FACTORIZATION THEOREM FOR PERFECT MAPS BETWEEN METRIZABLE SPACES

By
Yoshie Takeuchi

1. Introduction. We assume that all spaces are normal and all maps are continuous. We write $A \in \mathrm{ANR}$ for a space A if A is an ANR for the class of all compact metrizable spaces.

Given spaces X and A we write $\operatorname{dim} X \leqq A$ if for any closed subset F of X any map $f: F \rightarrow A$ can be extended to X. For a map $\xi: X \rightarrow X_{0}$ we write $\operatorname{dim} \xi \leqq A$ if $\operatorname{dim} \xi^{-1}\left(x_{0}\right) \leqq A$ for any $x_{0} \in X_{0}$. It is kown that a space X satisfies the relation $\operatorname{dim} X \leqq S^{n}$ for the n-sphere S^{n} if and only if X satisfies the inequality $\operatorname{dim} X \leqq n$ in the sense of the covering dimension.

Our purpose in this paper is to prove the following theorem;
THEOREM. Let $A \in \mathrm{ANR}$, let ξ be a closed map of a space X into a paracompact space X_{0}, ζ be a perfect map of a metrizable space Z into a metrizable space Z_{0}, and let $f: X \rightarrow Z$ and $f_{0}: X_{0} \rightarrow Z_{0}$ be maps such that $\zeta f=f_{0} \xi$ and $\operatorname{dim} \xi$ $\leqq A$. Then there are metrizable spaces Y and Y_{0}, a perfect map $\eta: Y \rightarrow Y_{0}$, and maps $g: X \rightarrow Y, g_{0}: X_{0} \rightarrow Y_{0}, \quad h: Y \rightarrow Z$ and $h_{0}: Y_{0} \rightarrow Z_{0}$ such that $\eta g=g_{0} \xi$, $\zeta h=h_{0} \eta, \quad h g=f, \quad h_{0} g_{0}=f_{0}, \operatorname{dim} \eta \leqq A, w\left(Y_{0}\right) \leqq \max \left(w\left(X_{0}\right), w\left(Z_{0}\right)\right)$, and $\operatorname{dim} Y_{0} \leqq$ $\operatorname{dim} X_{0}$ 。

For a map $\zeta: Z \rightarrow Z_{0}$ we write $w(\zeta) \leqq \tau$ if there is an embedding $i: Z \rightarrow$ $Z_{0} \times I^{\tau}$ such that $\zeta=\operatorname{pr} i$, where I^{τ} is the Tikhonov cube of weight τ and $\mathrm{pr}: Z_{0} \times I^{r} \rightarrow Z_{0}$ is the projection.

In [9] Pasynkov proved a similar theorem to the above theorem, in which he added the property that $w(\eta) \leqq \tau$, if $w(\xi) \leqq \tau$, in the case that X, X_{0}, Z, Z_{0} are compact (which are not assumed to be metrizable).

However, in [7] Pasynkov stated that, if f is a perfect map between
Received October 22, 1987.
metrizable spaces, the relation $w(f) \leqq \omega$ holds. Therefore, in the above theorem we need not to add the property that $w(\eta) \leqq \tau$ if $w(\xi) \leqq \tau$.
2. Proof of Theorem. The above theorem is an easy consequence of Lemmas 2 and 3 (cf. [9]). We need Lemma 1 to prove Lemma 2. The idea of the proof of Theorem is essentially due to Pasynkov.

Lemma 1 ($[9,(5.2)]$). Let $Y \in \mathrm{ANR}$. Then for any metric ρ in Y there is an $\varepsilon>0$ with the following properties; if f is a map of a compact space X into Y and g is a map of a closed set F in X into Y such that $d\left(g,\left.f\right|_{F}\right)=$ $\max \{\rho(g(x), f(x)) ; x \in F\}<\varepsilon$, then g can be extended to X.

Lemma 2. Under the condition of Theorem there are metrizable spaces Y and Y_{0}, a perfect map $\eta: Y \rightarrow Y_{0}$, and maps $g: X \rightarrow Y, g_{0}: X_{0} \rightarrow Y_{0}, h: Y \rightarrow Z$ and $h_{0}: Y_{0} \rightarrow Z_{0}$ such that $\eta g=g_{0} \xi, \zeta h=h_{0} \eta, h g=f, h_{0} g_{0}=f_{0}, w\left(Y_{0}\right) \leqq \max \left(w\left(X_{0}\right)\right.$, $\left.w\left(Z_{0}\right)\right), \operatorname{dim} Y_{0} \leqq \operatorname{dim} X_{0}$ and for any $y_{0} \in Y_{0}$, any compact $F \subset \eta^{-1}\left(y_{0}\right)$ and any map $\chi: h(F) \rightarrow A$, the map $\left.\chi h\right|_{F}$ can be extended to $\eta^{-1}\left(y_{0}\right)$.

PRoof. Since $w(\zeta) \leqq \omega$, there is a embedding $i: Z \rightarrow Z_{0} \times I^{\omega}$ such that $\zeta=$ pr i, where I^{ω} is the Hilbert cube and pr: $Z_{0} \times I^{\omega} \rightarrow Z_{0}$ is the projection. We denote by p the projection of $Z_{0} \times I^{\omega}$ onto I^{ω}. We choose a countable base $\left\{O_{n}: n=1,2, \cdots\right\}$ for I^{ω} that is closed under finite unions. We fix a metric ρ on A and choose $\varepsilon>0$ in accordance with Lemma 1. For any n we fix a countable dense set C_{n} in $\mathrm{C}\left(\bar{O}_{n}, A\right)$, which is the space of maps from \bar{O}_{n} to A with the metric of uniform convergence.

We fix n and $\varphi \in C_{n}$. For each $x_{0} \in X_{0}$ we consider the set $\Phi\left(x_{0}\right)=\xi^{-1}\left(x_{0}\right)$ $\cap f^{-1} i^{-1} p^{-1}\left(\bar{O}_{n}\right)$. Since $\operatorname{dim} \xi \leqq A$ and $A \in \mathrm{ANR}$, the map $\varphi p i f: \Phi\left(x_{0}\right) \rightarrow A$ can be extended to $\xi^{-1}\left(x_{0}\right)$ and then to a neighbourhood $V\left(\xi^{-1}\left(x_{0}\right)\right)$ as a map $\Psi_{x_{0}}: V\left(\xi^{-1}\left(x_{0}\right)\right) \rightarrow A$.

Every point x of $\xi^{-1}\left(x_{0}\right)$ has a neighbourhood $O_{x} \subset V\left(\xi^{-1}\left(x_{0}\right)\right)$ such that

$$
\begin{aligned}
& \operatorname{diam} \varphi\left(p i f\left(O_{x}\right) \cap \bar{O}_{n}\right)<\varepsilon / 4 \text { and } \\
& \operatorname{diam} \Psi x_{0}\left(O_{x}\right)<\varepsilon / 4
\end{aligned}
$$

Since ξ is closed, there is a neighbourhood $V\left(x_{0}\right)$ of x_{0} such that $\xi^{-1}\left(V\left(x_{0}\right)\right) \subset$ $\cup\left\{O_{x}: x \in \xi^{-1}\left(x_{0}\right)\right\}$ and $\Phi\left(x_{0}^{\prime}\right) \subset \cup\left\{O_{x}: x \in \Phi\left(x_{0}\right)\right\}$ for any $x_{0}^{\prime} \in V\left(x_{0}\right)$. Hence, for any $x_{0}^{\prime} \in V\left(x_{0}\right)$ and every $x^{\prime} \in \Phi\left(x_{0}^{\prime}\right)$ we can find a point $x \in \Phi\left(x_{0}\right)$ such that $x^{\prime} \in O_{x}$, and hence,

$$
\begin{align*}
& \rho\left(\Psi_{\left.x_{0}\left(x^{\prime}\right), \varphi p i f\left(x^{\prime}\right)\right)} \leqq \rho\left(\Psi_{x_{0}\left(x^{\prime}\right),} \Psi_{\left.x_{0}(x)\right)+\rho\left(\varphi p i f(x), \varphi p i f\left(x^{\prime}\right)\right)}\right.\right. \tag{1}\\
&<\varepsilon ; 4+\varepsilon / 4=\varepsilon / 2
\end{align*}
$$

By paracompactness of X_{0} there is a σ-discrete cozero cover $\omega(n, \varphi)=$ $\bigcup_{j=1}^{\infty}\left\{U_{j(\lambda)}: j(\lambda) \in \Gamma_{j}\right\}$ of X_{0} such that $\omega(n, \varphi)$ refines $\left\{V\left(x_{0}\right): x_{0} \in X_{0}\right\}$. For any j and each $j(\lambda) \in \Gamma_{j}$ we take $x_{j(\lambda)} \in X_{0}$ such that $U_{j(\lambda)} \subset V\left(X_{j(\lambda)}\right)$. For each j we denote by $H_{j}(n, \varphi)$ the Hedgehog space (see [3]) constructed by $\left\{[0,1]_{j(\lambda)}=[0,1]: j(\lambda) \in \Gamma_{j}\right\}$. There is a function $g_{0 j}(n, \varphi): X_{0} \rightarrow H_{j}(n, \varphi)$ such that $U_{j(\lambda)}=g_{0 j}(n, \varphi)^{-1}(0,1]_{j(\lambda)}$ for any $j(\lambda) \in \Gamma_{j}$. We denote by $P_{j}(n, \varphi)$ the partial product (see [6]) with base $H_{j}(n, \varphi)$ and fiber A with respect to the open set $\cup\left\{(0,1]_{j(\lambda)}: j(\lambda) \in \Gamma_{j}\right\}$; we denote by $\eta_{j}(n, \varphi)$ its projection onto $H_{j}(n, \varphi)$ and by $\pi_{j(\lambda)}$ the projection of $(0,1]_{j(\lambda)} \times A$ onto A. There is a map $g_{j}(n, \varphi): X \rightarrow P_{j}(n, \varphi)$ such that $g_{0 j}(n, \varphi) \xi=\eta_{j}(n, \varphi) g_{j}(n, \varphi)$ and for any $j(\lambda) \in$ $\Gamma_{j} \pi_{j(\lambda)} g_{j}(n, \varphi)=\Psi x_{j(\lambda)}$ in $U_{j(\lambda)}$.

We perform these construction for all n and all $\varphi \in C_{n}$. We now set

$$
\begin{aligned}
& Y^{\prime}=Z \times \Pi\left\{P_{j}(n, \varphi): j=1,2, \cdots, \varphi \in C_{n}, n=1,2, \cdots\right\} \\
& Y_{0}^{\prime}=Z_{0} \times \Pi\left\{H_{j}(n, \varphi): j=1,2, \cdots, \varphi \in C_{n}, n=1,2, \cdots\right\}
\end{aligned}
$$

Clearly Y^{\prime} and Y_{0}^{\prime} are metrizable. We denote by h (resp. h_{0}) the projection of Y^{\prime} onto Z (resp. Y_{0}^{\prime} onto Z_{0}) and for any n, each $\varphi \in C_{n}$ and each j we denote by $g_{j}^{\omega}(n, \varphi)$ (resp. $g_{0 j}^{\omega}(n, \varphi)$ the projection of Y^{\prime} onto $P_{j}(n, \varphi)$ (resp. Y_{o}^{\prime} onto $H_{j}(n, \varphi)$). We set

$$
\begin{aligned}
& \eta=\Pi\left\{\xi, \eta_{j}(n, \varphi): j=1,2, \cdots, \varphi \in C_{n}, n=1,2, \cdots\right\}, \\
& g=\Delta\left\{f, g_{j}(n, \varphi): j=1,2, \cdots, \varphi \in C_{n}, n=1,2, \cdots\right\} \text { and } \\
& g_{0}=\Delta\left\{f_{0}, g_{0 j}(n, \varphi): j=1,2, \cdots, \varphi \in C_{n}, n=1,2, \cdots\right\}
\end{aligned}
$$

Clearly η is perfect and for any n, any $\varphi \in C_{n}$ and each j

$$
\begin{align*}
& \eta_{j}(n, \varphi) g_{j}^{\omega}(n, \varphi)=g_{0 j}^{\omega}(n, \varphi) \eta, \tag{2}\\
& g_{j}^{\omega}(n, \varphi) g=g_{j}(n, \varphi), \quad g_{0 j}^{\omega}(n, \varphi) g_{0}=g_{0 j}(n, \varphi) ; \\
& \quad h g=f, \quad h_{0} g_{0}=f_{0}, \quad \eta g=g_{0} \xi, \quad \zeta h=h_{0} \eta, \tag{3}
\end{align*}
$$

We set $Y_{0}=g_{0}\left(X_{0}\right)$ and $Y=\overline{g(X)} \cap \eta^{-1}\left(Y_{0}\right)$. If we now regard $\eta, h, g_{j}^{\omega},(n, \varphi)$ and $h_{0}, g_{0 j}^{\omega}(n, \varphi)$ as the restrictions of these maps to Y and Y_{0}, respectivery, then (2), (3) remain valid, and η is perfect.

We fix a point $y_{0} \in Y_{0}$, a compact set $F \subset \eta^{-1}\left(y_{0}\right)$ and a map $\chi: h(F) \rightarrow \mathrm{A}$. We shall prove that χh can be extended to $\eta^{-1}\left(y_{0}\right)$. Since $h(F) \subset \zeta^{-1}\left(h_{0}\left(y_{0}\right)\right)$, there is a map $\varphi^{\prime}: \operatorname{pih}(F) \rightarrow A$ such that $\chi=\varphi^{\prime} p i$, and hence $\chi h=\varphi^{\prime} p i h$.

Since $A \in \operatorname{ANR}$, we may assume that φ^{\prime} is defined on some \bar{O}_{n} with $O_{n} \supset \operatorname{pih}(F)$. Since C_{n} is dense in $C\left(\bar{O}_{n}, A\right)$, by [9, Lemma 5.1] there is a map $\varphi \in C_{n}$ homotopic to $\varphi p i h: F \rightarrow A$. Since $\omega(n, \varphi)$ is a cover of X_{0}, there is j and
$j(\lambda) \in \Gamma_{j}$ such that $t_{0}=g_{0, j}^{\omega}(n, \varphi)\left(y_{0}\right) \in(0,1]_{j(\lambda)}$. For any $y \in F \operatorname{pih}(y) \in O_{n}$, $g_{j}^{\omega}(n, \varphi)(y) \in\left\{t_{0}\right\} \times A \subset(0,1]_{j(\lambda)} \times A$ and $g(X)$ is dense in Y, hence there is $y^{\prime} \in g(X)$ such that $p i h\left(y^{\prime}\right) \in O_{n}, g_{j}^{\omega}(n, \varphi)\left(y^{\prime}\right) \in(0,1]_{j(\lambda)} \times A$,

$$
\begin{aligned}
& \rho\left(\pi_{j(\lambda)} g_{j}^{\omega}(n, \varphi)(y), \pi_{j(\lambda)} g_{j}^{\omega}(n, \varphi)\left(y^{\prime}\right)\right)<\varepsilon / 4 \quad \text { and } \\
& \rho\left(\varphi p i h(y), \varphi p i h\left(y^{\prime}\right)\right)<\varepsilon / 4 .
\end{aligned}
$$

We take a point $x^{\prime} \in X$ such that $g\left(x^{\prime}\right)=y^{\prime}$, then $p i f\left(x^{\prime}\right)=p i h\left(y^{\prime}\right) \in O_{n}$, and since $g_{0 j}(n, \varphi) \xi\left(x^{\prime}\right)=\eta_{j}(n, \varphi) g_{j}^{\omega}(n, \varphi)\left(y^{\prime}\right) \in(0,1]_{j(\lambda)}$, we have $x^{\prime} \in \xi^{-1} g_{0 j}(n, \varphi)^{-1}(0,1]_{j(\lambda)}$ $=\xi^{-1} U_{j(\lambda)}$. We set $x_{0}^{\prime}=\xi\left(x^{\prime}\right)$ then $x_{0}^{\prime} \in U_{j(\lambda)} \subset V\left(x_{j(\lambda)}\right)$ and $X^{\prime} \in \varphi\left(x_{0}^{\prime}\right)$. From (1), we have

$$
\begin{aligned}
& \rho\left(\pi_{j(\lambda)} g_{j}^{\omega}(n, \varphi)\left(y^{\prime}\right), \varphi p i h\left(y^{\prime}\right)\right) \\
= & \rho\left(\pi_{j(\lambda)} g_{j}(n, \varphi)\left(x^{\prime}\right), \varphi p i f\left(x^{\prime}\right)\right) \\
= & \rho\left(\Phi_{x_{j(\lambda)}}\left(x^{\prime}\right), \varphi p i f\left(x^{\prime}\right)\right)<\varepsilon / 2 .
\end{aligned}
$$

Hence, we see that

$$
\begin{aligned}
& \quad \rho\left(\pi_{j(\lambda)} g_{j}^{\omega}(n, \varphi)(y), \varphi p i h(y)\right) \\
& \leqq \\
& \quad \rho\left(\pi_{j(\lambda)} g_{j}^{\omega}(n, \varphi)(y), \pi_{j(\lambda)} g_{j}^{\omega}(n, \varphi)\left(y^{\prime}\right)\right) \\
& \quad+\rho\left(\pi_{j(\lambda)} g_{j}^{\omega}(n, \varphi)\left(y^{\prime}\right), \varphi p i h\left(y^{\prime}\right)\right) \\
& \quad+\rho\left(\varphi p i h\left(y^{\prime}\right), \varphi p i h(y)\right) \\
& <\varepsilon / 4+\varepsilon / 2+\varepsilon / 4=\varepsilon .
\end{aligned}
$$

The map $\pi_{j(\lambda)} g_{j}^{\omega}(n, \varphi)$ is defined on $\eta^{-1}\left(y_{0}\right)$. By Lemma 1. $\varphi p i h$ can be extended to $\eta^{-1}\left(y_{0}\right)$, and by Homotopy extension theorem (see e.g. [4]) χh can be also extended to $\eta^{-1}\left(y_{0}\right)$.

The fact that $w\left(Y_{0}\right) \leqq \max \left(w\left(X_{0}\right), w\left(Z_{0}\right)\right)$ is evident.
We claim that we may assume that $\operatorname{dim} Y_{0} \leqq \operatorname{dim} X_{0}$. By [8, Theorem 2.] there is a metrizable space Y_{0}^{\prime} and maps $g_{0}^{\prime}: X_{0} \rightarrow Y_{0}^{\prime}$ and $h_{0}^{\prime \prime}: Y_{0}^{\prime} \rightarrow Y_{0}$ such that $w\left(Y_{0}^{\prime}\right) \leqq w\left(Y_{0}\right)$. $\operatorname{dim} Y_{0}^{\prime} \leqq \operatorname{dim} X_{0}$ and $g_{0}=h_{0}^{\prime \prime} g_{0}^{\prime}$. We denote by Y^{\prime} the fan product of Y_{0}^{\prime} and Y with respect to $h_{0}^{\prime \prime}$ and η (see [1. Supplement to Ch. 1, §2]); by η^{\prime} and $h^{\prime \prime}$ we denote that projections of Y^{\prime} into Y_{0}^{\prime} and Y, respectively, and by g^{\prime} a map of X into Y^{\prime} such that $\eta^{\prime} g^{\prime}=g_{0}^{\prime} \xi$ and $h^{\prime \prime} g^{\prime}=g$. If we replace $Y, Y_{0}, g, g_{0}, h, h_{0}$ and η with $Y^{\prime}, Y_{0}^{\prime}, g^{\prime}, g_{0}^{\prime}, h h^{\prime \prime}, h_{0} h_{0}^{\prime \prime}$ and η^{\prime}, respectively, then these spaces and maps are what is required (cf. [9]).

Lemma 2 has been proved.
Lemma 3 ([9, Lemma 5.3]). Suppose that $A \in \operatorname{ANR}$ and $\left\{T_{n}, h_{n+1, n}\right\}(n=0,1, \cdots)$
is an inverse sequence of compact spaces such that for any n, any compact $F \subset$ T_{n+1}, and any map $\chi: h_{n+1, n}(F) \rightarrow A$, the map $\left.\chi h_{n+1, n}\right|_{F}$ has an extension to T_{n+1}. Then $\operatorname{dim} T \leqq A$ for the limit T of the sequence in question.

In conclusion the author wishes to express his sincere gratitude to Professor Y. Kodama for his greatful suggestions and constant encouragement.

References

[1] Aleksandrov, P.S. and Pasynkov, B. A., Introduction to dimension theory (in Russian). Nauka Moscow, 1973.
[2] Borusk, K., Theory of retracts. PWN, 1967.
[3] Engelking, R., General topology. PWN, 1977.
[4] —, Dimension theory. PWN, 1978.
[5] Hu, S. T., Theory of retracts, Wayne State Unive. Press, 1965.
[6] Pasynkov, B. A., Partial topological products. Soviet Math. Dokl. 5 (1964), 167-170.
[7] -, On the dimension and geometry of mappings. Soviet Math. Dokl. 16 (1975), No. 2, 384-388.
[8] -, Factorization theorem in dimension theory. Russian Math. Surveys 36: 3 (1981), 175-209.
[9] , A theorem on ω-maps for maps. Russian. Math. Surveys 39: 5 (1984), 125-153.

Yoshie Takeuchi
Institute of Mathematics
University of Tsukuba
Tsukuba-shi, Ibaraki, 305

