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APPROXIMATIVE SHAPE II

―GENERALIZED ANRs―
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Tadashi WATANABE

§0. Introduction.

This paper is a continuation of [38], in which we introduced approximative

shape. In this paper we introduce many approximative shape properties for

spaces. These are approximative shape invariants and unify generalized absolute

neighborhood retracts.

In 1931 Borsuk introduced the notions of an absolute neighborhood retract

and an absolute retract,in notations ANR and AR, for metric spaces, respectively.

There are many generalizations of ANRs and ARs. In 1953 Noguchi [26],

introduced the notions of an e-ANR and an e-AR for compact metric spaces.

Gmurczyk [11, 12] studied some shape properties of e-ANRs and s-ARs. She

introduced the terms of an approximative absolute neighborhood retract in the

sense of Noguchi and an approximative absolute retract, in notations AANRn

and AAR, respectively, to replace Noguchi's less convenient names e-ANR and

e-AR. Clapp [8] introduced an approximative absolute neighborhood retract in

the sense of Clapp, in notation AANRc, for compact metric spaces. Bogatyi [2]

studied many properties of AANRn, AANRc and AAR. Kalini [14] introduced

these notions for compact spaces, and Powers [28] for metric spaces. Mardesic

[22] introduced the notion of approximative polyhedra. Recently Gauthier [9,

10] introduced AANEN, AANEc and AAE which are generalizations of an ab-

solute neighborhood extensor and an absolute extensor for metric spaces.

In 1986 Borsuk introduced shape theory, which was then developed by many

mathematicians. Shape theory gives us a method to investigate bad spaces and

bad maps by means of the good homotopy category of polyhedra. We have many

important notions in shape theory; for examples, movability (see [5], [20]),

uniform movability (see [25]), strong movability (see [6], [24]), absolute

neighborhood shape retracts(see [4], [23]) and so on (see [19]). These notions

play fundamental roles in shape theory.

In [38] we introduced approximative shape. It gives us a method to investi-

gate bad spaces and bad maps by means of the good category of polyhedra. In

Received February 4, 1986.



304 Tadashi Watanabe

this paper we introduce approximative movability in §1, uniformly approximative

movability in §2, approximative condition M in §3 and strongly approximative

movability in §4. In §5 we show that these approximative shape properties

characterize generalized ANRs. In §6 we discuss the relationship between these

approximative shape properties and shape properties. We show that approxi-

mative movability and uniformly approximative movability are equivalent for

compact metric spaces, but differentfor compact spaces.

We assume that the reader is familiar with the theory of ANRs and with

shape theory. Borsuk [3] and Hu [13] are standard textbooks for the theory of

ANRs. Borsuk [4] and Mardesic and Segal [19] are standard textbooks for shape

theory. For undefined notations and terminology see Hu [13] and Mardesic and

Segal [19], which is quoted by MS [19]. We use the same notations and

terminology as in [38], We quote results from [38] as follows: for example

(1.3.3) denotes theorem (3.3) in [38].

The author thanks Professor Y. Kodama who encouraged him to develop this

theory, and also Dr. K. Sakai and Dr. A. Koyama. They carefully read the

firstmanuscript [37] and gave valuable advices.

§1. Approximative movability.

In this section we introduce the notion of approximative movability and in-

vestigateits properties.

Let {3C,W) = {(Xa,eUa),paf,a,A} be an approximative inverse system in TOP.

We say that (X, IX) is approximatively movable, in notation AM, provided that

it satisfiesthe following condition:

(AM) For each a^A there exists ao>a such thatfor each a'~>a there exists

a map raf: Xa9-*Xa' satisfying(J>a',ara',pao,a)<Ua.

(1.1) PROPOSITION. Let (3C,U) and (j/,V) be approximative inverse

systems. Suppose that (%/,V) is dominated by {%, W) in Appro-TOP. // (J£,W)

is AM, then so is (V,V).

PROOF. Put (2/,V) = {(Yb,Vb),g^,b,B}. Let f={f,fi: b^B}: {3C,U)-≫(y,

V) and g= {g, ga '■a^A}: (y,"V)->{%,1T) be approximative system maps such that

[^][^] = [1(^> v)＼ Since [f][|7] = [<|(V)(/|7)] for a 1-refinement function s of

(2/,V), by (1.2.7) there exists an increasing function t: B->B such that £>1#

and

(l) g(O(<K≫(ft0)=: g(Olcy,v,.

Let ^: B->B be a 2-refinement function of (2/,V). Take any ^e.B. By (1)
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there exists b＼~>tu(b), gfstu(b} such that

By the assumptions, there exists ao>fstu(b) such that

(3) a0 satisfies(AM) for (3£,U) and fstu(b).

By (AM2) there exists b2>bug(.ao) such that

(4) (pao,fstu(.bygaoqb2,Q<iao),gfstu(.b^qb2,gfstucbi)<2lfStucby

Claim. b2 satisfies (AM) for (y,V) and b.

Take any b'>b. By (AM2) there exists a'>fstu(b},fstu(b') such that

(5) (.fstu(b)pa',f$tu(.b),qstu(b'^,stu(b->fstu(b'-)pa',fstu(bfy)<C.Vstu(_1}^-

By (3) there exists a map ra': Xao^-Xaf such that

(6) {.pa',fstu(b^rar,pa0, fstucb-,)Kilf stubby

Put rb'= qstucb),b'fstu<ibnPa',fstu(b')ra'ga0qb2,g<ia0):Yb2-^Yb>. We need to show that

(7) (qb',brb', qb2,b)<Vb.

By (5) and (AI2)

(8) (qstu(.b-),u(b)Jstu(b)pa',fstu(b-)1~a'gaoqb2,Q(.ao')>

qstu(,b/-),u(.bystucb/-)pa/,fstu(,b/)Ta/gat)qb2>g(Co))<C-^M(6)-

By (6), (AMI) and (AI2)

(9) (^qstu(b^,u(fi-)fstu^pa',fstu(b^rafga^qb2,g(,aa-),

qstu(b-},u(b^Jstu(b-)pao,fstu(b)ga(,qb2,g(a0))^ t'≪(&)･

By (4) and (AMI)

(10) {qstu(b-),ucb-)Jstu(b-)pao,fstu(.b)gaoqb2,g(ao-),

qstu<fi-),u(b)Jstuffingfsbu<j)')qbi,gf$tw(by)^v u(b).

By (2)

(11) (^qstu(b-),u(ib-)fstu(b^gfstu(b^qb2,gfstu(fi),qb2,u(.by)<C^M(&)-

By (8)-(ll)

(12) (qstuib'ifU^fstuab'ipa^fstuib'ira'gaoqb^gaat,-),qb2,u(.by)<.St2V*M(6).

Since a is a 2-refinement function, (7) follows from (12). Thus we have the

Claim. Hence (J/,10 is AM. ■

(1. 2) COROLLARY. The notion of approximative movability for approxi-

mative inverse systems is an invariant property in Appro-TOP. ■

Let p={pa' aeA}: X-*(3C,CW) be an approximative resolution of a space X.

We say that p is approximatively movable, in notation AM, provided that(3C,W)
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(1.3) Lemma. Let p: X-^(_3C,W) and p': X―>(9£,U)' be approximative

AP'-resolutions. If p is AM, then so is p'.

(1.3) follows from (1.5.1) and (1.2). B

Let 3C= {Xa,pa',a, A] be an inverse system in TOP. We say that 3C is

approximatively movable, in notation AM, provided that it satisfiesthe following

condition :

(AM)* For each ≪gA and for each 2l&6C)V(Xa) there exists ao>a such

that for each a'>a there existsa map ra': Xao->Xa' satisfying {pa1,ora', paa,a)<

11.

(1.4) PROPOSITION. Let X and y be inverse systems. Suppose that y is

dominated by X in pro-TOP. If 3C is AM, then so is y.

PROOF. Put ?/={Yb,qb>,b,B}. Let f ={/,/&: 6eE}: 3f->2/ and g={g,ga:

a£A}: y^>3£ be morphisms of inverse systems such that fg and ＼y are equi-

valent (see MS [19, pp. 1-9]), that is,

(1) /&~ly.

Take any b^B and any V^~60V(Yh). By the assumption there exists ao>f(b)

such that

(2) a0 satisfies (AM)* for X, f(b) and f^V.

By (1) and the definition of morphisms of inverse systems there exists bo>b,

gf(b),g{a0) such that

(3) fbgfcb)qba,gf(b)= qbo,b and

(4) gfcb^qbo,gfcb)=pao,f(b)gaoqb<>,Qcao'>-

We show that bo is the required index. Take any b'~>b. Then there exists

a'>f(bXf(b') such that

(5) qb',bfb'pa',f(b'->=fbpa',fcb)-

By (2) there exists a map ra': Xao-*Xa' such that

(6) (pa',f(b)ra', pa^fcbiXf^V.

Put rb'=-fb'pa>,f(b>)ra'gaoqbo,Q(.aa):Ybo-^Yb'. By (3)-(6) (qb',brb', qbo,b)<V and

then y is AM. M

(1.5) COROLLARY. The notion of approximative movability for inverse
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systems is an invariant property in pro-TOP.

(1. 6) LEMMA. Let (J£,W) be an approximative inverse system. Then (J£

U) satisfies(AM) iff % satisfies(AM)*.

PROOF. We assume that (J£,W) satisfies(AM) and show that 3C satisfies

(AM)*. Take any a<=A and any U^0V(Xa). By (AI3) there exists ax>a

such that p~*}0LUy2lai. By the assumption there existsao>ai which satisfies(AM)

for (%,U) and ax Take any a'>a and then take a">a',ai. By the choice of

a0 there exists a map ra" '■Xaf>-^Xa" such that (J>a",aira",pa^ad^Ua^- Thus

Cpa",af"a",pao,a)<CU. This means that Uq and the map pa",a'ra" '■Xao-^Xaf satisfy

(AM)* for X and a. The converse assertionis trivial. ■

Let p= {pa : flGA}: X->3£ be a resolution. We say thatp is approximatively

movable, in notation AM, provided that X is approximatively movable.

(1. 7) PROPOSITION. Let p : X->% and q : X-^y be AP-resolutions of a space

X. If p is AM, then so is q.

PROOF. Put q={qb:beB) and y = {Yb,qb',b,B}. We need to show (AM)*

for y. Take any b(=B and any V<=1jov(Yb). By (R2) there exists y＼ei5Oy(Y&)≫

≪= 1,2,3,4, such that

(1) stV1<V,＼2<V1,＼3<V1,stVi<V2AV3,

(2) V2 satisfies(R2) for q and Vi, and

(3) F3 satisfies(R2) for p and Vx.

By (Rl) for /> there exist aGi and a map h: Xa^Yb such that

(4) (hpa, qb)<Vt.

Since ^ is AM, there exists a{>a such that

(5) ax satisfies(AM)* for a and h~Wi.

By (Rl) for q their exists b{>b and a map k: Yr61->Xaisuch that (&g&15 />≪i)<

Qipax,a)~xya- Thus (hpauakqb!, hpa} <Vi and then by (1) and (4)

(6) (hpauakqt!, g6i,&g&i)<T2-

By (2) and (6) there exists b2>bi such that

(7) (Jipauakqbut^ qbz,b)<Vl.

Claim. &2 satisfies(AM)* for y, b and r.

Take any b'>b. By (Rl) there exist a'ya and a map m: Xa'-^Yb' such

that (mpaf, qbO<Qb*b^i- Thus (qbf,bmpaf, qb)<Vi and then by (1) and (4)
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(8) (qb',bmpa>, hpa',apa'} <Vz-

By (3) and (8) there exists a">a' such that

(9) {qb',bmpa",ar, hpa≫,a) <Vi-

By (5) there exists a map ra" '■Xai―>Xa" such that (pa",ara", pai,a) Kh'1!/＼. Thus

(Jipa",ara", hpai,a)<y* and then

(10) {hpa",ara"kqb2,bi, hpai,akqb2,bd''<y＼-

By (9)

(11) {qb',bmpa",a'ra"kqbi,bl, hpa",ara"kqb2,i>1)<Vi.

By (1), (7), (10) and (11) {qb',bmpa'',a'ra"kqb2,bi, qb2,b)<V. This means that

the map ■mpa",a'ra"kqb2,b1: Yb2->Yb' gives our Claim. Hence y is AM. ■

(1.8) THEOREM. Let X be a space. Then the following conditions are

equivalent :

( i ) Any/some approximative AP-resolution of X is AM.

(ii ) Any Isome AF'-resolution of X is AM.

PROOF. By (1.3) any and some in (i) are equivalent. By (1.7) any and

some in (ii) are equivalent. We show that (i) implies (ii). By (i) there exists

an approximative AP-resolution p: X->(X,21) such that (X,2l) satisfies(AM).

Then X satisfies(AM)* by (1.6). Since p: X-^X is an AP-resolution by (1.3.3),

we have (ii). We show that (ii) implies (i). By (1.3.15) there exists an ap-

proximative POL-resolution p: X->(X,U). Since p: X-*X is a POL-resolution

by (1.3.3),p is AM by (ii). Since X is AM, by (1.6) so is (X,U). Hence

p:X->(X,U) is AM. Then we have (i). ■

We say that a space X is approximative^ movable, in notation AM, pro-

vided that it satisfiesone of the conditions in (1.8).

(1. 9) THEOREM. Let X and Y be spaces. Suppose that Y is dominated by

X in ASh. // X is AM, then so is Y.

PROOF. By the assumption there exist approximative shapings m, n such

that mn = AS(lr). Let p: X->(5T,^), p': X-+(Z,11)'e.E(X) and q: Y->(#,1Q,

q':Y^>(2/,Vy^E(Y). Let f: {% W->(?/,Vy and g : ($ ,V^(Z ,U) be ap-

proximative system maps such that ([_f]y= m and <[flr])= ≪. Since mw = AS(lr),

U-Y^',q[f][^x~＼p,p'[_g~]= [l(y,v{＼- This means that (y,V) is dominated by (JT,

2^) in Appro-AP. Since (%,W) is AM by (1.8), by (1.1) so is (?/,V). Hence

Y is AM. B
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(1.10) COROLLARY. The notion of approximative movability for spaces

is an invariant property in ASh. H

(1.11) COROLLARY. ( i ) Suppose that a space Y is dominated by a space

X in TOP. If X is AM, then so is Y.

(ii ) The notion of approximative movability for spaces is a topologically

invariant property.

(1.12) Corollary. (i) A space X is AM iff so is T(X).

(ii) A Tychonoff space X is AM iff so is C(X).

(iii) A space X is AM iff so is CT(X).

(1.11) follows from (1.5.9) and (1.9). (1.12) follows from (1.6.8), (1.6.10)

and (1.8). ■

Let X be a collection of spaces. We say that (3£,W) is approximatively

JT-movable, in notation J5T-AM, provided that it satisfiesthe following condition:

(JT-AM) For each aGA there exists aQ>a such that for each a'>a and for

any map f: K->Xao, where ][eJ, there existsa map f : K-^Xa' satisfying(pa',a,

f, pat),af)<2la.

We say that 3C is approximatively JT-movable, in notation JT-AM, provided

that it satisfiesthe following condition:

(X-AM)* For any aGA and for any 2/e?5Oy(Xa) there exists ao>a such

that for each a'>a and for any map /: K-^Xao, where ZeJ, there existsa map

f':K->Xa' satisfying (pa',af'',pao,af)<M.

We say that an approximative resolution p : X-^(j£~,21} and a resolution p : X

^-j£ are approximatively J/T-movable, in notation JT-AM, provided that they

satisfy (X-AM) and (X-AM)*, respectively. By slight modifications of our

proofs we can show (1.1)-(1.8) for approximative JT-movability. We say that a

space X is approximatively JT-movable, in notation JT-AM, provided that it

satisfiesone of the conditions in (1.8) for approximative X-movability. In the

same way we can show the analogues of (1.9)-(1.12) for approximative JC-

movability. Thus we summarize as follows:

(1.13) THEOREM. Let X be a collection of spaces. All assertions (1.1)-

(1.12) hold for approximative X-movability. H

Let D be a subcategory of TOP. We say that a space X is approximatively

D-movable, in notation D-AM, provided that it is approximatively ObD-movable..



310 Tadashi WATANABE

Let POL" be the full subcategory of POL consisting of all polyhedra P such that

dim P<n. We say that a space X is approximatively w-movable, in notation n-

AM, provided that it is approximatively POLn-movable.

(1. 14) COROLLARY. All assertions(1.1)-(1.12) hold for approximative n-

movability. ■

Finally we show relations between approximative movability and approxima-

tive X-movability.

(1.15) THEOREM. Let X be a space. ( i ) If X is AM, then it is J-AM

for any collectionX of spaces.

(ii) Let K be one of AP, POL and ANR. Then X is AM iff it is K- AM.

(iii) If X is AM, then it is n-AM for each integer n.

(iv) Let &im.X<n. Then X is AM iff it is n-AM.

PROOF. Since (AM) implies (X-AM) for any X, we have (i) and (iii).

Let C be a full subcategory of TOP and (3C,W) an approximative inverse system

in C. We easily show that if (J£,U) satisfies(ObC-AM), then it satisfies(AM).

This fact and (1.3.15) imply (ii) and (iv). H

§2. Uniformly and internally approximative movabilitieg.

In this section we introduce the notions of uniformly approximative mova-

bility and internally approximative movability. We discuss their properties.

Let (JT,21)= {(Xa,2la),pa',a,A} be an approximative inverse system in TOP.

We say that (X, 21) is uniformly approximatively movable, in notation UAM,

provided that it satisfiesthe following condition:

(UAM) For each a£i there exist ao>a and a collection {ra': a'>a] of

maps ra''■Xao-^Xa' such that (pa',ara',pao,a)<2la and (ra/, pa",a',ra")<2la' for

a">a'>a.

In a similar ways as in (1.1) and (1.2) we can show (1.1) and (1.2) for

UAM. We say that an approximative resolution p: X->(5E, 21) is uniformly

approximatively movable, in notation UAM, provided that (J£,2T)is uniformly

approximatively movable. In the same way as in (1.3) we can show (1.3) for

UAM. Thus in the same way as in (1.8) we can show the following:

(2.1) THEOREM. Let X be a space. Then the following conditions are

equivalent:

( i ) X admits an approximative &P-resolution which is UAM.
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(ii) Any approximative AF^-resolution of X is UAM. ■

We say that a space X is uniformly approximatively movable, in notation

UAM, provided that it satisfiesone of the conditions in (2.1). In the same way

as in (1.9)-(1.12) we can show these statements for UAM. Uniformly approxi-

mative movability is an invariant in ASh. We summarize as follows:

(2.2) THEOREM. (1.1)-(1.3) and (1.9)-(1.12) hold for UAM. ■

(2. 3) Lemma. ( i ) If an approximative inverse system is UAM, then it

is AM.

(ii) If a space is UAM, then it is AM.

(2.3) follows from the definitions.In §6 we shall show that,in general, the

converses of (i), (ii) in (2.3) do not hold. However we show their converses

for a special case.

(2. 4) PROPOSITION. Let (5C,21) be an approximative inverse sequence. Then

(X, U) is AM iff it is UAM.

PROOF. Put (%,U)={(Xi,2li'),pi,j,N}, where JV is the set of all positive

integers. We assume that (3C, U) is AM and show that it is UAM. By the

assumption there exists a subset A={at: i^N}cN such that <2i= l<<22<≪3<---,

(!) Pa]+1,at Uat>stUa,+1 for ze2V and

(2) at+i satisfies (AM) for (3C,W) and at for each z'eJV.

By (1.2.12) (3£,eU}A―{(.Xai,ella.i),pai,a],A} is an approximative inverse sequence

and then by (1.2.1) so is st(j£,U)A.

Claim. st{3C,U)A is UAM.

By (2) there exist maps n : Xai->Xai+1 for i>2 such that

(3) Cpai+i,ai-1ri,pai,ai-1')<1iai-1 for each ≪>2.

Take any a^eA and put fi=pai+i,airiri-1---?-k+i: Xak+i-^Xai for z>£+l and

fk=pak+i,aic- Xak+1-*Xak. We show that {fi＼i>k} satisfies

(4) (pat,ajfi, fj)<st2laj for *>./>£ and

(5) (pauakfi, pak+i,ak)<StUak for i>k.

Since fk―pak+i,ak, (5) follows from (4). Inductively we show (4). To do so

we consider the following :

P(l): (Pai+i,aifi+u ftXUai for i>k.
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Q(n) : The condition (4) holds for i>j>k with i―j=n.

First we show P(l). By (3) (/>a*+2,a*n.+i>Au+i,a*)<%x*, thatis,(pak+i,akfk+i,

fk)<V>a*. Hence P(l) holds fori=k. Let i>k + l. By (3) (pai+i,<nri+i,pai+1,ai')<

Uai and then(/>oi+2,airi+iri---r*+i,/>ai+i,a<n---r*+i)<%i,.Thus (pai+1,aifi+u fi)<

Uai. Then P(l) holds for z>£+l. Hence we have P(l).

Trivially Q(l) follows from P(l). We assume that Q(l), ･･-,Q(n-l) hold

and show Q(n). Take any i>k. By the inductive assumption and P(l)

(6) (pai+n,ai+1fi+n,ft+iXstilat+i and

(7) (pat+i,a,ifi+i,fi)<Uai.

By (1) and (6)

(8) (pai+n,atfi+n,pa,i+i,aifi+i)<%at.

By (7) and (8) (Pat+n,aifi+n,fi)<st2lai. This means Q(n). Hence Q(n) holds

for all n, that is, we have (4). By (4) and (5) we have the Claim.

By (1.2.12) and (1.2.14) (%,1f) and st{X,U)A are isomorphic in Appro-TOP.

Hence by (1.10) for UAM (%,U) is UAM. The converse follows from (2.3). ■

(2. 5) THEOREM. Let X be a compact metric space. Then X is UAM iff

it is AM.

(2.5) follows from (1.3.15) and (2.4). ■

In shape theory Spiez [31] showed that movability and uniform movability

are equivalent for metric compacta. (2.5) corresponds to his result.

Let p={pa'- aEiA}: X―>(3T,2/) be an approximative resolution of a space X.

We say that p is internally approximatively movable, in notation IAM, provided

that it satisfiesthe following condition:

(IAM) For each a^A there exist a'>a and a map r: Xa'^X such that

(Par, pa'.aXUa.

(2. 6) PROPOSITION. Let p: X-^(3£,U) and q : Y->(%/, V) be approximative

AP-resolutions of spaces X and Y, respectively. Suppose that Y is domhtated by

X in TOP. // p is IAM, then so is q.

In a way similar to the one used in (1.1) we can show (2.6). Then we

have (1.3) for IAM.

Let p={pa: flGil}: X->%= {Xa,pa',a,A} be a resolution of a space X. We

say that p is internally approximatively movable, in notation IAM, provided that

it satisfiesthe following condition:
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(IAM)* For each ≪eA and for each U^tjov(^Xa) there exist ao>a and a

map r: Xao-^X such that (par,paa,a)<1t.

(2.7) LEMMA. Let p: X-^(%,M~) be an approximative resolution. Then

p:X-^(3£,W) satisfies(IAM) iff p:X->X satisfies(IAM)*.

(2.7) follows from the definitions. In a way similar to the one used in (1.7)

we can show (1.7) for IAM. In the same way as in (1.8) we can show the

following:

(2.8) THEOREM. Let X be a space. Then the following statements are

equivalent:

(i

(ii

) Any Isome approximative AP'-resolutionof X is IAM.

) Any Isome AP-resolution of X is IAM. H

We say that a space X is internally approximatively movable, in notation

IAM, provided that it satisfies one of the conditions in (2.8). By (2.6) we have

(1.11) for IAM, i.e., internally approximative movability is a topological in-

variant.

(2.9) Proposition. (i) If a space X is IAM, then so is T(X).

(ii) If a Tychonoff space X is IAM, then so is C(X).

(iii) If a space X is IAM, then so is CT(X).

This follows from (1.6.8),(1.6.10) and (2.8). We summarize as follows:

(2.10) Proposition. (1.3), (1.7) and (1.11) hold for IAM. ■

(2.11) LEMMA. ( i ) If an approximative resolutionp : X->(jC ,U) is IAM,

then it is UAM.

(ii) If a space X is IAM, then X is UAM. B

(2.12) Theorem. A space X is UAM iff CT{X) is IAM.

PROOF. First,we assume that X is UAM and show that CT(X) is IAM.

Since X is UAM, by (1.12) for UAM (see (2.2)) CT(X) is also UAM. Let

p={pa:a^A}:CT{X)^{3C,U)^{{Xa,Ua),pa',a,A} be an approximative POL-

resolution. Then p satisfies(UAM) and we show that p is IAM. Take any

<2ieA By (AI3) there exists a2>≪i such that Pal,ai^ai>st2Ua2. Since (J£,W) is

UAM, there exist a3>a2 and a collection ＼ra':a><^A'} of maps ra': Xa3->Xa'

such that
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(1) (pa^aiTa1, pa%,a^)<Uai for a'>a2 and

(2) ipa",a'ra", ra'^Xila' for a">a'>a2.

Here A'={a'^A: a'>a2}. Since A' is cofinalin A, by (1.3.10) jj4'= (pa': a"^-

A'}: CT(X)->(S, W)a'= {(Xa',lla')pa",a',A'} is an approximative POL-resolution.

By (2) and (1.7.2) there exists a map r: XO8-*CT(X) such that

(3) (/vr, ra')<stUa> for a'eA'.

Since />a25a2is the identity, by (1) (ra2,^.ajX?/^. Since (pa2r, ra2)<s^a2 by

(3), (pa2r,pa3,a2)<st22laiand then by the choice of <22ipa^r, pa%,a0<%m. Thus

j>: CT(X)-*(^", 20 is IAM and hence CT(X) is IAM. The converse follows

from C2.ll). ■

(2.13) COROLLARY. Let X be a topologically complete Tychonoff space.

Then X is UAM iff X is IAM. ■

We consider the following condition for a resolution p: X->3C:

(C) For each 21<b60V(X) there exist aGA and a map r: Xa-^X such that

(rpa, lxXM.

(2.14) LEMMA. Let p: X―>% be an AP^-resolution. Then p satisfies(C) iff

it k TAM

PROOF. First we assume that p satisfies(C) and show that p satisfies

(IAM)*. Take any aGi and any 2l^6Ov(Xa). There exists V^60V(Xa), such

that V satisfies(R2) for p, Xa and 11. Since |>'1FGi5(,f(I), by the assumption

there exist a^A and a map r: Xai-*X such that (rpa^ls^Xpa1^- Thus

(parpa2,aipa2>pa2,apa2)<V for some a2>a,d＼. By the choice of V there exists

≪3>≪2such that (parpa3,ai,pa^aXU. This means that a3 and the map ?'pa3,ai-

Xa^X satisfies(IAM)* for a. Hence p is IAM.

Next we assume that p satisfies(IAM)* and show (C). Take any 2/G

t5oy(X). By (Bl) there exist aeA and VzE6or(Xa) such that p~alV<U. By

the assumption there exist a{>a and a map r: Xai-^-Xsuch that(/>ar,paua)<V.

Thus (parpai,palx)<V and then (rpai,lj)<p~^lV<U. This means that aj.and

the map r: Xa,-^X satisfies(C) for U. Hence p satisfies(C). ■

(2.15) COROLLARY. Condition (C) does not depend on the choice of the

AIP-rpsnllitinn c

(2.15) follows from (2.8) and (2.14). We say that a space X satisfies(C)
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provided that any/some AP-resolution of X satisfies condition (C). By (2.14)

we have the following:

(2.16) Proposition. A space X satisfies(C) iff X is IAM. ■

(2.17) THEOREM. A space X is IAM iff X is an AP.

PROOF. Take any POL-resolutionp: X->3C. We assume thatX is an IAM.

Then p is IAM by (2.8). By (2.14) p satisfies(C). Thus for each 2l(E 0V(X)

thereexistjgA and a map r: Xa―>X such that(rpa^xXU. Since Xa is a

polyhedron,thismeans that X is an AP.

Next we assume that X is an AP. By (1.3.3)p:X->% satisfies(Rl) and

(R2). Take any 2/e£w(X) and then stV<U for some V^60V(X). By the

assumption, there exista polyhedron P and maps /: X-+P, g : P―>X such that

(gf,lx)<V. By (Rl) thereexistflGA and a map h : Xa~>P such that(hpa,f)<

g~W. Thus (ghpa,gf)<V, and then (ghpa,lx)<stV<U. This means (C). By

(2.14) p isIAM. Hence X is IAM. ■

(2.18) COROLLARY. Let X be a topologically complete Tychonoff space.

Then the following statements are equivalent:

( i ) X is an AP.

(ii) X is UAM.

(iii) X is IAM.

(iv) X satisfies(C). H

§3. Approximative conditions M and N.

In this section we introduce the notions of approximative condition M and

approximative condition N, and investigate their properties.

Let C be a full subcategory of AP. Put RE(C)= {XeObTQP: X admits a

C-resolution which is rigid for C}. Let TOPc be the full subcategory of TOP

consisting of RE(C). Let (%,%) = {(Xo, Ma),pa',a, A] be an approximative in-

verse system in C and p ―＼pa: a^A] : X―;*(J£,21) an approximative resolution of

a space X.

We say that (J£,%) satisfiesthe approximative condition M3 in notation

ap-M, in C provided that it satisfiesthe following condition:

(ap-M) There exists ao^A such that for each aeA there exists ai>a, a0

and a map r : Xao-^Xa in C satisfying{rpai,aa,pa^a) <%*･

We say that p satisfiesthe approximative condition M, in notation ap-M, in C
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provided that (3f, It) satisfies the approximative condition M in C.

(3.1) LEMMA, p satisfies(ap-M) in C iffit satisfiesthe following condition :

(ap-M)i There exists ao^.A such that for each a^A there exists a map

r : Xao->Xa in C satisfying (rpao,pa) <Ua.

(3. 2) LEMMA. Let p : X->(3C, U) and q : Y->(y, V) be approximative C-

resolutions of spaces X and Y, respectively. Let p and q be rigid for C.

Suppose that Y is dominated by X in TOP. If p satisfies (ap-M) in C, then so

does a.

(3. 3) COROLLARY. Let p and p' be approximative C-resolutions of X rigid

for C If p satisfies(ap-M)i in C, then so does p'.

(3.1) follows from the definitionsand (R2). We can show (3.2) in a way

similar to the proof of (1.1). (3.3) follows from (3.2). ■

Let p= {pa ■a£A]: X->5C= {Xa,pa',a, A} be a C-resolution of a space X. We

consider the following conditions:

(ap-M)* There exists ao^.A such that for each a^A and each ^er50^(Xa)

there exist ai>a,a0 and a map r : Xaa-^Xa in C satisfying(rpai,a0,pa^aXU.

(ap-M)jf There exists ao^A such that for each a<=A and each 2l^^0V(Xa)

there exists a map r : Xao-^Xa in C satisfying {rpa^pa)<!U.

(3.4) LEMMA, (i) Let p:X-^(3£,W) be an approximative C-resolution.

Then p:X->(3C,U) satisfies(ap-M) iff p:X->3C satisfies(ap-M)*.

(ii) (ap-M)* and (ap-M)* are equivalent.

(3.5) Lemma. Let a space Y be dominated by a space X in TOP. Let

p: X->% and q : Y->y be C-resolutions rigid for C. If p satisfies(ap-M)*, then

so does q.

(3.4) follows from the definitions and (R2). We can show (3.5) in the

same way as in (1.1). Thus in the same way as in (1.8) we have the following :

(3.6) THEOREM. Let XeObTOPc. Then the following statements are

equivalent:

( i ) Any Isome approximative C-resolution of X, which is rigid for C,

satisfies(ap-M).

(ii) Any /some approximative C-resolution of X, which is rigid for C,
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satisfies(ap-M)i.

(iii) Any Isome C-resolution of X, which is rigid for C, satisfies(ap-M)*.

(iv) Any/some C-resolution of X, which is rigid for C, satisfies(ap-M)?. i

We say that a space XeObTQPc satisfiesthe approximative condition M, in

notation ap-M, in C provided that it satisfiesone of the conditions in (3.6).

(3.7) THEOREM. When C is a full subcategory of AP(CTOP3.5), then

(1.9)-(1.12) for ap-M in C hold on ASh(TOPc) and TOPc-

PROOF. (1.11) for ap-M follows from (3.2). (1.12) for ap-M follows from

(1.6.8) and (1.6.10). (1.9) for ap-M follows from (1.6.9),(1.6.11),(1.7.8) and

(1.11)-(1.12) for ap-M. (1.10) for ap-M follows from (1.9) for ap-M. ■

We say that a paracompact M-space X satisfiesthe approximative condition

M, in notation ap-M, provided that X satisfiesap-M in ANR(PM). Since

ANR(PM) is a full subcategory of TOPANR(PM) by (1.3.17), the above definition

is well defined.

(3.8) THEOREM. A paracompact M-space X satisfies the approximative

condition M iff it satisfiesthe condition M {see [36]).

PROOF. By (1.3.17) there existsan ANR(PM)-resolution p= {pa : flGA) : X->

AU(X, M) = [Ua,par,a, A} such that all maps are inclusions and all Ua are

ANR(PM)-open neighborhoods of X in an AR(PM) M. By (1.5.7) H(p) : X->

H(j4M(X,M)) is a HTOP-expansion. Since all Ua have the homotopy type of

polyhedra by (iii) of (1.3.17), we may assume that H(p) :X~^H(j4U(X, M)) is

a HPOL-expansion.

First we assume that X satisfiesap-M. By the assumption AU(X, M) satisfies

(ap-M). For each aeA there exists V^ 0V(Ua^) satisfying(*) for {Ua} in

(1.5.5). Thus H(j4U(X,M)} satisfiesthe following condition:

(MC)i There exists ao^A such that for each asA there exist a{>a, a0 and

a map r : Uao―>Ua satisfying rpai,a0―Pai,a.

Claim. (MC)i and (MC) given below are equivalent.

(MC) For each a^A there exists ao>a such that for each a'>a theae exist

a">a0, a' and a map r: Uaa->Ua' satisfying rpa",a9―pa",a'-

We easily show our Claim. Thus H(Atl(X, M)) satisfies(MC) and hence

X satisfiesthe condition M.

Next we assume that X satisfiesthe condition M. Then H(.4U(X. M^
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satisfies(MC) and hence satisfies(MC)i by the Claim. There exists ao^A such

that for each a^A there exist a{>a, a0 and a map k: Uao->Ua satisfying kpai,a0

~paua- There exists a homotopy h: UaiXl-^Ua such that h(x,0)=^/>ai,a0(^) =

k(x) and h(x,V)=pai,a(x)=x for x^Uax- Take a2>ax such that Ua2C.Uai and

define H': Ua2Xl[J UaoX {0}-+Ua by H%x,i) = Kx,i) for (x,t)^UaiXl and

H'^x,G)―k{x) for x^Uao- Then H7 is well defined and then by the homotopy

extension property there exists a homotopy H: UaoXl^Ua which is an extension

of H'. Define r: Uao->Ua by r(x')= H(x,l) for x^Uao- Thus r satisfiesthat

rpa2,ao―pa2,a- Hence p satisfiesthe following condition:

(ap-M)2 There exists aoe.A such that for each aeA there exist a2>a, a0

and a map r: Uao-^Ua satisfying rpa2,a0=pa2,a-

Since (ap-M)2 implies (ap-M)i for p, X satisfiesap-M. B

Let p : X-*(3£,W) be an approximative C-resolution of a space X. Then we

say that p satisfiesthe condition N provided that it satisfiesthe following con-

dition:

(N) There exists ao^A such that for each a£4 there existsa map /: Xao-^

X satisfying(pafpao,pa)<tla.

Let p: X-^SC be a C-resolution. We consider the following conditions:

(N)* There exists ao^A such that for each a^A and for each 2l^tjov(Xa)

there exists a map/:Xao―>X satisfying(,pafpaa,pa)<U-

(N)f There exists aQ^A such that for each 2/etSey(X) there exists a map

/: Xao->X satisfying(fpao,lx) <1l.

(N)2 There exist XeQbC and a map f: X-^-K such that for each 2/e

6mr(X) there exists a map g : K―>X satisfying(gfAxXU.

(3. 9) LEMMA. Let p be a C-resolution and rigid for C. Then p satisfies

(N)t iff it satisfies(N＼.

PROOF. Trivially (N)f implies (N)2. We now assume (N)2- Then there

exist Ke.QbC and a map f: X~^K satisfying(N)2. Since p is rigid for C,

there exists ao£zA and a map h : Xao-^K such that f=hpao. Take any 1l<E.iOy(_X).

By the assumption there exists a map g: K->X such that (gf,lx) <Lil. Thus

(ghpao,lx)<2l. This means (N)f. ■

Using rigidness as in the proof of (3.9) in a way similar to the one used in

(3.1)-(3.3) and (3.5) we can easily show the following:
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(3.10) LEMMA, (i) (3.1) holds for (N) and (N)*.

(ii) (3.2) and (3.3) holds for (N).

(iii) (N) and (N)f are equivalent.

(iv) (3.5) holds for (N)*. ■

By (3.9) and (3.10) we have the following:

(3.11) THEOREM. Let XeObTOPc. Then the fojlowing statements are

equivalent:

( i ) Any Isome approximative C-resolution of X, which is rigid for C,

satisfies(N).

(ii) Any/so?ne approximative C-resolution of X, -which is rigid for C,

satisfies(N)*.

(iii) Any/some C-resolution of X, which is rigid for C, satisfies(N)f.

(iv) X satisfies(N)2. ■

We say that a space XeObTOPc satisfiesthe condition N in C provided

that X satisfiesone of the conditions in (3.11). In the same way as in (3.7)

using (3.10) we have the following:

(3.12) THEOREM. When C is a full subcategory of AP(CTQP3.5), (1.10)

(1.11) and (2.9) hold for the condition N in C. ■

(3.13) LEMMA. An approximative resolutionp:X-^{3C,U) satisfies(ap-M)i

and (IAM) iff it satisfies(N).

PROOF. We assume that p satisfies(N). Then there existsaa^A satisfying

(N). Take any a£A Then there exists a map /: Xao―>X such that (pafpao,

pa)<1la- Put r=paf: Xao―>Xa and then (rpao,pa) <cUa- This means (ap-M)i.

Since p X-^X is a resolution by (1.3.3), there exists V^'60v{Xa) satisfying

(R2) for Ua. By (AI3) there exists a'>a such that Pa^,J/'>'^a/- By the choice

of a0 there exists a map g : Xao-^X such that (pa>gpao-,pa'X'Ua>. Then by the

choice of a' (pagpai,a0,pai, pa1,apai')<V for a{>a, a0. By the choice of V there

exists a2>ax such that (pagpa2,a0, pa2,a)<%a- This means (IAM).

Next we assume that p satisfies(ap-M)i and (IAM). Then there exists flo£

A satisfying(ap-M):. Take any aeA By (AI3) there exists a{>a such that

Pal,cfaa>stUai- Since p satisfies(IAM), there exist a2>ax and a map f: Xa2-^X

such that

(1) (PaJ, pai,aJ<U-ai.
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By the choice of a0 there exists a map r : Xao―>Xa2 such that (rpa<>,pad <2la2

and then

(2) (pa2,airpa0, ptuXVltH.

By (1) (paifrpao, pattturpaoXilai and then by (2) {,paJrpa^pad<stUai. By the

choice of ai (pafrpaQ,Pa) <cUa- This means (N). M

(3.14) Theorem. Let XeObTOPc.

C iffX is IAM and satisfiesap-M in C.

Then X satisfies the condition N in

m

We say that a paracompact M-space X satisfiesthe condition N provided

that it satisfiesthe condition N in ANR(PM). By (2.18) and (3.14) we have

(3.15) COROLLARY. Let X be a paracompact M-space. Then the following

statements are equivalent:

( i ) X satisfiesthe condition N.

(ii ) X is IAM and satisfiesap-M.

(iii) X is UAM and satisfiesap-M.

(iv) X is an AP and satisfiesap-M.

( v ) X satifies(C) and ap-M. H

§4. Strongly approximative movability and approximative contractibility.

In this section we introduce strongly approximative movability and approxi-

mative contractibility. We investigate their properties.

Let C be a full subcategory of AP. Let (3T, 21) = {(Xa, 2la),pa',a, A] be an

approximative C-resolution. We say that (3C, 21) is strongly approximatively

movable, in notation SAM, in C provided that it satisfiesthe following condition :

(SAM) For each aei there exists ao>a such that for each a'~>a there

exist a">a',ao and a map r : Xao-―>Xa' in C satisfying (pa',a,r, pao,a) <2la and

(jpa≫,a0, pa'^a'XUa'.

Let p= {pa : aGA}: X―>(.3r,21) be an approximative C-resolution of a space

X. We say that p : X―>(J£,21) is strongly approximatively movable, in notation

SAM, in C provided that (X, U) is SAM in C.

(4.1) LEMMA, p: X->(3£,W) is SAM in C iff it satisfiesthe following

condition:

(SAM)i For each a^A there exists ao~>a such that for each a'~>a there

exists a map r : Xao―>Xa' in C satisfying(pa',ar, pao,a)<L'Uaand {rpa<i,pa'}<.cUa>-
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This lemma follows from the definitionsand (R2). In the same way we can

show (3.2) and (3.3) for (SAM)i. Hence (3.2) and (3.3) hold for (SAM) by

(4.1). ■

We consider the following conditions for a C-resolution p : X^% :

(SAM)* For each aeA and for each U^ >Ov(Xa) there exists ao>a such

that for each a'>a and for each W^ 0V(Xa'') there exist a">a', aQ and a map

r : Xao->Xa' in C satisfying(pa',ai~,pao,a)<U and (rpa≫,a0,pa",a')<W-

(SAM)f For each ≪gA and for each U^tS0V(Xa) there exists ao>a such

that for each a'~>aand for each 2l' E.>0V(Xa') there exist a">a', a0 and a map

r : Xa^Xa' satisfying(pa',a.r,pao,a)<U and (rpao,pa') <W'.

We easily show that (SAM)* and (SAM)* are equivalent. In the same way

we show (3.4) for (SAM)j and (SAM)?, and (3.5) for (SAM)*. Thus we may

summarize as in (4.2) and then in the same way as in (3.6) we have (4.3) :

(4.2) LEMMA, (i) (3.2) and (3.3) hold for (SAM)X

(ii) (3.4) holds for (SAM)! and (SAM)*.

(iii) (3.5) holds for (SAM)X.

(iv) (SAM)* and (SAM)f are equivalent. ■

(4.3) THEOREM. Let XeObTOPc. Then the following statements are

equivalent:

( i ) Any/some approximative C-resolution of X, which is rigid for C,

satisfies(SAM).

(ii) Any/some approximative C-resolution of X, which is rigid for C,

satisfies(SAM)!.

(iii) Any Isome C-resolution of X, which is rigid for C, satisfies(SAM)*.

(iv) Any/some C-resolution ofX, which is rigid for C, satisfies(SAM)f. H

We say that XeObTOPc is strongly approximatively movable,

SAM, in C, provided that it satisfiesone of the conditionsin (4.3).

way as in (3.7) we have

in notation

In the same

(4.4) THEOREM. When C is a full subcategory of AP(CTOP3.5), (1.9)-

(1.12) for SAM in C hold on ASh(TOPc) and TOPc, respectively. ■

(4.5) PROPOSITION. ( i ) // (3f, U) is SAM in C, then it is AM and

satisfies (ap-M).

(ii) Let XeObTOPc- //XwSAM in C, then it is AM and satisfies
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ap-M in C.

PROOF. We show (i). From the definitions{3C,W) satisfies(AM) and the

following condition:

(ap-M)3 For each aeA there exists ao>a such that for each a'>a there

exist a">a', a0 and a map r : Xao->Xa' in C satisfying(rpa",a0, pa",a'^)<Ma''

In a way similar to the one used in the Claim in the proof of (3.8) we can

easily show that (ap-M) and (ap-M)3 are equivalent. Hence we have (i). (ii)

follows from (i). ■

We say that a paracompact M-space X is strongly approximatively movable,

in notation SAM, provided that X is SAM in ANR(PM).

(4. 6) COROLLARY. Let X be a paracompact M-space. If X is SAM, then

it is AM and satisfiesap-M. ■

(4. 7) THEOREM. A complete metric space X is SAM iff X is an ANR.

PROOF. Let (X,d) be a metric space. We assume that X is complete with

respect to the metric d. It is well known that X is isometric to a closed subset

of a Banach space B(X) (see Borsuk [3], Hu [13] and Besaga-Pelczynski [1]).

Here B(X) consists of all real bounded functions with sup norm. Since embed-

ding is isometric, we may assume that X is a closed subset of B(X) and d is

the metric on B(X). B(X) is complete with respect to d and ,B(X)eAR. By

(1.3.17) we have an approximative resolution p== {pa : a<=A]: X->OU(X, B(X)) =

{Xa,pa',a, A} such that all pa,pa',a are inclusion maps and all Xa are open

neighborhoods of X in B(X) and p is rigid for ANR.

Claim, p satisfies(SAM)* iffit satisfiesthe following condition:

(SAM)* For each a^A and each U^^0V(Xa) there exists ao>a such that

for each a'>a there exist a"~>a',a0 and a map r : Xa()->Xa' satisfying rpa",aa=

pa",a' and (pa',ar, pa<>,a)<y>.

We assume that p satisfies(SAM)*. Take any a^A and any U^~60v(Xa)

then there exists ao>a satisfying the condition in (SAM)* for a and 21. Take

any a'~>aand then there exists Ve.60V(Xa') satisfying(*) for palr,cfam (1-5.7).

By the choice of a0 there exist a">a0, a' and a map r : Xao->Xa' such that

(1) iPa',ar, pa^aXU and

(2) (rpa",ao, pa≫,a')<V.

By (2) and the choice of V there exists a p~}a2/-homotopy H: Xa"Xl-^Xa' such
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that H(x,O)=pa≫,a>(x) = x and H(x,X) = rpa>',a<>(x)= r(x) for x^Xa"- Take

a2>a{>a" such that Xa2cXajCXaiCXa". Then there exists a map t ＼B(JC)->I

such that t(Xa2)=0 and *CB(X)-XOl) = l. We define a map r': Xao->Xa' as

follows: r'(x)=H(x,t(x')) for xgXo" and r'(.r)= r(x) for xGXao-Xai.

Clearly r' is well defined and r'pai,a<s=pa2,a'-Since//is a ^"^^-homotopy and

(1), (pa',a,r',pao,a)<1l" Hence we have (SAM)f. The converse is trivial.

Hence we have our Claim.

We assume that X is SAM. Then p satisfies(SAM)*. By the Claim we

can choose a subsequence A'― {at :i^N＼ dA and maps n : Xai-^Xai+i for i>2

such that a1= l<Ca2<a3<---,

(3) X*cl/(X,(l/2)*) for *">1,

(4) dtpai+uai-Su pattai-yXO-IZy for i>2 and

(5) 1*ipa.i+2,ai+i―pa.i+2,ai+ifor Z>2.

Here U(x,e)={z^B(X) :d(X,z)<e} for £>0. We define maps ft: Xft2^XaiC

5(X) for i>l as follows: fi = ri-.l---r2for z>3 and /i=^a2,o< for z"= l, 2. By (4)

d(fi-i,fi~X(lj2y for z>2 and then {/i:/>l} forms a Cauchy sequence with

respect to d. Since JB(X) is complete with respect to d, we have a (continuous)

map /: Xa2->5(X). Since /* : Xa2-^Xfli, by (3) /(Xa,)CX, that is, /: Xa2^X.

By (5) ft(x) = x for x£X for ?>1, and hence f(x)=x for x^X. Thus X is a

retract of an ANR Xa2 and hence X is an ANR.

Next we assume that X is an ANR. Then triviallythe rudimentary resolu-

tion {ljr}:X^{X} satisfies(SAM)?. Then X is SAM. ■

(4.8) Problem. Does (4.7) hold for paracompact M-spaces or for metric

spaces? Our Claim in the proof of (4.7) holds for paracompact Jf-spaces.

Let (X, 21) be an approximative inverse system in TOP. We say that(J£,W)

is approximatively contractible, in notation AC, provided that it satisfiesthe

following condition :

(AC) For each aeA there exist a'>a and a map f:Xa'-*Xa such that

(/> pa',a)<Ma and f is homotopic to a constant map.

We say that p : X―≫(.3f,W) is approximatively contractible,in notation AC,

provided that (%,W) is AC. In a similar way we can show (1.1)-(1.3) for AC.

Let 3C be an inverse system in TOP. We say that 3C is approximatively

contractible,in notation AC, provided that it satisfiesthe following condition :

(AC)* For each a£A and for each %e?5Sy(Xa) there exist a'>a and a

map /: Xa'-^Xa such that(pa',a,f)<% and / is homotopic to a constant map.
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We say that p: X^3C is approximatively contractible,in notation AC,

provided that 3C is AC. In a similar way we can show (1.4)-(1.7)for AC.

Thus in the same way as in (1.8) we have the following:

(4.9) THEOREM. Let X be a space. Then the following statements are

equivalent:

( i ) Anyjsome approximative AP-resolution of X is AC.

( ii) Any/some AP-resolution of X is AC. H

We say that a space X is approximatively contractible,in notation AC, pro-

vided that it satisfiesone of the conditions in (4.9). In the same way we can

show (1.9)-(1.12) for AC. We summarize as follows:

(4.10) Theorem. (1.9)-(l.12) hold for AC. ■

A space X has trivialshape iff X has the shape of the one point space.

(4.11) THEOREM. A space is AC iff it has the trivial shape.

PROOF. Let X be a space. Then there exists an approximative POL-

resolution p : X-*(3£,U) of X satisfying(**) in (1.5.6). By (1.3.3) and (1.5.7)

H(p) : X-*H(3C) is a HPOL-expansion. It is well known that X has trivial

shape iff H(5C) satisfiesthe following condition :

(TS) For each a^A there exists a'>a such that pa',a is homotopic to a

constant map.

We assume that X is AC. Then (%,CW) satisfies(AC). Clearly (**) of

(1.5.6) and (AC) imply (TS). Hence X has trivial shape. Since (TS) implies

(AC), the converse also holds. H

(4.12) COROLLARY. An approximative polyhedron X has trivial shape iff

it satisfiesthe following condition:

(APT) For each 2l(EiSGV(X) there exists a map f: X->X such that (f,

lx)<?/ and f is homotopic to a constant map.

Since (AC) and (APT) for the rudimentary resolution {lx＼:X^{X} are

equivalent, (4.12) follows from (4.9) and (4.11). M

(4.13) THEOREM. Let M be an AR(PM) and X a dosed subset of M.

Then X is an AP with trivialshape iff it satisfiesfollowing conditio?i:

(APT)i For each 21<e60V(X) there exists a map h : M-+X such that (h＼X.
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PROOF. Firstwe assume that X is an AP with trivialshape. Take any

fte<V(X) and then we have V^$0V(X) such that stV<U. By (4.12) there

existsa map f: X-^X such that

(1) (/,lx) <~Vand / is homotopic to a constantmap.

Since X is an AP, thereexistan ANR K and maps g: X-^K, h : K->X satisfying

(hg,lx)<V. Thus {hgf,lx)<stV<U. Since M is an AR(PM), M is contrac-

tible.By (1) gf: X-+K is homotopic to a constant,and hence by the homotopy

extensionproperty thereexistsa map H: M-^K such that H＼X=gf. Then r ―

hH: M-^X has the requiredproperties.

By (iv) in (1.3.17)and (APT)! X is an AP. Then (APT)X implies(APT)

and by (4.12) X is an AP with trivialshape. ■

§5. Generalized absolute neighborhood retracts.

In. this section we discuss generalized absolute neighborhood retracts. See §0

for their historicaldevelopment.

Let C be a subcategory of TOP such that ObC is a weakly hereditary topo-

logical class(see Hu [13, p. 33]). Sometimes XeC means XeObC. ANR(C)>

AR(C), ANE(C) and AE(C) denote the full subcategories of TOP consisting of

all absolute neighborhood retracts,all absolute retracts,all absolute neighborhood

extensors and all absolute extensors for ObC. Let PM and M be the sub-

categories of TOP consisting of all paracompact M-spaces (see (1.3.17)) and all

metric spaces, respectively. ANR and AR denote ANR(M) and AR(M), re-

spectively. Lisica [18] and Mardesic and Sostak [21] showed the following :

(5.1) Lemma.

ANRcANR(PM).

ANR(PM)=PMnANE(PM), AR(PM)=PMn AE(PM) and

B

Let Y be a space. We say that Y is an approximative absolute extensor for

PM, in notation AAE for PM, provided that it satisfiesthe following condition:

(AAE) For any map f: Xo―>Y, where Xo is any closed subspace of any

paracompact M-space X, and for any 2l^i50V(Y) there exists a map g: X―>Y

such that (g＼X0,f)<U.

We say that Y is an approximative absolute neighborhood extensor in the

sense of Noguchi for PM, in notation AANEN for PM, provided that it satisfies

the following condition :

(AANEn) For any map f: X0->Y, where Xo is any closed subspace of any

paracompact ikf-space X, there exists a neighborhood N of Xo in X such that for
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any M^tfov(Y) there exists a map g: N-^Y satisfying(g＼X0,f)<ell.

We say that Y is an approximative absolute neghborhood extensor in the

sense of Clapp for PM, in notation AANEc for PM, provided that it satisfies

the following condition :

(AANEc) For any map /: X0->Y, where Xo is a closed subspace of any

paracompact M-space X, and for any 2l^ 0VCY) there exist a neighborhood N

of Xo in X and a map g:N―>Y satisfying(g＼X0,f)<U.

Let X be a paracompact .M-space. We say that X is an approximative

absolute retract for PM, in notation AAR for PM, provided that it satisfiesthe

following condition:

(AAR) For any closed embedding h:X->M, MeObPM, and for each U^

ov(h(X)) there exists a map r : M-^h(X) satisfying(r＼h(X),1a(X))<^.

We say that X is an approximative absolute neighborhood retractin the sense

sense of Noguchi for PM, in notation AANRn for PM, provided that it satisfies

the following condition :

(AANRn) For any closed embedding h : X-≫M, MeObPM, there exists a

neighborhood N of /t(X) in M such that for each %^'60VQi{X)') there exists a

map r:N->h(X) satisfying (r＼h(X),lMx^<U.

We say that X is an approximative absolute neighborhood retract in the

sense of Clapp for PM, in notation AANRc for PM, provided thatit satisfiesthe

following condition:

(AANRc) For any closed embedding h: X->M, MeObPM, and for each

7l^t50V(h(X)) there exist a neighborhood N of h(X) in M and a map r : N-^X

satisfying {r＼h{X),lhcx^<U.

AANRn (PM) and AANRC(PM) denote the full subcategories of TOP con-

sisting of all AANRnS and AANRcs for PM, respectively. Similarly we may

define AAE(PM), AANEN(PM), AANEC(PM) and AAR(PM).

(5.2) Lemma. AAR(PM)=PMnAAE(PM), AANRN(PM)-PMn AANEN

(PM) and AANRc(PM)=PMnAANEc(PM).

PROOF. We show the last one. In a similar way we can show the others.

Take any XeEAANRc(PM). Trivially X<=PM. We need to show that Ie

AANEc(PM). Take any paracompact M-space Z, its closed subspace Zo, any

map /: Z0-^X and any Uee Ov(.X). By (1.3.17) there exists a MgAR(PM)

which contains X as a closed subspace. Since XeAANRc(PM), there exist a
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neighborhood JV of X in M and a map r : N-^-X such that (r|X, ixXU. By

(5.1) and Prop. 6.1 of Hu [13, p. 42] Int TVeANE(PM). Then there exists a

neighborhood U of Zo in Z and a map g"': L7―*IntN such that g'＼ZQ=f. Thus

g=rg': C7-*X satisfies(g＼Z0,f)<U. Hence XePMnAANEC(PM).

Next we assume that XePMn AANEC(PM). Take any YePM and a

closed embedding h : X->Y. Take any ^e or(A(X)) and put V = hrxU^^0V{X).

Since XeAANEc(PM) there exist a neighborhood N of A(X) in Y and a map

g:N->X such that (#|A(X), h~^<V. Thus r = hg: N-+h(X) satisfies(r|A(X),

lft(x))<?/. Hence XeAANRc(PM). B

(5. 3) LEMMA. Let MgAR(PM) and X a closed subset of M. Then we

have the following:

( i ) XeAAR(PM) iff it satisfiesthe following cotidition:

(AAR)i Foj- each U^ 0V(X) there exists a map r : M->X such that (r＼X,

(ii) XsAANRnCPM) iff it satisfiesthe following condition:

(AANRn)i There exists a neighborhood N of X in M such that for each

11El >qv(X) there exists a map r: N->X satisfying (r＼X,＼x)<!U.

(iii) XgAANRc(PM) iff it satisfiesthe following condition:

(AANRc)i For each U^~60V(X) there exists a neighborhood N of X in M

and a map r: N-^X satisfying (r＼X,lx}<2l.

PROOF. We show (ii). In a similarway we can show the otherassertions.

We assume (AANRN)i and show (AANRn). Take any closed embedding h : X

-*M', M'ePM. By (AANRN)i there existsa neighborhood N of X in M

satisfyingconditionin (AANRN)i. Since MeAR(PM), by (5.1) and Prop. 6.1

of Hu [13, p. 42] IntiVeANE(PM). Then there exist a neighborhood N' of

h(X) in M and a map g: N'-*IntN such thatg＼h(X)=hr＼ Take any U^

t50V(.h(X)).By the choice of N there existsa map r : N-^X such that (r＼X,

lx)<hrlU. Put r'= hrg:N'-^h(X) and then it satisfies(r'＼h(X),lHx^)<U.

Hence XeAANRN(PM). The converse holds, because (AANRN) implies

(AANRn) i. ■

Let X be a subspace of Y. We say that X is an approximativeretractof Y

provided that for each <Z/Gi5(jy(X)thereexistsa map r: Y-^X such that (r|X,

lx) <U.

(5.4) Lemma. Let X be a closed subspace of a paracompact M-space Y.

We assume that X is an approximative retract of Y. If Y is an AAR, an
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AANRn or an AANRC for PM, then so is X, respectively.

PROOF. We only show the case of AANRN. Take any MgAR(PM) which

contains Y as a closed subset. By (5.3) there exists a neighborhood N of Y in

M satisfying (AANRN)i. Take any U^60V(X) and then take V<^$0V(X) with

stV <SU. Since X is approximative retract of Y, there exists a map r±:Y―>X

such that (ri|X, lx)<V. By the choice of N there exists a map r2: N-^-Y such

that (r2|Y,lr) <rlxV. Thus r = nr2: N-^X satisfies(r|X, ljt)<stV<U. Then X

satisfies(AANRn) 1. Hence XeAANRN(PM) by (5.3). In a similar way we

can show the other assertions. ■

(5. 5) THEOREM. Let X be a paracompact M-space.

( i ) XgAANRn(PM) iffX satisfiesthe condition N.

(ii) XeAANRc(PM) iff X satisfies(C).

(iii) XeAAR(PM) iff X satisfies(APT)! in (4.3).

PROOF. By (1.3.17) there exists an ANR(PM)-resolution p: X-+dU(X,M).

Here M is an AR(PM) containing X as a closed subset. (AANRN)i and

(AANRc)i in (5.3) are equivalent to (N)f for p and (C) for p, respectively.

Hence by (2.15), (3.11) and (5.3) we have (i) and (ii). Trivially (AAR)i in

(5.3) and (APT)i in (4.3) are same. Thus we have (iii). ■

We define absolute weak neighborhood retracts and absolute weak retracts

for PM. These notions are introduced by Bogatyi [2] for compact metric spaces.

Sakai [29] studied these notions for metric spaces. Let h: Y-*M be a closed

embedding and Y, MgPM. Let X be a closed subspace of Y. We say that X

is a weak retract of Y under h, in notation XgWR(PM)(7)/i, provided that it

satisfiesthe following condition:

(WR) For any neighborhood U of h(X~)in M there exists a map r: h(Y)

->[/ such that r|A(X) = lftcX).

We say that X is a weak neighborhood retract of Y under h, in notation

XeEWNR(PM)(Y)fc, provided that it satisfiesthe following condition:

(WNR) There exists a neighborhood V of X in Y such that for any

neighborhood U of /z(X) in M there exists a map r: h(V)-*U satisfying

r|A(X)=W>

We say that X is a weak retract of Y, in notation IgWR(PM)(Y), pro-

vided that XeWR(PM)(Y)ft for some closed embedding h: Y->M, MgePM. We

say that X is a weak neighborhood retract of Y, in notation WNR(PM)(Y),
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provided that XeWNR(PM)(y)ft for some closedembedding h: Y-*M, MePM.

We say thatXePM is an absolute weak retract,in notation XgAWR(PM),

providedthatforany closedembedding /: X->Y with YePM, /(X) eWR(PM) (F).

We say that XgePM is an absoluteweak neighborhood retract,in notationXe

AWNR(PM), provided that for any closed embedding /: X->Y with YePM,

/(X)gWNR(PM)(7).

(5.6) LEMMA, (i) XgWR(PM)(7), then IgWR(PM)(7)( for any

closedembedding t: Y->N, iVeEANR(PM).

(ii) If XeWNR(PM) (Y), thenIsWNR(PM) (Y)f for any closedembed-

ding t: Y^N, NeE ANR(PM).

PROOF. We only show (ii). In the same way we can show (i). Since Xg

WNR(PM)(T), there exists a closed embedding h: Y->M, MgePM such that

IgWNR(PM)(Y)a. Then there exists a neighborhood V of X in Y satisfying

(WNR) for h. Take any neighborhood W of t(X) in N. Since N is an

ANR(PM), IntiVeANE(PM) and then there exists a neighborhood U of h(X)

in M and a map F:U^>＼ntW such that F＼h(X~)=thrl. By the choice of V

there exists a map r : A(V)->£7 such that r＼h(X~)= lna> Thus f^Frhr1 : t(V")

->W satisfiesf＼t(X)=lux->. Hence IgWNR(PM)(Y)(. ■

(5.7) LEMMA. Let X be a closed subspace of MeAR(PM).

( i ) XgAWR(PM) iff it satisfiesthe following condition:

(AWR) For any neighborhood U of X in M there exists a map r : M-^-U

such that r＼X―lx.

(ii) IeAWNR(PM) iff it satisfiesthe following condition:

(AWNR) There exists a neighborhood Uq of X in M such that for any

neighborhood U of X in M there exists a map r: Uo~>U satisfying r＼X= lx.

PROOF. We show only (ii). In the same way we can show (i). First we

assume that IgAWNR(PM). Then XeWNR(PM)(M)lM and hence it satisfies

(AWNR).

Next we assume (AWNR). Take any closed embedding f:X->Y, YePM.

By the assumption there exists a neighborhood Uo of X in M satisfying(AWNR).

Since Int L/oeANE(PM), there exist a neighborhood Vo of /(X) in Y and a

map F:V0-^lntU0 such that F＼f(X)=f~1. There exists a closed embedding

h:Y-*N, iVeAR(PM). We show that /(X)eWNR(PM)(Y)ft. Take any

neighborhood W of hf(X) in N. Since Int T^eANE(PM) there exista neighbor-

hood U of X in M and a map H: £/->IntW such that H＼X=hf. By the choice
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of Uo there exists a map r: Uq->U such that r＼X=lx. Thus R^HrFh"1:

h(Vo)^W satisfies R＼hf(X)=lhfcX>. Then /(X) EWNR(PM)(Y)ft and hence

IgAWNR(PM). ■

(5.8) THEOREM. Let X be a paracompact M-space. Then XgAWR(PM)

iff X has trivialshape.

PROOF. Let p: X^j421(X, M) be the ANR(PM)-resolution in (1.3.17).Here

M is an AR(PM) which containsX as a closedsubspace. We assume that X is

an AWR(PM). Take any ANR(PM)-neighborhood U of X in M. By (AWR)

in (5.7) thereexistsa map r : M-^U such that r|X=lx. Since £7eANR(PM),

there exists 2/G?5Oy(t/)satisfying(*) in (1.5.5). Since r|X=lx, by (ii) of

(1.3.17)there existsan ANR(PM)-neighborhood V of X in M such that(r＼Vt

j)<2l. Here j: V->U is the inclusionmap. By the choice of U r＼V―j. Since

MeAR(PM), M is contractibleand then r＼V is homotopic to a constantmap.

Thus X is AC and hence X has trivialshape by (4.11).

Next we assume thatX has trivialshape. Then X is AC by (4.11). Take

any ANR(PM)-neighborhood U of X in M. There exists21<=-6OV(U)satisfying

(*) in (1.5.5). Since X is AC, thereexistsan ANR(PM)-neighborhood V of X

in M and a map f: V->U such thatf is homotopic to a constantmap and (f,j) <

21. By the choice of U f―j and then j is homotopic to a constantmap. Since

C/eANR(PM), by the homotopy extensiontheorem thereexistsa map r : M->U

such that r|X=lx. Thus X satisfies(AWR) in (5.7) and hence X is an

AWR(PM). ■

(5.9) THEOREM. Let X be a paracompact M-space. Then XgAWNR(PM)

iff X satisfiesap-M.

PROOF. Let p : X->AU(X, M) be the ANR(PM)-resolution in (1.3.17). First

we assume that XgAWNR(PM). Then there existsan ANR(PM)-neighborhood

UQ of X in M satisfying(AWNR) in (5.7). Take any ANR(PM)-neighborhood

U of X in M and any 21<=6OV(U). By the choice of Uo there exists a map

r: Uo-^U such that r＼X=lx. By (ii) of (1.3.17) there exists an ANR(PM)-

neighborhood V of X in M such that (r＼V,j) <2l. Here j : V^-U is the inclusion

map. Thus p satisfies(ap-M)f. Hence X satisfiesap-M by (3.6).

Next we assume that X satisfiesap-M. Then p satisfies(ap-M)f by (3.6)

and then there exists an ANR(PM)-neiborhood Uo of X in Msatisfying (ap-M)f

for p. Take any neighborhood V of X in M. By (ii) of (1.3.17) there exists

an ANR(PM)-neighborhood W of X in M such that WdV. There exists 2/e
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^W(W) satisfying (*) in (1.5.5). By the choice of Uo there exists a map

s: Uo^W such that (s＼X,j*)<cll. Here j: X―>W is the inclusion map. Thus

s＼X~j. Since l^eANR(PM), IFeANE(PM) and hence by the homotopy

extension theorem there exists a map r: Uq->W such that r|X=lx. Then X

satisfies(AWNR) and hence X is an AWNR by (5.7). ■

(5.10) COROLLARY. Let X be a paracompact M-space. Then the following

statements are equivalent:

( i ) X is an AANRc for PM.

(ii) X is an AANEc for PM.

(iii) X is an AP.

(iv) X is IAM.

( v ) X is UAM.

(vi) X satisfies(C).

(5.11) COROLLARY. Let X be a paracompact M-space. Then the followitig

statements are equivalent:

( i ) X is an AANRn for PM.

(ii) X is an AANEN for PM.

(iii) X satisfiesap-M and one of the conditions (i)-(iv) in (5.10).

(iv) X satisfiesthe condition N.

(v) X satisfies(N)2

(5.12) COROLLARY. Let X be a paracompact M-space. Then the following

statements are equivalent:

( i ) X is an AAR for PM.

(ii) X is an AAE for PM.

(iii) X has trivial shape and satisfies one of the conditions (i)-(vi) in

(5.10).

(iv) X has trivial shape and satisfies one of the conditions (i)-(v) in

(5.11).

(5.13) Corollary. AAR(PM) = AANRn(PM) n AWR(PM) = AANRc(PM)

n AWR (PM) and AANRN (PM) = AANRC (PM) n AWNR (PM).

(5.10) follows from (2.8), (5.2) and (5.5). (5.11) follows from

(3.15), (5.5) and (5.10). (5.12) follows (4.13), (5.5), (5.10) and (5.12).

follows from (5.8)-(5.12). ■

(3.11),

(5.13)
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§6. Absolute neighborhood shape retracts.

In this section we discuss shape properties of AANRc(PM), AANRN(PM),

AAR(PM) and so on.

Let Y be a subspace of a space X. We say that a shaping /: X-^Y is a

shape retraction provided that fS(j) ―S(1y). Here j : Y^X is the inclusion map

and S(j) : Y->X is the shaping induced by j. We say that Y is a shape retract

of X provided that there exists a shape retraction /: X-^-Y.

Let X be a paracompact M-space. We say that X is an absolute shape

retract for PM, in notation ASR for PM, provided that it satisfiesthe following

condition :

(ASR) For any closed embedding h: X―>M5 MePM, h(X) is a shape

retract of M

We say that X is an absolute neighborhood shape retractfor PM, in notation

ANSR for PM, provided that it satisfiesthe following condition:

(ANSR) For any closed embedding h: X―>M, MePM, there exists a

neighborhood U of h(X) in M such that h(X) is a shape retract of U.

ASR(PM) and ANSR(PM) denote the full subcategories of TOP consisting

of all ASRs and ANSRs for PM, respectively.

(6.1) THEOREM. Let X be a paracompact M-space.

( i ) XeASR(PM) iff X has trivial shape.

(ii) XeANSR(PM) iff X is strongly movable (see MS [19]).

PROOF. Using the same way of proof as in Theorems 11 and 12 of MS [19,

p. 233] by (1.3.17) and (5.5) we easily show (i) and

(1) XeANSR(PM) iff X is shape dominated by a polyhedron.

By (1) and Theorem 4 of Watanabe [35] we have (ii). ■

In Bogatyl [2] introduced the notion of internal movability for compact

metric spaces. This notion is not shape invariant. For arbitrary spaces we

define internal movability as follows: Let p= {pa :a EA}: X->% = {Xa,pa',a, A} be

a resolution. We consider the following condition:

(IM) For each aGA there exist a'>a and a map /: Xa'->X such that

Pa f―pa',a.

(6.2) LEMMA. Let n:X->3£ and a : X->V be ANK-resolutions of a space
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X. If p satisfies(IM), then so does q.

In a way similar to the one used in (1.7) using (1.5.5) we can show (6.2).

We say that a space X is internally movable provided that X admits an ANR-

resolution satisfying (IM). By (6.2) this property does not depend on ANR-

resolutions. Thus for compact metric spaces Bogatyi's definitioncoincides with

our definition.

(6.3) THEOREM. Let X be a space, X a collection of spaces and n an

integer.

( i ) If X is AM, then X is movable.

(ii) If X is X-AM, then X is X-movable.

(iii) If X is w-AM, then X is n-movable.

(iv) If X is UAM, then X is uniformly movable.

( v ) If X is IAM, then X is internally movable.

PROOF. We only show (i). In a similar way we can easily show the other

assertions. Let X be an approximative^ movable space. There exists an ap-

proximative POL-resolution p : X-^>(5E,21) with (**) in (1.5.6). Since (J£,W) is

approximatively movable, for each <zeA there exists ao>a with the following

property: For each a'~>athere exists a map raf: Xaa->Xa> such that (pa',ara',

paQ,a)<!Ua- By (**) in (1.5.6)pa',araf―pa<>,a-This means that H(3C) is movable.

Since H(p) :X->H(#) is a HPOL-expansion of X by (1.3.3) and (1.5.7), X is

movable. ■

(6.4) THEOREM. A space X is strongly movable iff X is movable and

satisfiesthe condition M.

PROOF. Let p: X->X={Xa,pa>,a,A} be a POL-resolution of X. By (1.5.7)

H(p): X->H(3C) is a HPOL-expansion of X. We assume that X is strongly

movable. Thus JJ(.3f)satisfiesthe following condition :

(SM) For each a^A there exists ao>a with the following property; for

each a'>a there exist a">a0, a' and a map r: Xao―>Xaf such that pa',ar―pao,a

and rpa",ao-pa≫,a'-

(SM) implies (M) in (3.8) and the following:

(MV) For each aei there exists ao>a such that for each a'>a there exists

a map r : Xao^Xa' satisfyingpa%ar―pao,a.

Hence X satisfiesthe condition M and is movable.
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Next we assume that X is movable and satisfies the condition M. Then

H(3f) satisfies (M) and (MV). By the Claim in (3.8) H(T) satisfies (M)x. We

show that H(3C) satisfies (SM). By (M)i there exists ao^A satisfying (M)x.

Take any aGi and then take any ai>a, a0. There exists a2>at satisfying

(MV) for a,＼. We show that a2 is the required index. To do so take any a3>a.

By the choice of a0 there exist a4>ao,a3 and a map s: Xao-^Xas satisfying

(1) spai,a0―pai}as.

Take any a5>fli,#4 and then by the choice of a2 there exists a map r : Xa2-*Xa6

satisfying

(2) pas,aiJ"―pa2,ai-

We put k = Spa5,a0r I Xa2-^Xa3. By (1) and (2) pas,a.k=pa3,a(sp(U,ao)pa!i,air~

pai,apa5,a3^=Pai,a(pa5,ai^~pai,apa2,ai=pa2,a, that is,

(3) pa3,ak―pa2,a-

Take any a6>a2,a5. By (1) and (2) kpae,a2=Spa1,ao(paB,air')pa<s,a5―Spal,aopa2,aipae,a2

=z(.Spa4,a0)pas,ali―pa4,aspa6,ai==pae,aa, that is,

(4) Kpae,a,2―pas,as-

(3) and (4) mean that H(3£*) satisfies (SM) and hence X is strongly movable. H

(6. 5) COROLLARY. Let X be a paracompact M-space.

( i ) If X is SAM, then X is strongly movable.

(ii) If X satisfiesthe conditio?iN, then X is strongly movable.

PROOF. In tne same way as in (6.3) we can show (i). We show (ii). By

(3.15) X is UAM and satisfiesap-M. By (6.2) X is uniformly movable, and

then movable. By (3.8) X satisfiesthe condition M. Hence by (6.4) X is strongly

(6. 6) COROLLARY. Let X be a paracompact M-space.

(i) AAR(PM)cASR(PM).

(ii) If X is SAM, then XeANSR(PM).

(iii) AANRnCPM)cANSR(PM).

(iv)

movable.

If XeAANRc(PM), then X is internally movable and uniformly

(i) follows from (5.12) and (6.1). (ii) follows from (6.1) and (6.5).

follows from (5.11), (6.1) and (6.5). (iv) follows from (5.10) and (6.2).

(iii)

□
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Now we will discuss topological groups. We assume that the reader is

familiar with topological groups. Pontryagin [27] is a good textbook for topo-

logical groups.

Let G be a compact connected abelian topological group. Ch(G) denotes

the character group of G. Since G is compact connected, Ch(G) is a discrete

and torsion free abelian group. A continuous homomorphism h : G^H induces

a homomorphism ChQi) : Ch(H)-*Ch(G). Let £^{Ga:a<=A} be the set of all

finitelygenerated subgroups of Ch(G). Then we have a directed system / =

{Ga,ja',a,A} such that a'~>a iff Ga'^Ga, and ja',a'-Ga~^Gaf is the inclusion

homomorphism for a'y-a. Inclusion homomorphisms ja- Ga->Ch(G) induce a

direct limit j={ja: a^A}: J?^>Ch(G). Since Ch(G) is torsion free, each Ga is

a free group ZwCa). Here Zn is the direct sum of w-copies of the additive group

Z of all integers. Thus Ch(Ga~)is the ≪(a)-dimentional torus Tn<ia:>.By taking

the dual we have an inverse system Ch(J?) = {Ch(Ga),Ch(ja',a~),A}. Ch(j) =

{Ch(ja)
■flGA}:

G-^ChtJ?) forms an inverse limit. Since all Ch(Ga) are poly-

hedra, Ch(j)
■
G-^Ch(f) is a POL-resolution by (1.3.13).

(6.7) LEMMA (Scheffer[30]). Let G be a compact connected topological

group and H a locally compact abelian topologicalgroup. Then every map

f: G->H with f{eo)=eu is homotopic to exactly one continuous homomorphism

h : G―>H. Here en denotesthe identityelement of G. ■

(6. 8) LEMMA. Let Tn and Tm be finite dimensional tori. Then every map

f: Tn-^Tm is homotopic to exactly one continuous homomorphism h : Tn->Tw.

PROOF. Let en and em be the identity elements of Tn and Tm, respectively.

Since Tn is arcwise connected, there exists a path 5:I―>Tm such that 5(0) =em,

and s(l) =/(<?,)･ We define a homotopy H: TnXl-^Tm by H(x,t)=f(£)*s(ty＼

Here w*z means the composition of w and z in the group TTO. Then H0=f^and

Hi:Tn-^Tm is a map with Hx(Ken)=em. Therefore by (6.7) /is homotopic to

exactly one continuous homomorphism h: Tn-^Tm. H

(6. 9) THEOREM. Let G be a compact connected abelian topological group.

( I ) G is UAM iff G is uniformly movable.

(ii) G is AM iff G is movable.

PROOF. We show only (i). In a similar way we can show (ii). We assume

that G is UM. Then for each a^A there exist aQ>a and a collection{ra': ar>

a} of maps ra' : CA(Gao)-*C/i(Ga/) satisfying
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(1) ChQja'',a'}ra>'―ra' and Ch(jaf,a)ra'―Ch(ja.o,a)for a">a'>a.

By (6.8) there exist continuous homomorphisms ha': Ch(Gao)^Ch(GaO such that

ra'―haf for a'y-a. By the uniquness of (6.8) and (1)

(2) Ch{ja",a')ha" = ha' and Ch(ja',a)ha'= Ch(jao,a) for a">a!>a.

Since Ch(j) : G-~>Ch(J?)is an inverse limit, by (2) there exists a continuous

homomorphism h : Ch(Ga^)-^G such that Ch(ja)h=Ch(jao,a)' Thus CA(j) : G―>

C%(/) satisfies(IAM)* and then G is IAM. Hence by (2.13) G is UAM. The

converse assertion follows from (6.3). ■

(6.10) COROLLARY. Let G be a compact connected abelian group.

( i ) G is UAM iff Hl(G : Z) has strong property L {see Watanabe [34]).

(ii) G is AM iff HX(G:Z) has property L (see Keesling [16]).

Here Hn(X: K) denotes the n-dimensional Cech cohomology group of a space X

ivith coefficientsK.

(6.11) COROLLARY. Let G be a compact connected abelian group.

( i ) If G is locally arcwise connected, then G is UAM.

(ii) G is locally connected iff G is AM.

(6.12) COROLLARY. There exists a compact connected abelian group which

is AM, but not UAM.

Movability and uniform movability for compact connected abelian groups are

characterized by Keesling [16] and Watanabe [34]. Since Ch(G)=Hl(G: Z) by

Steenrod [32], (6.10) and (6.11) follow from these characterizations and (6.9).

Watanabe [34] showed that Keesling's example in [17] is movable, but not

uniformly movable. Hence by (6.9) Keesling's example is also an example for

(6.12). ■

(6.13) LEMMA. If a compact connected abelian group G is strongly

movable, then G is a finite dimensional torus.

PROOF. Since G is strongly movable, by Watanabe [36] G is shape dominated

by a finitepolyhedron P. Then H1(G:Z) is also dominated by H1(KP:Z).

Thus H＼G＼Z) is finitely generated. By Steenrod [32] H＼G: Z')=Ch(G).

Since G is connected, Ch(G) is torsion free by Pontryagin [27]. Thus Ch(G) =

Zn for some integer n. By Pontryagin duality G is homeomorphic to Ch(Zn') =

Tn. M
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(6.14) PROPOSITION. For compact connectedabelian groups the notionsof

SAM, AANRN(PM) and ANR(PM) are equivalent.

By (6.2) ANR(PM)->AANRN(PM)-^SAM and by (6.13) SAM^ANR(PM).

Hence we have (6.14). H

We establishedmany relationsbetween generalizedANRs and approximative

shape properties.(For NE-sets see the subsequent parts of this paper.) For

paracompact M-spaces we summarize theserelationsas follows:

AN

SM

SR

V

SAM

Y

UAM

ANR
I

AANR

AANR

+ 4 > +

ap-M AWNR

N

c

UAM

y

AM

< * AAN Rc

V

( ≫

AWNR

NE -sets

condition M

UM

I

AM
+
apndition M

condition M

[4]

[5]

[6]

ap-M * >
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