FACTORIZATION THEOREM FOR PERFECT MAPS BETWEEN METRIZABLE SPACES

By

Yoshie TAKEUCHI

1. Introduction. We assume that all spaces are normal and all maps are continuous. We write $A \in ANR$ for a space A if A is an ANR for the class of all compact metrizable spaces.

Given spaces X and A we write dim $X \leq A$ if for any closed subset F of X any map $f: F \rightarrow A$ can be extended to X. For a map $\xi: X \rightarrow X_0$ we write dim $\xi \leq A$ if dim $\xi^{-1}(x_0) \leq A$ for any $x_0 \in X_0$. It is kown that a space X satisfies the relation dim $X \leq S^n$ for the *n*-sphere S^n if and only if X satisfies the inequality dim $X \leq n$ in the sense of the covering dimension.

Our purpose in this paper is to prove the following theorem;

THEOREM. Let $A \in ANR$, let ξ be a closed map of a space X into a paracompact space X_0 , ζ be a perfect map of a metrizable space Z into a metrizable space Z_0 , and let $f: X \to Z$ and $f_0: X_0 \to Z_0$ be maps such that $\zeta f = f_0 \xi$ and dim $\xi \leq A$. Then there are metrizable spaces Y and Y_0 , a perfect map $\eta: Y \to Y_0$, and maps $g: X \to Y$, $g_0: X_0 \to Y_0$, $h: Y \to Z$ and $h_0: Y_0 \to Z_0$ such that $\eta g = g_0 \xi$, $\zeta h = h_0 \eta$, hg = f, $h_0 g_0 = f_0$, dim $\eta \leq A$, $w(Y_0) \leq \max(w(X_0), w(Z_0))$, and dim $Y_0 \leq$ dim X_0 .

$$\begin{array}{c} X \longrightarrow Y \longrightarrow Z \\ \xi \downarrow & \downarrow \eta & \downarrow \zeta \\ X_0 \longrightarrow Y_0 \longrightarrow Z_0 \end{array}$$

For a map $\zeta: Z \to Z_0$ we write $w(\zeta) \leq \tau$ if there is an embedding $i: Z \to Z_0 \times I^{\tau}$ such that $\zeta = \operatorname{pr} i$, where I^{τ} is the Tikhonov cube of weight τ and $\operatorname{pr}: Z_0 \times I^{\tau} \to Z_0$ is the projection.

In [9] Pasynkov proved a similar theorem to the above theorem, in which he added the property that $w(\eta) \leq \tau$, if $w(\xi) \leq \tau$, in the case that X, X₀, Z, Z₀ are compact (which are not assumed to be metrizable).

However, in [7] Pasynkov stated that, if f is a perfect map between

Received October 22, 1987.

Yoshie TAKEUCHI

metrizable spaces, the relation $w(f) \leq \omega$ holds. Therefore, in the above theorem we need not to add the property that $w(\eta) \leq \tau$ if $w(\xi) \leq \tau$.

2. Proof of Theorem. The above theorem is an easy consequence of Lemmas 2 and 3 (cf. [9]). We need Lemma 1 to prove Lemma 2. The idea of the proof of Theorem is essentially due to Pasynkov.

LEMMA 1 ([9, (5.2)]). Let $Y \in ANR$. Then for any metric ρ in Y there is an $\varepsilon > 0$ with the following properties; if f is a map of a compact space X into Y and g is a map of a closed set F in X into Y such that $d(g, f|_F) = \max\{\rho(g(x), f(x)); x \in F\} < \varepsilon$, then g can be extended to X.

LEMMA 2. Under the condition of Theorem there are metrizable spaces Y and Y_0 , a perfect map $\eta: Y \to Y_0$, and maps $g: X \to Y$, $g_0: X_0 \to Y_0$, $h: Y \to Z$ and $h_0: Y_0 \to Z_0$ such that $\eta g = g_0 \xi$, $\zeta h = h_0 \eta$, hg = f, $h_0 g_0 = f_0$, $w(Y_0) \leq \max(w(X_0))$, $w(Z_0)$, dim $Y_0 \leq \dim X_0$ and for any $y_0 \in Y_0$, any compact $F \subset \eta^{-1}(y_0)$ and any map $\chi: h(F) \to A$, the map $\chi h|_F$ can be extended to $\eta^{-1}(y_0)$.

PROOF. Since $w(\zeta) \leq \omega$, there is a embedding $i: Z \to Z_0 \times I^{\omega}$ such that $\zeta = \operatorname{pr} i$, where I^{ω} is the Hilbert cube and $\operatorname{pr}: Z_0 \times I^{\omega} \to Z_0$ is the projection. We denote by p the projection of $Z_0 \times I^{\omega}$ onto I^{ω} . We choose a countable base $\{O_n: n=1, 2, \cdots\}$ for I^{ω} that is closed under finite unions. We fix a metric ρ on A and choose $\varepsilon > 0$ in accordance with Lemma 1. For any n we fix a countable dense set C_n in $C(\overline{O}_n, A)$, which is the space of maps from \overline{O}_n to A with the metric of uniform convergence.

We fix *n* and $\varphi \in C_n$. For each $x_0 \in X_0$ we consider the set $\Phi(x_0) = \xi^{-1}(x_0)$ $\cap f^{-1}i^{-1}p^{-1}(\overline{O}_n)$. Since dim $\xi \leq A$ and $A \in ANR$, the map $\varphi pif : \Phi(x_0) \to A$ can be extended to $\xi^{-1}(x_0)$ and then to a neighbourhood $V(\xi^{-1}(x_0))$ as a map $\Psi x_0 : V(\xi^{-1}(x_0)) \to A$.

Every point x of $\xi^{-1}(x_0)$ has a neighbourhood $O_x \subset V(\xi^{-1}(x_0))$ such that

diam
$$\varphi(pif(O_x) \cap \overline{O}_n) < \varepsilon/4$$
 and
diam $\Psi_{x_0}(O_x) < \varepsilon/4$.

Since ξ is closed, there is a neighbourhood $V(x_0)$ of x_0 such that $\xi^{-1}(V(x_0)) \subset \cup \{O_x : x \in \xi^{-1}(x_0)\}$ and $\Phi(x'_0) \subset \cup \{O_x : x \in \Phi(x_0)\}$ for any $x'_0 \in V(x_0)$. Hence, for any $x'_0 \in V(x_0)$ and every $x' \in \Phi(x'_0)$ we can find a point $x \in \Phi(x_0)$ such that $x' \in O_x$, and hence,

(1)
$$\rho(\Psi x_0(x'), \varphi pif(x')) \leq \rho(\Psi x_0(x'), \Psi x_0(x)) + \rho(\varphi pif(x), \varphi pif(x')) < \varepsilon/4 + \varepsilon/4 = \varepsilon/2.$$

By paracompactness of X_0 there is a σ -discrete cozero cover $\omega(n, \varphi) = \bigcup_{j=1}^{\infty} \{U_{j(\lambda)} : j(\lambda) \in \Gamma_j\}$ of X_0 such that $\omega(n, \varphi)$ refines $\{V(x_0) : x_0 \in X_0\}$. For any j and each $j(\lambda) \in \Gamma_j$ we take $x_{j(\lambda)} \in X_0$ such that $U_{j(\lambda)} \subset V(X_{j(\lambda)})$. For each j we denote by $H_j(n, \varphi)$ the Hedgehog space (see [3]) constructed by $\{[0, 1]_{j(\lambda)} = [0, 1] : j(\lambda) \in \Gamma_j\}$. There is a function $g_{0j}(n, \varphi) : X_0 \to H_j(n, \varphi)$ such that $U_{j(\lambda)} = g_{0j}(n, \varphi)^{-1}(0, 1]_{j(\lambda)}$ for any $j(\lambda) \in \Gamma_j$. We denote by $P_j(n, \varphi)$ the partial product (see [6]) with base $H_j(n, \varphi)$ and fiber A with respect to the open set $\cup \{(0, 1]_{j(\lambda)} : j(\lambda) \in \Gamma_j\}$; we denote by $\eta_j(n, \varphi)$ its projection onto $H_j(n, \varphi)$ and by $\pi_{j(\lambda)}$ the projection of $(0, 1]_{j(\lambda)} \times A$ onto A. There is a map $g_j(n, \varphi) : X \to P_j(n, \varphi)$ such that $g_{0j}(n, \varphi) \xi = \eta_j(n, \varphi)g_j(n, \varphi)$ and for any $j(\lambda) \in$ $\Gamma_j \pi_{j(\lambda)}g_j(n, \varphi) = \Psi x_{j(\lambda)}$ in $U_{j(\lambda)}$.

We perform these construction for all n and all $\varphi \in C_n$. We now set

$$Y' = Z \times \Pi \{ P_j(n, \varphi) : j = 1, 2, \dots, \varphi \in C_n, n = 1, 2, \dots \},$$

$$Y'_0 = Z_0 \times \Pi \{ H_j(n, \varphi) : j = 1, 2, \dots, \varphi \in C_n, n = 1, 2, \dots \}.$$

Clearly Y' and Y'_0 are metrizable. We denote by h (resp. h_0) the projection of Y' onto Z (resp. Y'_0 onto Z_0) and for any n, each $\varphi \in C_n$ and each j we denote by $g^{\omega}_j(n, \varphi)$ (resp. $g^{\omega}_{0j}(n, \varphi)$ the projection of Y' onto $P_j(n, \varphi)$ (resp. Y'_0 onto $H_j(n, \varphi)$). We set

$$\eta = \Pi \{ \xi, \eta_j(n, \varphi) : j = 1, 2, \dots, \varphi \in C_n, n = 1, 2, \dots \},\$$

$$g = \Delta \{ f, g_j(n, \varphi) : j = 1, 2, \dots, \varphi \in C_n, n = 1, 2, \dots \} \text{ and }\$$

$$g_0 = \Delta \{ f_0, g_{0j}(n, \varphi) : j = 1, 2, \dots, \varphi \in C_n, n = 1, 2, \dots \}.$$

Clearly η is perfect and for any n, any $\varphi \in C_n$ and each j

(2) $\eta_{j}(n, \varphi)g_{j}^{\omega}(n, \varphi) = g_{0j}^{\omega}(n, \varphi)\eta,$ $g_{j}^{\omega}(n, \varphi)g = g_{j}(n, \varphi), \quad g_{0j}^{\omega}(n, \varphi)g_{0} = g_{0j}(n, \varphi);$ (3) $hg = f, \quad h_{0}g_{0} = f_{0}, \quad \eta g = g_{0}\xi, \quad \zeta h = h_{0}\eta,$

We set $Y_0 = g_0(X_0)$ and $Y = \overline{g(X)} \cap \eta^{-1}(Y_0)$. If we now regard η , h, g_j^{ω} , (n, φ) and h_0 , $g_{0j}^{\omega}(n, \varphi)$ as the restrictions of these maps to Y and Y_0 , respectivery, then (2), (3) remain valid, and η is perfect.

We fix a point $y_0 \in Y_0$, a compact set $F \subset \eta^{-1}(y_0)$ and a map $\chi: h(F) \to A$. We shall prove that χh can be extended to $\eta^{-1}(y_0)$. Since $h(F) \subset \zeta^{-1}(h_0(y_0))$, there is a map $\varphi': pih(F) \to A$ such that $\chi = \varphi' pi$, and hence $\chi h = \varphi' pih$.

Since $A \in ANR$, we may assume that φ' is defined on some \overline{O}_n with $O_n \supset pih(F)$. Since C_n is dense in $C(\overline{O}_n, A)$, by [9, Lemma 5.1] there is a map $\varphi \in C_n$ homotopic to $\varphi pih : F \rightarrow A$. Since $\omega(n, \varphi)$ is a cover of X_0 , there is j and

 $j(\lambda) \in \Gamma_j$ such that $t_0 = g_{0j}^{\omega}(n, \varphi)(y_0) \in (0, 1]_{j(\lambda)}$. For any $y \in F$ $pih(y) \in O_n$, $g_j^{\omega}(n, \varphi)(y) \in \{t_0\} \times A \subset (0, 1]_{j(\lambda)} \times A$ and g(X) is dense in Y, hence there is $y' \in g(X)$ such that $pih(y') \in O_n$, $g_j^{\omega}(n, \varphi)(y') \in (0, 1]_{j(\lambda)} \times A$,

$$\begin{split} \rho(\pi_{j(\lambda)}g_{j}^{\omega}(n,\,\varphi)(y),\,\pi_{j(\lambda)}g_{j}^{\omega}(n,\,\varphi)(y')) &\leq \varepsilon/4 \quad \text{and} \\ \rho(\varphi pih(y),\,\varphi pih(y')) &\leq \varepsilon/4. \end{split}$$

We take a point $x' \in X$ such that g(x') = y', then $pif(x') = pih(y') \in O_n$, and since $g_{0j}(n, \varphi)\xi(x') = \eta_j(n, \varphi)g_j^{\omega}(n, \varphi)(y') \in (0, 1]_{j(\lambda)}$, we have $x' \in \xi^{-1}g_{0j}(n, \varphi)^{-1}(0, 1]_{j(\lambda)} = \xi^{-1}U_{j(\lambda)}$. We set $x'_0 = \xi(x')$ then $x'_0 \in U_{j(\lambda)} \subset V(x_{j(\lambda)})$ and $X' \in \varphi(x'_0)$. From (1), we have

$$\begin{split} \rho(\pi_{j(\lambda)}g_{j}^{\omega}(n,\varphi)(y'),\varphi pih(y')) \\ = \rho(\pi_{j(\lambda)}g_{j}(n,\varphi)(x'),\varphi pif(x')) \\ = \rho(\varPhi x_{j(\lambda)}(x'),\varphi pif(x')) < \varepsilon/2 \,. \end{split}$$

Hence, we see that

$$\rho(\pi_{j(\lambda)}g_{j}^{\varphi}(n,\varphi)(y),\varphi pih(y))$$

$$\leq \rho(\pi_{j(\lambda)}g_{j}^{\varphi}(n,\varphi)(y),\pi_{j(\lambda)}g_{j}^{\varphi}(n,\varphi)(y'))$$

$$+\rho(\pi_{j(\lambda)}g_{j}^{\varphi}(n,\varphi)(y'),\varphi pih(y'))$$

$$+\rho(\varphi pih(y'),\varphi pih(y))$$

$$<\varepsilon/4+\varepsilon/2+\varepsilon/4=\varepsilon.$$

The map $\pi_{j(\lambda)}g_j^{\omega}(n,\varphi)$ is defined on $\eta^{-1}(y_0)$. By Lemma 1. φpih can be extended to $\eta^{-1}(y_0)$, and by Homotopy extension theorem (see e.g. [4]) χh can be also extended to $\eta^{-1}(y_0)$.

The fact that $w(Y_0) \leq \max(w(X_0), w(Z_0))$ is evident.

We claim that we may assume that $\dim Y_0 \leq \dim X_0$. By [8, Theorem 2.] there is a metrizable space Y'_0 and maps $g'_0: X_0 \rightarrow Y'_0$ and $h''_0: Y'_0 \rightarrow Y_0$ such that $w(Y'_0) \leq w(Y_0)$. $\dim Y'_0 \leq \dim X_0$ and $g_0 = h''_0 g'_0$. We denote by Y' the fan product of Y'_0 and Y with respect to h''_0 and η (see [1. Supplement to Ch. 1, §2]); by η' and h'' we denote that projections of Y' into Y'_0 and Y, respectively, and by g' a map of X into Y' such that $\eta'g' = g'_0 \xi$ and h''g' = g. If we replace Y, Y_0, g, g_0, h, h_0 and η with $Y', Y'_0, g', g'_0, hh'', h_0h''_0$ and η' , respectively, then these spaces and maps are what is required (cf. [9]).

Lemma 2 has been proved.

LEMMA 3 ([9, Lemma 5.3]). Suppose that $A \in ANR$ and $\{T_n, h_{n+1,n}\}$ $(n=0, 1, \dots)$

is an inverse sequence of compact spaces such that for any n, any compact $F \subset T_{n+1}$, and any map $\chi: h_{n+1,n}(F) \to A$, the map $\chi h_{n+1,n}|_F$ has an extension to T_{n+1} . Then dim $T \leq A$ for the limit T of the sequence in question.

In conclusion the author wishes to express his sincere gratitude to Professor Y. Kodama for his greatful suggestions and constant encouragement.

References

- [1] Aleksandrov, P.S. and Pasynkov, B.A., Introduction to dimension theory (in Russian). Nauka Moscow, 1973.
- [2] Borusk, K., Theory of retracts. PWN, 1967.
- [3] Engelking, R., General topology. PWN, 1977.
- [4] _____, Dimension theory. PWN, 1978.
- [5] Hu, S.T., Theory of retracts, Wayne State Unive. Press, 1965.
- [6] Pasynkov, B.A., Partial topological products. Soviet Math. Dokl. 5 (1964), 167-170.
- [7] ——, On the dimension and geometry of mappings. Soviet Math. Dokl. 16 (1975), No. 2, 384-388.
- [8] ——, Factorization theorem in dimension theory. Russian Math. Surveys 36: 3 (1981), 175-209.
- [9] -----, A theorem on ω-maps for maps. Russian. Math. Surveys 39: 5 (1984), 125-153.

Yoshie TAKEUCHI Institute of Mathematics University of Tsukuba Tsukuba-shi, Ibaraki, 305