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1. Introduction.

Let Mp+P(c) be an (n + />)-dimensional connected indefinite Riemannian

manifold of index p and of constant curvature c, which is called an indefinite

space form of index p. According to c>0, c―0 or c<0 it is denoted by Sp+P(c),

R%+p or Hnp+P{c). A submanifold M of an indefinite space form M%+P(c) is

said to be space-likeif the induced metric on M from that of the ambient space

is positive definite. It is pointed out by some physicians that space-like hy-

persurfaces with constant mean curvature of arbitrary spacetimes get interested

in relativity theory and an entire space-like hypersurface with constant mean

curvature of an indefinite space form are studied by many authors (for exam-

ples: [1], [2], [3], [4], [7], [12] and so on).

Now, for a complete space-like submanifold M with parallelmean curvature

vector of Sp+P(c), it is also seen by the first author [5] that M is totally

umbilic if n―2 and /z2^4c or if n>2 and /j2<4(n―Y)c, where H denotes the

mean curvature, i.e., the norm of the mean curvature vector and h ―nH. On

the other hand, the firstauthor and Nakagawa [6] investigated the total um-

bilicness of such hypersurfaces from the differentpoint of view. They proved

that the squared norm S of the second fundamental form of M is bounded

from above by S+(l) and if sup S<S_(1) and H2^c, then M is totally umbilic,

whpre

S±(p)= pnc-{-
nh2±(n-2)W-4(n-l)ch*

2(n-l)

In thispaper, we research the similarproblem to the above property for the

complete space-likesubmanifolds with parallel mean curvature vector of an

indefinitespace form. That is, we prove the following
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Theorem 1. Let M be an n-dimensional complete space-like submanifold

with parallel mean curvature vector of an indefinite space form Mp+P(c). If the

one of the following conditionsis satisfied:

(1) c^O,

(2) c>0 and n2f/2^4(n-l)c,

then

(1.1) S^S+(p)+K(p),

where K(p) is a constant defined by

K(p)=(p-1)H {nH + VnJn^MSjiy^nJr*}}.

Theorem 2. The hyperbolic cylinder H^^xR71'1 in J2?+1 is the only com-

pleteconnected space-liken-dimensional submanif olds with parallel mean curvature

vector of RVP satisfying S=SJp)+K(p).

Theorem 3. The hyperbolic cylinder fl1(c1)xfl""1(c2) of HV＼c) and the

maximal submanifolds Hni(c1)x---XHnp+1(cp+1) of Hp+P(c) are the only complete

connected space-like n-dimensional submanifolds with parallel mean curvature

vector satisfying S=S+(p)JrK(p), where cr=(n/nr)c and S?i}nr = n in thelatter

case.

2. Standard models.

This section is concerned with some standard models of complete space-like

submanifolds with parallel mean curvature vector of an indefinite space form

Mp+P(c), c <L 0. In particular, we only consider non-totally umbilic cases.

Moreover, the squared norms of the second fundamental forms of such standard

models are calculated. Without loss of generality, an (n + j&)-dimensional in-

definiteEuclidean space R%+p of index p(}>l) can be firstregarded as a product

manifold of

i2?i+1x ･･･xRniP+1xRm,

where ^=1nr + m=n. With respect to the standard orthonormal basis of

Rp+P a class of space-like submanifolds

HnKcx)X ■■■xHnp(cp)xRm

of R%+p is defined as the Pythagorean product

H^ic^X ■■■xHnv(cv)xRm

= {(*!, -, xp+1)e≪rp=^?1+1X---Xi2?p+1xi^m: ＼xr＼*=- ― >o＼
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where r―1, ･･･,p and | | denotes the norm defined by the product on the

Minkowski space i^+1 which is given by (x, x}――(xo)2+ J]kj=l(xj)2.The mean

curvature vector h of M is given by

(2.1) h= s I Tl T C y X y

TI r = l

at (xu ■･･, xp+1)eM, which is parallel in the normal bundle of M. The number

S+(l) and the squared norm S of the second fundamental form are given by

(2.2)

Then we get

S+(l)=n2B2=

V

nr
V C―

S+(p)+K(p)=pn2H2=-pj]

Vs

r=l

nrc

nr2cr^S,

where the equality holds if and only if p=l and nx= l.

Next we consider an n-dimensional space-like submanifold of Hp+P(c), p^l.

Without loss of generality, an (w + £+l)-dimensional indefinite Euclidean space

Rp+Pi+1 of index (p+1) can be firstregarded as a product manifold of

i^i+1X ･･･xRniP+1+1,

where J]P-i＼nr= n. With respect to the standard orthonormal basis of Rp+Px+1

a class of space-like submanifolds

HnKci)X ■■■xHnp+i(cP+i)

of Rplp+1 is defined as the Pythagorean product

i(xu -, xv+l)^Rnp＼ri=R T}i+1X---xRn1p+1+1: ＼xr＼'1
1_

>0}

where r―l, ■■■,p+1. The mean curvature vector h of M is given by

(2.3) h= 1
p+1

― 2 (nTcrxr)-＼-cx
n r =

at x―(xu ･■■,ip+1)gM, which is parallelin the normal bundle of M. The

norm H of the mean curvature vector h and the squared norm S of the second

fundamental form are given by

(2.4) h2=n2H2=n2c-P'En r Cr,

jj+ l p +1
S= S wr(c―cr)―nc― S nrc

r=l r = l

When M is maximal, it satisfiesnrcr ―nc for any index r by (2.3), which

yields S=―pnc. Then we get S+(p)+K(p) ―S―0, because of S+(p)――pnc and

K(P)=O.
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Suppose that H =£0. By a theorem of Ki, Kim and Nakagawa [9], if p=l,

then we have S+(l)―S=0. On the other hand, we have S+(l)>h* ―nc, because

of c<0. So it is seen that if p^2, then we obtain

S+(p)+K(p)-S>h2-pnc+(p-l)h2-S=ph2-pnc-S~^O

by (2.4). In order to prove the last inequality, the following lemma is pre-

pared. The proof of this lemma is the only calculus and hence it is omitted.

Lemma 2.1. Let au ■■■,ap+l be numbers not less than 1 satisfying ^ar^n

and bu ■■■, bp+x be negative numbers satisfying ^,{l/br)={l/b). Then we have

^{ar-p(ary}br^n(p+l-pn)b.

3. Preliminaries.

Throughout this paper all manifolds are assumed to be smooth, connected

without boundary. We discuss in smooth category. Let Mp+P(c) be an (n + p)-

dimensional indefinite Riemannian manifold of constant curvature c whose index

is p, which is called an indefinite space form of constant curvature c and with

index p. Let M be an n-dimensional submanifold of an (n +^-dimensional

indefinite space form Mp+P(c) of index p. The submanifold M is said to be

space-like if the induced metric on M from that of the ambient space is positive

definite. We choose a iocal field of orthonormal frames eu ･■･,en+p adapted to

the indefinite Riemannian metric of Mp+P(c) and the dual coframes g>i,･･･,(on+p

in such a way that, restricted to the submanifold M, eu ■■･,en are tangent to

M. Then connection forms {(oAb＼of Mp+P(c) are characterized by the structure

equations

(3.1)

(3.2)

d(i)A+ I]£B(OAB/＼<DB= 0, ^AB + OBA ―O

d(OAB + Tl£c<t)ACACDcB^Q AB ,

@AB= ― -wIIScSdRaBCdMc A<0D ,

R'abcd―C^a£b0adSbd―SacSbd),

where £,4=1 for an index A^n, eA=―l for an index A^n + 1, and QAB (resp.

R'abcd) denotes the indefinite Riemannian curvature form (resp. the components

of the indefinite Riemannian curvature tensor R') of Mp+P(c). Therefore the

components of the Ricci curvature tensor Ric' and the scalar curvature r' of

Ml+P(c) are given as

R'AB=c(n-＼-p―l)e aSab r (n + p)(n + p-l)c
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In the sequel, the following convention on the range of indices is used, unless

otherwised stated:

l^A, B, ■■■<n+ p; l^i,j,---£n; n + l^a, /3,―^n + p.

We agree that the repeated indices under a summation sign without indication

are summed over the respective range. The canonical forms {(Da) and the

connection forms {a)AB} restricted to M are also denoted by the same symbols.

We then have

(3.3) (oa=0 for a=n-＼-l, ■■■, n + p.

We see that eu ■■■,en is a local field of orthonormal frames adapted to the

induced Riemannian metric on M and a)u ■･■,(Dn is a local fieldof its dual

coframes on M. It follows from (3.1),(3.3) and Cartan's lemma that we have

(3.4) o)ai= ^hfja)j, h?j=hft.

The second fundamental form a and the mean curvature vector h of M are

defined by

a= -HhfjWiWjea, h= H(Ehfi)ea
n i

The mean curvature H is defined by

(3.5)

n %

Let S = J}(h?j)2denote the squared norm of the second fundamental form a of

M. The connection forms {<yo-}of M are characterized by the structure equations

da)i-＼-^Q)ijA(Oj=0, (Dij-＼-(t)ji=0,

(3.6) ■ da)ij+'Z<0ikA(okj=Qij>

. Oij = - ― ^Rijkla)kAa)l!

where Qtj (resp. Rijki) denotes the Riemannian curvature form (resp. the com-

ponents of the Riemannian curvature tensor R) of M. Therefore, from (3.1)

and (3.6), the Gauss equation is given by

(3.7) Rijk^cidadjt-dudjd-'ZMhft-hfthfr).

The components of the Ricci curvature Ric and the scalar curvature r are

given by

(3.8)

(3.9)

Rjk =(n-l)cdJk-'2h?ihfk+'Ehfih?k,

r=n(n-l)c-n2H2+j:(h?jyi.
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We also have

(3.10)

where
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d(s)afi― 2>W A<yr/s = ― -^ 2#≪|9i/w< Afs)^-,

Raptj=-ll(h?Ml-hfMi).

The Codazzi equation and the Ricci formula for the second fundamental form

are given by

(3.11) h?Jk-h?kJ=O,

(3.12) h?jkl-h?jik= -'2h?mRmjki-3:htlJRmtkl+'2htijRfiakl,

where h1ikand hfjkldenote the components of the covariant differentialsla

and 72a of the second fundamental form, respectively.The Laplacian Ahfy of

the components h"j of the second fundamental form a is given by

Ah?j=^h?jkk.

From (3.12)we get

(3.13) Ahij= '^lhkkijiLlhkmRmijk l>jhmiRmkjkJr2-ihkiRpajk■

The following generalizedmaximum principledue to Omori [11] and Yau [15]

will play an important rolein thispaper.

Theorem 3.1. Let M be an n-dimensionalcomplete Riemannian manifold

whose Ricci curvatureis bounded from below. Let F be a ^-function bounded

from above on M, thenfor any s>0, thereexistsa pointp in M such that

F(p)+ s>supF, |gradF|(/0<e, AF(p)<e.

The following lemma is already known.

Lemma 3.2. Let au ･･･,an be real numbers satisfyingSflj=O and SCj2=

k2 for k>0. Then we have

l2a<sl^(n-2)

where the equality holds if and only if

V 1

n(n ― l)
ks

n ―1 of them are equal with each other.

4. Pseudo-umbilic submanifolds.

Let M be an n-dimensional space-like submanifold with parallel mean

curvature vector h of an indefinite space form Mp+P(c). Because the mean

curvature vector is parallel, the mean curvature is constant. Suppose that
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H ^0. We choose en+1 in such a way that its direction coincides with that of

the mean curvature vector. Then it is easily seen that we have

(4.1) a)an+1=0, //^constant,

(4.2) HaHn+1=Hn+1Htt,

(4.3) trHn+1 = nH, trHa=0

for any a-^n + 1, where Ha denotes an nXn symmetric matrix (hf/).

A submanifold M is said to be pseudo-umbilic, if it is umbilic with respect

to the direction of the mean curvature vector h, that is,

(4.4) hVl=Hdtj.

We denote by pt an nXn symmetric matrix with fiij=h?j~1―Hdij. Then we

have

(4.5) trfi=0, ＼pi＼*=tr(ti)i=y2ittij)i=HHn+iy-nH＼

So the pseudo-umbilic submanifolds are characterized by the property /u=0. A

non-negative function r is defined by r'i=^i^n+l{h^jf. We then have

(4.6) S=|j≪|2+r2+n^2.

Hence it is seen that ＼fi＼2as well as r2 are independent of the choice of the

frame fieldsand they are functions defined globally on M.

Proposition 4.1. Let M be n-dimensional complete space-like submanifold

with parallel mean curvature vector of an indefinite space form Sp+P(c). If it

satisfies

n2c^n2H2^A(n-l)c, S^S_(1),

then M is pseudo-umbilic, where H denotes the mean curvature, i.e., the norm of

the mean curvature vector.

Proof. In order to prove this property it suffices to show ^=0. From

(3.13), the Gauss equation (3.7) and (3.10), we have

(4.7) Ah?j+1=nch?j+1-ncH8ij+&];+1hfimkh＼j-2^hf>M+1h(imj

Accordingly we obtain from (4.2)
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― Tin Zjnim. "mi ilij TZj"^" tm^m; "ti

and hence we see

(4.8)

~n2cH2-nH tr(#re+1)3-
2 tr(Hn +1B>*-H^Hn+1f

3+ n +1

+ {tr(#"+1)2}2+ S {tr(Hn+1H^}＼

On the other hand, because of

tr(Hn+l)3= trfis+3H{tr(Hn+1)2-nH2}+nHs
we get

(4.9)
^A＼[i＼^{＼[jt＼2+ nH2y-nE {tr p?+'SH＼pi＼2+ nHl}+nc＼[i＼l

= |[i＼＼＼fi＼2+nc-nH2)-nH tr p?.

Because of tru=0, we can apply Lemma 3.2 to the eigenvalues of u and obtain

(4.10)

Hence we obtain

(4.11) jA＼ft＼2^＼l*＼2
(l'"i-|iH7^irl''l+"e-"/'i)

where we have used (4.9)and (4.10). From (3.8)we know that the Ricci curvature

of M is bounded from below. Putting F= ―l/V|/i|2+a for any positive

number a. Since M is complete and space-like, we can apply the Generalized

Maximum Principle (Theorem 3.1) to the function F. For any given positive

number s>0, there exists a point p at which F satisfies

(4.12) supF<F(p)+s, Igrad F＼(p)<e, AF(p)<e.

Consequently the following relationship

(4.13) jF(PYA＼fjt＼＼p)<3£2-F(p)e

can be derived by the simple and direct calculations. For a convergent sequence

{sm} such that sm―>0(m-*°o)and sTO>0, there exists a point sequence {pm} such

that {F(pm)＼ converges to F0=supF by (4.12). On the other hand, it follows

from (4.13) that we have

(4.14) jF(pmyA＼fi＼2(pm)<3em2-F(pm)em.

The right hand side of (4.14) converges to 0 because F is bounded. Accordingly,
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for any positive number s>0 (s<2) there exists a sufficientlylarge integer m

for which we have

F(/)m)4A|/i|2(/)m)<£.

Hence we get

(2-e)＼v＼*(pm)-2nHv^(~i2_1) ＼pt＼＼pm)

+2(nc-nH2-sa)＼fi＼＼pm)-sa2<0.

Thus the sequence {＼u＼2(pm)}is bounded and the definition of F gives rise to

(4.15) lim ＼pt＼z(pm)―sup|/*|2.

n ―ca

Therefore the suprernum of F satisfiesFo―snpF<0. According to (4.14) we

have

(4.16)

Thus (4.11) and (4.16) yield

(4.17)

lim supA|/*|2(/>m)^O

771->oo

O^supl m|2(sup| u＼2―nH――. ,. sup ＼a＼+nc―nH2]
' ＼ ' V n(n ―1) I

Taking account of (4.5) we have

(4.18) sup2(/i?/x)2=ntf2 or S_(l)^supS(/ii"+1)2^S+(l),

from which combining with the assumption of Proposition 4.1 it follows that

we have

supS(/i?/1)2=nfl2.

This means that ft=0 because of (4.5) and therefore M is pseudo-umbilic. □

The inequality (4.17) holds on the space-like submanifold M of M£+P(c).

Accordingly, in this case we have

(4.19) sup 5Xh?j+1)s=nH* or supSC/tf/^S+Cl).

Remark. When p=l, the hypersurface M becomes totally umbilic under

the assumption of Proposition 4.1, which means that this property is a gener-

alization of the theorem due to the firstauthor and Nakagawa [61.

5. Proof of Theorem 1.

In thissectionthe squared norm S of the second fundamental form of M

is estimated from above. Let M be an n-dimensionalspace-likesubmanifold

with parallelmean curvature vector h of an indefinitespace form Mp+P(c).
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Proof of Theorem 1. Because the mean curvature vector is parallel,the

mean curvature is constant. If H=0, then from Theorem 1.1 due to Ishihara

[8], we know that M is totally geodesic if c^O and S^L―npc if c<0. Hence

Theorem 1 is true. Next we may suppose H =£0. We choose en+1 in such a

way that its direction coincides with that of the mean curvature vector. Then

we get (4.1),(4.2) and (4.3). From (3.13), the Gauss equation (3.7) and (3.10)

we get

u,=

and hence we get

1
A 2

2 (h?jky+ncz2+ S hgmh^Mjhfj

9 V

a^n +l ≪=£≪+ !

_mW V ha hn+lh<* -4- V^ hP hP h<* h<*

2 (h?jk)z+ncT2+ 2 hflmh^MM

-2
a

s hPikh%mhPmjh?j+ S hfMMjhfj

a,/9*n+l

(5.1) + S hPiMmhamjh?j+ S h2mhlYhh+1h%

o v1 Un+lUct Ln+lLa _i_

a^n + 1

-nH S h?nhiyh?j+ S hW'h^h^Mj.

We put Sa/5= U/ify/i^ for any a, /3^n+l. Then (Sa/≫)is a (/>-l)x(/>-l)

symmetric matrix. It can assumed to be diagonal for a suitable choice of

<2n+2,■･･,en+v. Set Sa = Saa. We then have T2=^jSa. In general, for a matrix

-4=(aiA we define N{A)=tv{AlA). Hence we get

2 h^h^Mjhfj-2 2 h^h^h^jhfj

+ 2 /ifm/i^/i^/jfJ-+ 2 hfmh^Mthfj
a.jS^n+l a.jS^n+l

Obviously, we see

(5.2)

Suppose p^2. Let

2 (S≪)2+

≪=£≪+!

2 N(HaH^-H^Ha)

a,p*n +l

a, 3^=71 + 1
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(/>-l)ai= r2=SSa,

(p-lXp-2)as=2 S SaSp

a</3,a, S#n + 1

Then we get

S(Sa)≪=(j)-lXai)"+(/≫-l)(j!>-2){(≪j1)t-cr,},

(p-mp-2){M*-aa} = S (5≪-S^)2

Hence we obtain

S h^hLMjhf-2 2 h^Mmhtihfj

(5.3)

a, (9^n + l a, ji^n + l

1

p-l
r4

a, B±n+l

Then the equations (5.1),(5.2) and (5.3) imply

that

1

-.4_i_ V ha hn+lhn+lha 9 V hn+1ha hn+lha

ai=n +l a^n + 1

VS(a<)2m)2,

507

p―1 a±n+＼

+ 2j
"■im'lmk

nkj rlij― nri 2j nimnmj hij-＼- Zj
"ik "km n-mj^ij ･

a＼=n+l ff^n + 1 a^n +1

For a fixed index a, since HaHn+1=Hn+1Ha, we can choose le1( ･･･ en} such

nij―AiOij, flij ―AiOij.

Then we get

^h^h^h^hfj^^hf^h^hlYhfj + ^h^h^h^hfj

=(S^?)2-n/^S^?)2.

We notice here that eigenvalues ^s are bounded by (4.19). In order to

estimate the last term on the above equation, the following property is prepared.

Lemma 5.1. Let au ･･･,an be real numbers satisfying S<3t=0 and let bu ･･･,

br, be also real numbers. Then we have

2X(W2^

where the equality holds if and only if the n ―l of a^s are equal with each other

and the corresponding n ―l of b/s are equal to 0.
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Proof. We consider the function f=J]ai(bi)2 with constraintSflt=Q,

S(af)2=:a and J](hi)2=b. Then there exists a criticalpoint of / on R2n at

which we have

(5.4)

From (5.4) we get

(&i)2+jUi+2≪8a,=0

Ui
n

2atbt+2utbt=0

and the criticalvalue of / is equal to ―fi3b=―2ft2a, and therefore we have

(5.5) at=―fia, or bt=0.

If ai――fiz for any index i, then we get /=0, because of ^a.i=Q. If at―

―fts,l^Li^m and bj=0, m+lf^j^n, then we have from (5.4)

2fi2aj=―b, y=m+l, ･■･,n.

If ^2=0, then /―0. Without loss of generality, we may suppose ^2^0. Thus

we see

which yields

(5.6)

From (5.4) and (5.5)

aJ=

b

2nfi2
;=m+l, ･･･,n

it follows that we obtain

^2=

which means that we obtain

1 / n―m b
+ -7TA

7==,
2 ＼ nm vfl

/I^^-^VSM'SCW1.

If the equality holds,then we have m=l and aj=± Va/n(n―1), ^-=0, 2<j<n

The converse is obvious. □

According to Lemma 5.1 we have

i i i i

^-n#(^^VS(/*?/1)2-n#2+//)tr(/n2
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The right hand side of the inequalityabove does not depend on the choice of

frame fields.Therefore we have

2-1 tlkm'lmk ilij rlij ― 6 2j nik rlkmitmj nij-T 2-1 ^irnl^mk Kkj "ii
a^n + l aj=n +l ai=n +l

v, O V' La hn +lha-L- V1 Ua hn + i-hn+~LUa

a±n +l ontn + 1

>-nH

Thus we have

Making use of

w=

/
In ―1

]nc-nH(J

the

V^(h?r?-nH*+n )}r2+ ^-jr4

same proof as in the proof of |≪|2above, we have

nc-nH(yJ^-^VWWfz:n'H2+Hy^T2+

Thus from (4.19) we get

(5.7) supr^(^-l){n/i(^n-~

The equality (4.6), the inequalities (4.19) and (5.7) yield

S^S+(p)+(P-DH{nH+ n n ―
s

1

p-l

VS+(l)-nH2+H)-nc＼

Y)-nR*}}

Hence we complete the proof of Theorem 1. D

Remark. When M is maximal (i.e., H=0), Theorem 1 implies S^―npc.

Ishihara [8] obtained this relation for complete maximal space-like submanifolds.

When p=l, Theorem 1 becomes S^5+(l). This result is obtained by the first

author and Nakagawa [6]. Hence Theorem 1 generalizes the results above.

6. Proof of Theorems 2 and 3.

Let M be an n-dimensional complete space-like submanifold with parallel

mean curvature vector of Mp+P(c), c^O. We assume S―S+(p)-＼-K(p). Then

the equalities of all inequalities in the previous sections have to hold. Con-

sequently, from (4.8) and (5.7) it is seen that

(6.1) h?Jh=0

for any i, j, k and a. Also from (4.2) and (5.7) it follows that

for any a and B. The equations imply that all of Ha are simultaneously
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diagonalizableand the normal connection in the normal bundle of M is flat.

Hence we can choose a suitablebasis{et} such that

(6.2) hft^tfdij

for any /, / and a. The submanifold M is said to be isoparametric[13] if

the normal connection is flatand the characteristicpolynomial of the shape

operator As has constant coefficientsover the domain of any local parallel

normal field£.

Lemma 6.1. M is isoparametric

Proof. Since the normal connection is flat, it is seen that there exist

locally p mutually orthogonal unit normal vector fieldswhich are parallel in

the normal bundle. So we can choose a suitable parallel basis {<?,} and then

we have (Dap=0. Hence, since we have

(6.3) Hh?jka)k= dh?j-%hfja)ki--Zh?ka)kj+*ZhPiJ(Dpa,

setting i=j in the above equation and using (6.1) we get dhtt―Q. Hence /if*

is constant and M is isoparametric. □

Lemma 6.2. M is of non-positivecurvature.

Proof. Suppose that there exist indices i, j and a such that hfi-^hfj.

From the equation (6.3) we get

S^&a≫≪+ S/i&tt≫^=(/ifi-^)fl>u=O,

from which it follows that 0)^=0. Accordingly, we have

In fact, for any fixed indices i and a we denote by [z] the set consisting of

indices k such that h?i=h%k. Then we have M^E/] by the supposition and

hence we get

J$Q)ik/＼<i)kj=
k

2 <!)ik/＼<l)kj + 2 <oikA<okJ+ S (OikAcDkj
k&n k&mvui

each term of which vanishes identically. By the structure equation

we obtain

d(i)ij+^(!)ikAQ}kj^- ^-^RiJki(i)k A(i)i
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Next, suppose that hti―hajjfor any distinctindices i and / and for any

index a. Then the Gauss equation implies

flw=c-2(/i?i)2=c-2(#)8^0,
a a

because of c<:0.

Thus M is of non-positive curvature. □

Proof of Theorem 2. By a theorem due to Koike [10] and Lemmas 6.1

and 6.2 it is seen that M is locally congruent to the product submanifold

HnKci)X---xHn<Kcq)xRm of R%+q, where ^qr=1nr+m=n and l^q^p. Then

M can be naturally regarded as the space-like submanifold of Rp+P whose

mean curvature vector is given by (2.1). It is also parallel in the normal

bundle of M in R%+p. The constant S+(l) and the squared norm S of the

second fundamental form are given by (2.2). Therefore it is seen that we have

S+(p)+K(p)=-phnr2cr=S,
r=l

which implies p―q~＼ and nl=l. Accordingly the hyperbolic cylinder H1(c1)x

R"'1 of i£ +1 is the complete connected space-like hypersurface with constant

mean curvature whose squard norm S attaining the maximal value. D

Proof of Theorem 3. When p―1 it is seen by a theorem due to Ki,

Kim and Nakagawa [9] that the hyperbolic cylinder //1(c1)xi^re"1(c2)is the

complete spacelike hypersurface with constant mean curvature of HVl(c)

satisfying the given condition.

Suppose next that p^2. By means of Koike's theorem and Lemmas 6.1

and 6.2 again, M is locally congruent to the product submanifold Hni(Ci)X---X

Hn≪+Kcq+i) in #?+≪(c'),where jy^＼nr = n, Sart1i(l/cr)=(l/c/)^(l/c)and Hnq+＼c']

is a totally umbilic submanifold of Hp+P(c). The mean curvature vector of

M in Hq+q(c') is denoted by h!, which is parallel in the normal bundle of

M in Hq+q(c'). Then the mean curvature vector h of M of Hp+P(c) is given

by h=h'+h", where h" is the mean curvature vector of Hq+q(c') in Hp+P(c).

Consequently the mean curvature vector h is parallel in the normal bundle

N(M) and the mean curvature H and the squared norm S of M in Hp+P(c)

are given by

h2=n

s=

*fl2=n8c- 23 nr2cr,
r = 1

nc
9 + 1
S nrcr

r = l
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We have S+(l)^/i2―nc, because of c<0. So it is seen by Lemma 2.1 that

we obtain

(6.4) S+(p)+K(p)-S^h2-pnc+(p-l)h2-S=pli2-pnc~S^Q,

where the equality holds if and only if H=0. Accordingly, if we have 5=

S+(p)+K(p), then H must vanish identically. This implies that Theorem 3

is proved by a theorem due to Ishihara [81. □
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