u") is not p~-paracompact ; indeed, the open cover
{O(a)|aep™}, where Ola)={g|p<a}, of W(x*) has no locally finite open refinements.
Therefore we have

CoroLLARY 4.7 (Nogura [11]). Let p be an infinite cardinal, and let V be a
non-discrete compact Hausdorff space. If W(u*)XY is normal, then (Y )< .
The converse of Corollary 4.7 holds ([11]).

TueoreM 4.8. Let X be a normal space and let Y be a non-discrete compact
Hausdorff space with the property (*).

@) In case H{Y)=w(Y), the product XX Y is normal if and only if X is {Y)-
paracompact.

(b) In case {Y)=v(Y), XX Y is normal if and only if X is (Y )-paracompact
and w(Y )-collectionwise normal. ‘
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Proor. (a) (resp. (b)) follows from Theorem 4.5 together with (A) (resp. (B)
and (C)) above-mentioned.

CoroLLARY 4.9. Let X be a normal space and let 'Y be a non-discrete dyadic
compact Hausdorff space with the property (¥). Then the product XX Y is normal
if and only if X is (Y )-paracompact.

Proor. By [2], {Y)=w(Y) for each non-discrete dyadic compact Hausdorff
space Y. Therefore the corollary follows immediately from Theorem 4.8.

The following example shows that Theorem 4.8 or the latter part of Theorem
4.5 is not necessarily true if we omit the property (*) from Y.

ExampLE 4.10. Assume that x be a weakly inaccessible cardinal. Let X be
the space W(g), and let ¥ be the one-point compactification of the topological sum
of disjoint spaces Yi's where 7 runs over all infinite cardinals less than x and Y;
is the space (homeomorphic to) W(i+1) for each i Then we have the following
facts:

(a) X is a collectionwise normal space which is p~-paracompact (more strongly,
p~-compact) but not g-paracompact.

(b) Y is a compact Hausdorff space with #( Y )=w(Y)=p.

(¢) XXY is normal.

From the assumption that p is wekly inaccessible, we have

(i) cfw=p>o,

(ii) p=supf{4|4 is an infinite cardinal less than g}.

(i) and (ii) are respectively essential for (a) and (b); (c) is a special case of the fol-
lowing proposition :

ProrosiTioN 4.11. Let v be an infinite cardinal. Let X be a countably para-
compact v-collectionwise normal space and Y be the one-point compactification of the
topological sum of disjoint compact Hausdorff spaces Y, aev. If XX Y, is normal
for each acy, then XXY is normal.

The proof of Proposition 4.11 is analogous to that of [6, Proposition 3.4].
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