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§0. Introduction.

Let us consider the following random Schrodinger operator in L2(R;dt):

(0-1) H^-dydf+Q'M),

where {Q'Jf); ―co<?< + oo} is a temporally homogeneous Levy process and

Q'JS) is the "derivative" of its sample function. Intuitively speaking, {Q'm(t)}teR

is a continuous parameter family of i.i.d. random variables,which we will call

"Levy noise", so that the above HM can be viewed as an idealization of the

Schrodinger operator with random potential, and it may be of some interest to

analyze in detail such an idealized model of disordered system.

On the other hand, it is well known that almost every sample function of

a Levy process is not differentiable(except the case of a trivial Levy process

Qa(t)=ct, with a real constant c). Hence the expression (0-1) has only a

symbolical meaning. The precise definition of Hw was given by the present

author ([25]), and it was shown that H^ can actually be realized as a random

self-adjoint operator in L2(R;dt). Moreover, the exact location of the spectrum

of Hw was determined.

The purpose of this paper is to study the properties of spectrum and

eigenfunctions of Hw in more detail than in [25]. It will be shown that under

some condition on {Qm(t)}, almost every realizationof H^ has pure point spectrum

with exponentially decaying eigenfunctions (exponential localization―see Theo-

rem 5). A remarkable fact is that in some other cases, the eigenfunctions

decay faster than exponentially (Theorem 6). We would like to refer to this

phenomenon as "super-exponential localization". Moreover, it will be shown

that under some conditions on the Levy measure of {QJf)}, the eigenfunctions,

in a rough sense, behave like exp[― ＼t＼a~＼with a>l, or even like

exp[―exp[exp[--exp[U|a] ･･･]] with a>0, as |*|->oo (Theorem 7).
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In the proof of localization,we follow the well-known idea of Carmona and

Kotani ([3], [16]), which relates in an elegant way the exponential decay of

eigenfunctions with the Ljapounov behavior of the transfer matrices. Thus, if

the transfer matrix associated to Hm has the usual Ljapounov behavior as in

Theorem 1, then we have exponential localization. The super-exponential

localization as in Theorem 6 occurs simply because the Ljapounov exponent of

the transfer matrix becomes infinite (Theorems 2 and 3). Hence, in order to

obtain a more detailed estimates of super-exponential localization,it sufficesto

replace Theorem 3 by Theorem 4.

Recently, Levy and Souillard ([21]) conjectured that the discrete Laplacian

on the incipient percolation cluster should have eigenfunctions which decay like

exp[―|xja], a>l, and called this "superlocalization". The physical basis of

their conjecture is that the incipient percolation cluster is fractal within length

scale smaller than correlationlength. Although Levy and Souillard consider a

different situation from ours, our Theorems 6 and 7 may be considered as first

rigorous examples of superlocalization.

The outline of the present paper is as follows. In the firsthalf of §1, we

summarize the results of the author's previous paper [25], preparing at the

same time the necessary notation. In the rest of §1, we state the main results

of this paper concerning respectively the Ljapounov behavior of the transfer

matrices and the localization. Theorems 1 and 2 show that the Lianounov

exponent is finite or infinite according as the integral
J|XI>1

log＼x＼v(dx) is

convergent or divergent, where v(dx) is the Levy measure of {QM)}- In the

finite case, we can apply the well known theorem of Oseledec, to obtain a

subspace of R2 which is exponentially stable under the action of the transfer

matrix, whereas that general theorem does not seem to have a straightforward

extension to the infinitecase. Therefore by an explicit analysis, we firstprove

a theorem of Furstenberg-Kesten type (Theorem 2), and then using this, we

obtain the corresponding Oseledec type theorem (Theorem 3). The same line

of reasoning was recently exploited by Kotani and Ushiroya [18] in a different

problem. One gets Theorem 4 by replacing the use of Theorem 2 in the proof

of Theorem 3 by better estimates. In §2, we prove theorems on localization

assuming Theorems 1 to 4 for a while. §§3, 4, 5 and 6 are devoted to the

proofs of Theorems 1, 2, 3 and 4 respectively.

As was already mentioned, we follow the idea of Carmona and Kotani in

§2. This idea gives us a quite transparent proof of localizationin some cases,

as one sees on comparing the original works of the Russian school (PlOl, [261)
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with recent papers such as [3], [16], [17], and [6]. But in order that this is

so, we must impose some kind of regularity condition on the probability distri-

bution of the random potential in a finitebox. This is the reason of the rather

technical conditions of Theorems 5, 6, and 7. On the other hand, Carmona,

Klein, and Martinelli ([5]), refining the method of Frohlich et al.([7], [8]),

recently obtained a localization result for the one-dimensional difference

Schrodinger operator whose potential is a sequence of i.i.d. random variables

with singular distribution. An extension of their method to continuum systems

might enable us to drop most of the technical conditions of our results, though

we have not yet examined this possibility.

The mathematical study of Schrodinger operators with Levy noise potentials

was begun by Fukushima-Nakao [9] and Kotani [14]. They treated respectively

the cases where {QJf)} is the standard Brownian motion or Levy processes

whose sample functions are of bounded variation. At that time, their main

interest consisted in estimating the integrated density of states of Ha,, but later

Kotani [15] investigated the Ljapounov exponent associated to his former model,

and proved its absence of absolutely continuous spectrum. Our Theorems 1 to

4 and Proposition 3 in §2 are extensions of Kotani's result [15].

§1. Preliminaries and the statement of the results. Examples.

1-1. Resume of the previous paper [25].

Let Q(t), ―oo<f< + oo? be a real valued function which is right continuous

and has left-hand limits. For this Q, let us define the (non-random) Schrodinger

operator HQ, which is formally expressed as

HQ=-d2/df+Q'(t).

First let CQ be the totality of complex valued functions u(t) on R which

satisfy the following two conditions:

(i) u(t)is absolutely continuous and differentiate from the right. We denote

the right derivative of uit) by u+(t);

(ii) there exists a v<^L{0C(R) such that the following equation holds:

u+(t)-u+(s)=Q(t)u(t)-Q{s)u(s)-＼t {Q(y)u+(y)+v(y)}dy.

It is clear that v(-)is uniquely determined from u(-) up to on a set of Lebesgue

measure zero, and we will denote this v by HQu for each u<^CQ. We then set

3)o―{u<=CQr＼LXR; dt); HQueL＼R; dt)＼.
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Under these definitions,we can give an exact meaning to the initialvalue

problem HqU=Xu, u(s)~a, u+(s)=fi by the following pair of integral equations:

u(t)=a+[tu+(y)dy
.IS

(1-1)

u+{t)=p+Q(t)u(t)-Q(s)u(s)-＼
l{Q(y)u+(y)+My)}dy

s

Now let D(R: R) be the totalityof real functions which are right continuous

and have left-hand limits. We endow D{R:R) with the Skorohod topology.

Consider Q= fa>eD(R: R); <w(0)=0} with relative topology and let EF be the

topological <r-fieldof Q. If we set Qa>(t)=(o(t)(the coordinate map) then 2"

coincides with the smallest <r-fieldwith respect to which Q)-+Qm(t)is measurable

for all t^R.

On the measurable space (Q, 3), we define a flow {Tt; t^R} by

(TtQ})(■)=(!)(■+t)-Q)(t),t^R, q)(eQ.

Under this setting, we can prove the following result:

Proposition 1. ([25]) Let P be a probability measure on (Q, 20 which is

invariant under the flow {Tt} and is ergodic. Then for P-a.a. <wei2, Ha, with

domain S)m is self-adjointin Lz(R;dt). Moreover there exists a closed subset

S=S(P) of R such that the spectrum of Ha, is equal to 2 for a.a. a).

In the sequel, we assume that P is the measure of a temporally homogeneous

Levy process. Then the conclusions of Proposition 1 hold for this P.

As is well known, every temporally homogeneous Levy process is decomposed

into a superposition of Brownian motion and Poisson processes in the following

way (Levy's canonical form):

(1-2) Qa>(t)-Qa>(s)=b(t-s)+v(Bw(t)-Ba){s))

limf
I x|>l/re

{xNw((s, t]Xdx)―(t―s)a(x)v(dx)}

where b&R and y^O are constants, {BJf); ―oo<£< + oo} is a standard Brownian

motion with BQ)(0)=Q, Nm(dtdx) is a Poisson random measure on jRx(i2＼{0})

with intensity measure dtv{dx), and a{x)=(x/＼l)＼/{―Y). The measure v(dx),

which is called the Levy measure of ＼OJt)＼.satisfies

JR＼{0)

a(x)2v(dx)<oo

Note that sample paths of [Qa,(t)―vBm(t)}are locally of bounded variation if and
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only if I ＼x＼v(dx)<oo) and that {Qw(t)} has only a finitenumber of jumps
JlXISl

in a finiteinterval if and only if v{dx) is a finite measure. In the following,

we assume that v and v(dx) do not vanish simultaneously, i.e. that true random-

ness exists.

For the location of the spectrum 2=2(P), we have the following results:

Proposition 2. (T25"n

(i) // v=0> v((-oo, 0))=0, and if
＼1
xv(dx)<oot then 2"=[c, oo) with

c―b―＼a(x)v(dx).
Jo

(ii) In all the other cases, we have 2"=(―oo, oo).

1-2. Ljapounov behavior of the transfer matrices.

Let <p(t)=<pz(t,a)) and <p(t)=<px(t,a>) be the solutions of H^u^Xu such that

(p(Q)=(b+(Q)―l,(p+(0)=(b(0)=0, and consider the following random matrix:

m=a^H% P
This is called the transfer matrix, since any solution u of Hcou=J(u is given by

(1-3)
＼u+(ty

= ≪o

Moreover, it is a multiplicative cocycle in the sense that

(1-4) Ui(t+s;a>)=Ui(.t;Tia>)Ux(s;a>), t,s^R, (o^Q,

and we have detUx(t;o>)=l from the constancy of the Wronskian. Concerning

the asymptotic behavior of this transfer matrix, we have the following four

results, which we will prove in later sections. Below, for a vector x=t(x1, x2),

Hxll denotes the Euclidean norm, and for a 2x2-matrix A, ＼＼A＼＼denotes its

operator norm:

||i4||=sup{||i4x||;＼＼x＼＼£l),

which is equal to the maximum eigenvalue of (A*AY/2.

Theorem 1. //
Jiari>l
Io2＼x＼v(dx)<°°. then for each fixed ieC, there exists

a strictlypositive number J{X) such that for P-a.a. w^Q,

lim~log＼＼Ux(t;<o)＼＼=nV.
n->±ce＼t＼

Moreover, for P-a.a. (o^Q, there exists one-dimensional subspaces Vt(co)and Vj((o)
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of C2 such that if veVJ(<o)＼{0} [resp. eFi(≪)＼{0}], then

(1-5) lim -T^log＼＼Ux(t;a))v＼＼= -ra),

and if v£Vt((o) [resp. £Vj(a))']>then

(1-6) hm -rTTlogWUxawM^+rtX).
£^+oo[resp.t-.-oo]|fI

The number y(X) is called the Ljapounov exponent of Ux{t;o)), and we will

say that Ux(t',Q))has Ljapounov behavior at ±00 if Ff(≪) exist and satisfy (1-5)

and (1-6).

In the following three theorems, we fix a ^>inf 2, where 2 is the spectrum

of Hm. In case (i) of Proposition 2, this means X>c. Otherwise 1 can be any-

real number.

Theorem 2. Suppose ＼ ＼og＼x＼v{dx)=+ <^ and X>'udl. Then for each

fixed v^Rz＼{0}, we have

with probability one

lim―r log||£/;(f;<o)v||= + oo
t-.±co＼t＼

Theorem 3. In addition to the condition of Theorem 2, assume that

Jm<i
＼x＼v(dx)<oo. Then for P-a.a. o)<^Q, there exist one-dimensional subspaces

Vt(a>), Vjdco) of Rz such that(1-5) and (1-6) hold with y{l) replaced by +oo, i.e.

for P-a.a. w^Q, Ux{t;m) has Ljapounov behavior at ±00 with infiniteLjapounov

exponent.

If we impose some stronger condition on the tailof v{dx), then it is possible

to obtain more precise estimation of the asymptotic behavior of Ux(t;<o). To

this end. set

M{x)=
J＼y＼>ex-i

v(dy), x>0

and let e(O=e'―1, ^(O=log(l+0 for f^O. The fc-th iteration of e(-) [resp.

^(･)] is denoted by e(ft)(0[resp. ^(*)(0]. Of course, e(0)(0=^<o)(0=^ Recall

that a real valued function L{t) on [0, oo) is said to be slowly varying if for

all c>0,
L(ct)

i- + o= Ut)

(for details, see Seneta [30]).
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1-3. Exponential and super-exponential localization.

Using the four theorems in the previous subsection

following results on localization.

Examples.

we can prove the

;(*)(||^a;a>)y||)=oo,

for a>i8"1-hk>(＼＼Ux(f,Q>)v＼＼)=O,

for a<$~1

nmy^iog[|w(oi2+|M+(Ol2]1/2=-rU)<o.

Theorem 6.(super-exponential localization) Suppose ＼
JIXI

log＼x＼v(dx)― + oo)

>1

assume that one of the following three conditions holds:

a) v^O, i.e. {QM)} has a non-trivialGaussian part, and v(R)<oo

b) v=v((-oo, 0))=0, and v((0,oo))<oo;

c) v{dx) has a non-trivial component which is absolutely continuous with respect

to Lebesgue measure.

Then for P-a.a. (D^Q, H^ has only pure point spectrum, and if uit) is an

eigenfunction of Hat with eigenvalue X, then it satisfies

Theorem 5. (exponential localization) Suppose J
I X I >1

＼og＼x＼v(dx)<oo} and
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Theorem 4. In addition to the condition of Theorems 2 and 3, assume that

there exist an integer k^O, a real number ^3^0, and a slowly varying function

L(i) such that

M(£(Ut))=t-?L(t),

where in case k=0, we further assume that 0^/3^1. (Otherwise

would be finite.)
Jm>i

log I x I v(dx)

Then for each ly'mtS, and for P-a.a. <w, Vf(<y) exist and satisfy the

following :

if ueVftaOMO} [resp. eVj(a≫)＼{0}],ften

and

lim

t-*+oo£resp. £^-oo]
T^^(＼＼U*(t;a))v＼n=Q for ayp-1

lim T^rX<n(＼＼Ux(t;a>)v＼＼-1)=+ °°, fora<fi~l;

and if v^Vt(o)) [resp. &Vj(a))~],then

and

lim ―7
£-≫+oo[resp.£^-oo] |r|

1
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1
xv(dx)<.oo) and assume further that either v((0, oo))<oo

0

or v{dx) has a non-trivialcomponent absolutelycontinuous with respect to Lebesgue

measure. Then for P-a.a. w^Q, Hm has only pure point spectrum, and each of

its eifenfunctions u(t) satisfies

lim― log[|M(0l2+|wW]1/2=-^.
t-±ooIT＼

Theorem 7. (super-exponential localization) In addition to the conditions of

Theorem 6, assume, as in Theorem A, that there exist an integer k^O, a real

number /3^0, and a slowly varying function L(t) such that

M(e(*>(0)=r'!L(0,

where O^p^l if k=Q.

Then for P-a.a. <oei2, Hm has only pure point spectrum, and each of its

eigenfunctions u{t) satisfiesthe following:

lim-^^*+i)([|wWI2+|M+(OI2]-1/2)-0, for a>/3-1,

l]m^yla+1)([|M(0l2+U+(0l2]-1/2)= + oo, for a</3-＼

Finally let us discuss some examples. First of all,we remark that most of

the well known Levy processes satisfy the conditions of Theorem 5. For

example, the standard Brownian motion, Poisson process, and stable processes

satisfy the conditions a), b), and c) respectively, and they all satisfy the

condition
Jiar|>l los＼x＼v(dx)<oo. The case of the Poisson process is a little bit

delicate: a Poisson process {Qw(t)} satisfiesthe condition b) but {―QJf)＼ does

not. Proposition 2 tellsus that the spectra of

Hi,= -d*/dt*+Q'M)

and

H Z=-d*/dP-Q'(t)

are [0, oo) and (―00, 00) respectively. In the latter case, we know the absence

of the absolutely continuous spectrum of Hz from Proposition 3, and we can

show that Hz has pure point spectrum in [0, oo),in the same manner as in

Theorem 5. Unfortunately, we were not able to determine the spectral nature

of Hz in (―00, 0). Such a problem does not arise in the case of Hz, because

it does not have any spectrum in (―00, 0) at all.
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Next we give some examples for super-exponential localization. Let £(<y)

―{･･･ <x_i((y)<x0(G>)^0<Xi(fy)<x2(to)< ･･･} be a Poisson point process on R,

and let vn(<w)^0, n^Z, be a sequence of i.i.d. random variables with distri-

bution fiidv) which satisfy: (1) £[log(l+yj] = + oo ; and (2) {vn{o))} is independent

of £(<y). The random Schrodinger operator

-di/dt2+ 2 vn(w)d(t-xn(w))
B=-oo

can be realizedas

H^-d'/df+Q'M),

through the Levy process

QM)-Q<o(s)=＼ xN((s, t}Xdx)
0

where N^-) is the Poisson random measure on i?X(0, <x>)such that E[NQ)(dtdx)~]

=dtpt(dx). Then we have super-exponential localization by Theorem 6. If we

consider the special case in which

p.{dx)―{x{＼ogx)r}~xdx,for x large,

with l<r<2, then Hm satisfiesthe condition of Theorem 7 with k=0, fl=r―1,

and hence the eigenfunctions of Hw decay like exp[― ＼t＼1Kr~l:>].In the same

way, if for some T>1,

fi(dx)={x(log x)(loglog x) ･･･(loglog･･･logxy]"1,

for x large, where loglog ･･･logx is the (n+l)-th iteration of "log", then the

condition of Theorem 7 holds with k = n and p=y―l, and we have eigenfunctions

decaying like exp[―exp[exp[-- exp[|f|1/cr"i:>]･･･]]], where "exp" is iterated

n-times.

§2. Proof of the theorems on localization.

2-1. Some notions and facts from the spectral theory of HQ.

In this subsection, we will give a brief summary of the spectral theory of

singular Sturm-Liouville operators, which is often referred to as the theory of

Weyl, Stone, Titchmarsh, and Kodaira (W-S-T-K theory). The subject of this

theory is the investigation of the differentialoperator

L = -di/dtt+o(t)

on a finiteor infiniteinterval, and it is usually assumed that q{t)satisfiessome

mild regularity condition such as piecewise continuity, local integrability or the
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like. However, if one examines the detail of the theory (see e.g. [13], [20], o:

references therein),it is easily understood that such kind of an assumption doe;

not play any essential role, and that the W-S-T-K theory extends to our Ht

defined in §1-1 as well. Indeed, the initial value problem HQu=Xu, u{0)=a

u+(0)―^, which is defined by (1-1), is uniquely solvable by successive approxi

mation, its solution uit,X) and its derivative u+(t, X) are entire functions of >

for each fixed t, and we have the Green's formula: for each u, v^CQ,

＼b{(HQu)v-u(HQv)}dt=[U! vW)-＼M, vja),

where [u, v](t)―u(t)v+(f)―u+(f)v(t)is the Wronskian. Given these basic facts,

W-S-T-K theory can be reconstructed word for word. Hence, we will quote

its results without any proof.

To begin with, HQ is said to be in the limit point case at +co [― oo] if for

some X^C＼R (and hence for all AeC), HQu=Xu has a solution which is not

square integrable near +oo [― oo]. HQ with domain S)q is self-adjoint if and

only if HQ is in the limit point case both at ±<=o. We restrict ourselves to

this case.

Let {Eq(X)}x^r be the resolution of the identity associated with the self-

adjoint operator HQ. It is known that for each bounded interval A=(X, ft],

EQ(J)=EQ(fi)―EQ(X) has a continuous kernel EQ(J; x, y), and that there exists

a measure {<Jij{Q＼d£)}＼,}=ltaking its values in the space of non-negative,

symmetric 2x2-matrices such that EQ{A;x, y) is represented as

(2-1) EQ(J; x, y)= .S=i^(x ; Qf £)<pj(y; Q, $)ot£d$; Q),

where <pit<p2are the solutions of HQu=£u with <pi{O)=<pt(O)=l, <pt(0)=<pi(0)=0.

(i.e.,
<pi=<p, <pz=(p in the notation

of §1-2.) We set <y(d£;Q)=an(dt-;Q)

+0"22(<2£;Q),and call this the spectral measure of HQ. Further let Tij{$;Q)

= ffij(dl;;Q)/a(dt;; Q) be the density of atj with respect to a.

These measure, af/s, are obtained by taking the limit of the eigenvalue

problem on a finiteinterval as the interval expands to the whole line. More

precisely,let I=[―a, b~＼,a, b>0, and consider the eigenvalue problem;

(2-2)

(2-3)

(2-4)

(HQu)(t)=JLu(t), t(=I,

u(― a)cosa―u+(― a)sin≪=O

u(6)cosS+M+(6)sin5=0,

where a and B are arbitrarilyfixed real numbers. Let
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UQ;D<UQ;l)<-<UQ;n<-

be its eigenvalues and vn(t;Q, I), n=l, 2, ･･･its normalized eigenfunctions. We

may assume that vn's are real valued. Set

(2-5) tfn(i4;(?,/)= 2 vn(0)＼

(2-6) a^A;Q, I) = a21{A;Q, /)= 2 Vn(0)v£(0),

and

(2-7) o*t(A;Q,I)= 2 i>£(0)!.

Then as we let a-> + co, fr->-fcx>indenpendently, atj{d^;Q, I) converges tc

0ij(d£;Q) vaguely.

By the way, in our limit point case,

hM: O)=Um~^f%, and ft.y; <?)=lim
^§;

exist for each X<^C+={lmz>0}. They are holomorphic functions of X&C+,

with values in C+. If we set for AeC+,

then w+ [resp. w-~]is the unique (up to multiplicative constants) solution of

HQu=Xu which is square integrable near +°°[resp. ―°°],and

gx(t,s ; Q)=-{h+(X; <?)+&_tf; Q^w+OtVs ; X, Q)w.(tAs ; X, Q)

is the Green function of HQ, i.e. the integral kernel of (Hq―XY1. These are

related to the above mentioned <7*/sin the following manner: Let us define

Hn(X;Q)=-{h+(X;Q)+h-(X; Qft-^gxR, 0; Q),

H12(X; Q)=HZ1(X; Q)=h+(X; Q){h+(X; Q)+h.(X; Q)}'1,

and

HM; Q)=h+(X; Q)h.{X; Q){h+(X; Q)+h-(X; Q)}-＼

then for each finiteinterval A=(X, u~＼.we have

(2-8) lim
it

eiO TC J
"imHijtf+ie; Q)d^=aij{{X,ft);Q)+T{fftM*} >Q)+°iMv} >Q))

Finally let us see what changes the objects defined above undergo by the

translation Q-^TtQ. First of all,we have

(2-9) h±(X;TtQ)
wi(t

w±{t

X

X

91
Q)
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whence we get

(2-10) HM; TtQ)=g(0, 0;TtQ)=gx(t, t;Q),

and

(2-11) HM;TtQ)=gi(0, 0; Q)wt(t;X, Q)w±(t;t, Q).

Here we have set wi(t)=(d+/dt)w±(t;I, Q).

On the other hand, from <r*/d£;Q)=llmIfRaij(d$; Q, I), itis easily seen that

(2-12)

and

(2-13)

<rn(d£;7V?)=

i

2-2. A priori estimates of generalized eigenfunctions. Absence cf

absolutely continuous spectrum.

Lemma 1. Suppose
Jm>i
＼og＼x＼v(dx)<oo. Then for P-a.a. a), and o(-;<o)

a.a. l^R. there exists a solution u(-) of H^u^lu such that for all s>0

J

°°e-*n*(＼u(t)＼2+＼u+(t)＼2y2dt<co.

PROOF. In general, if h(X)is holomorphic on C+ and has positive imaginary-

part, then there exists a measure o(dt-)and a constant S^O such that

Imh(Z)=pim^^j~~ o(d£)

This a is unique and is recovered from h(X) by

Wm-＼fIlmh($+is)d^=aU fi))+h<r({X})+a({fi})}.
ej.07TJ A, Z

(See [12].)

From this fact and the results of the previous subsection, we get the

following two estimates:

j- i+i2

p i

J-oo 1+f

(
.23 rJk(£; <o)<pj(t; £, a>)<pk(t; $, a)))<?(d£; w)

o"u(d£; Tt(o)

^imgiiO, 0;7≫

=Im gt(t, t; to)

^＼gi($,Q',(o)＼＼w+(t;i,a>)＼＼w-(t
i o>)＼
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L

J-coi+r

2 ＼

anidSiTtw)

^lm H22(i;Tt(o)

£＼gt(O,O;a>)＼＼w±Qt i, to) | I wt{t; i, (o) |
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At this stage, we apply Theorem 1 for A=i. Then for P-a.a. a), there

exists a solution u(t)of Hau―iu such that ＼u(t)＼2+＼u+(t)＼2decays expontentially

fast. This solution is square integrable near +00 and hence coincides with

w+(t; i, a)). The same thing can be said about wJt; i, <d). Therefore we have

and

for P-a. a. a>.

P-a.a. a).

Hm― ＼og(＼w+(f;i,<o)＼＼w.(t;i,a))|)^r(O-r(O=0

limTrlog( I wt(t; i, <o)| | wt(t; i, (o) |)^r(0―7(0=0

These, combined with the above two estimates,show that for

J -00 J -00 ±-f-£ Lj, *=i

for any £>0.

Now if we set

2
vit{x)= 23 rik(£;o))<pj{t;6, a>)<pk(x;£,a>),

j,k=i

then v£tt(')is a solution of Hau―Xu for each ?e/2. From the positive semi-

definiteness of the matrix {rjk($;(o)} and Schwarz' inequality, it is easily seen

that

J ―DO

tmdJT e~£lxldx

for all s>0. Theref

I

ore for

＼v£t(x)＼ + ■Z-vlt(x)＼)o(de;a>)<oo,

a(- ; <y)-a.a. £, we can choose a £<si? so that

e"£|xl(l<f(x)|2+
3+ 2＼l/2

faVUx)
) dx<co

for all s>0. This vf:i(-)satisfiesthe desired condition.

Lemma 2. // Q(t)^Q is such that Q(t)-ctis non-decreasing for some c^R.

then Hq is self-adjointand for a{- ; Q)-a.a. 1, there exists a solution of Hnu―Xu
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j"

OBl+

^

|a
(l^01'+|M +(01')^<00'

for all a>＼.

Proof. We may suppose c―0. It is easy to see that for A^O, <px(t;Q) is

not square integrable near ±oo, hence Hq is in the limit point case both at

±00, whence follows the self-adjointness. It is also easy to see that the

spectrum of HQ is contained in [0, 00).

In order to prove the second half of the lemma, let us fix a ^<0. A

simple comparison argument with H0= ―d2/df show that gx(t, t; Q) is bounded

in t. On the other hand, if dQ(t)^O, and ;i<0, then gx(t, s; Q) itself has an

eigenfunction expansion (see [241):

Jo- t ―/ ＼j,k=i '

Therefore for any ≪>1,

*w"'=JlTn7F gx(t,t;Q)<oo.

Then by using the positive semi-defmiteness of {rj/|;Q)} as before, we can

show that for a{- : Q)-a. a. £,there is xei? such that

L 1
i+ma

＼v2,x(t)＼*dt<oo, for all a>l

In the same manner as in [15] (Lemma 2.1.),one obtainsfrom this,

L
1
i+ma

^
■vf,x(f)＼%dt<co

as well. m(･)=*>£*(･)satisfiesthe desiredcondition.

If we combine Theorem 1 [resp. 2] with Lemma 1 [resp. 2], we get the

following resultby virtueof a well known argument (see e.g. Pastur [29]).

PROPOSITION 3. Assume that one of the following two conditions holds for

our Levy process {QJf)}:

(i)
J,*,>ilog|*|i;(dx)<oo;

f f1
(ii) ＼ia;i>ilog|;!c|v(d;t)==oo,but v=v((―oo, 0))=0, and ＼xv(dx)<<yo.
J Jo

Then for P-a.a. a>, H^ has no absolutely continuous spectrum.
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2-3. Proof of Theorems 5, 6, and 7.

In this subsection, we prove our main theorems on localization,assuming

Theorems 1, 2, 3, and 4. In fact, it sufficesto prove Theorem 5 only, because

in order to prove Theorem 6, we have only to replace the use of Theorem 1

and Lemma 1 by that of Theorem 3 and Lemma 2 respectively. We get

Theorem 7 if we further replace Theorem 3 by Theorem 4. No alternation is

necessary in the other parts of the proof.

Before proceeding to the proof of Theorem 5, let us quote some notions

and facts from the deterministic part of the theory of Carmona and Kotani.

For details,we refer the reader to [4], [16], and [17].

Suppose that HQ=―d2/df+Q'(t) is in the limit point case both at ±oo. If

we define for each #e[0, n),

<Dq={u＼(.-co,oi;h£% and w(0)cos# ―u+(O)sin0=Q},

and H%v=(HQu)＼c-co.oi if v=u＼c-oo,oi^£>q,then the operator E% with domain Sfq

is self-adjointin L2((―oo, 0]; dt). If {E6q{X)}x^r is its corresponding resolution

of identity, then as in §2-1, for each finite interval A={X, pt], EeQ(A)

=E0Q(fi)―E9Q(X) has a continuous kernel EdQ(J;x, y), x, y^S), which has the

following representation:

E%(A; x, y)=＼<p%x ; Q)<p&y ; Q)ae(d$; Q)

where <p＼(x;Q)=sin8<p^x ; Q)+cosd(pi{x; Q). We shall call the measure

oe(d%; Q) the spectral measure of B.%.

The following two facts are essential ([17], Proposition 2.5.):

(2-14)

(2-15)

then

f

Jo

if

doi" f(X)oe(dX;Q)=[° f{X)dX, for any fe=C0(R)
J-co J ―oo

a{dX; Q) is the spectral measure of HQ (see §2-1),

[°
f(XMdA;Q)=-
J-oo 7T

lim[dd[° ＼＼Ux(t;Q)d＼＼-*f{X)oe{dX; Q)

for each f<=C0(R), where Ui(t; Q) was introduced in §1-2, and

<Hsin
2)

Vcos 0/

We also use the following change of variable formula ([17], Lemma 2.4.): for

U(ESl(2; R) and 0e[O, n), define a new angle ^>e[0, n) by

Ud = ±＼＼Ud＼＼9,
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and denote thisby U-6=<p. Then

(2-16) [nu-8)de=[f(d)＼＼u~in-'de
Jo Jo

Now let us turn to the proof of Theorem 5. We divide our argument into

three cases each of which corresponds to conditions a), b). and c) respectively.

Case a). Suppose y^O and v(R)<oo, Then Levy's canonical form of

{QM)＼ takes the following form:

<?≪B(O-Q≫(s)=6a-s)+i;(5(B(O-5a,(s))+(ga,(O-5≪(s)),

where

QM)―Q≫(s)=＼ xNw((s,Qxdx)
J―OO

is a "step process", i.e. has only finitelymany jumps in a finiteinterval, and

is constant between jumps.

If we set

Q^iw^Q; sup ＼bt+vBM)＼^s, and 5.(0=0 for fe[0, 1]},

then it Is clear that P(Q£)>0 for any s>0. For each finite open interval /, we

choose an s>0 so small that

C0=inf{||^(l;a≫)^||; Q^d<7t, X<=I, aK=Qt}>0.

Further let us define

S = olQM)-Q≫(s); t,s£0 or t,s^l].

Q is the sub <r-fieldof 3 generated by the random potential outside the interval

[0, 1]. We denote respectively by Pi(do)')and ££[･] the conditional probability

and the conditional expectation given Q.

At this stage, we claim that for P-a.a. o>ei2, the conditional expectation

taken on the set Qe of the random measure o(dX; a>)is absolutely continuous

on /, i.e.,

E%tlQs(<t>'MdX;<1)')li<dZ.

Indeed,if we set

dx(t;a),d)=Ui(t;(o)'6>

then for each non-negative /eC0, we have from (2-15) and (1-4),



Exponential and Super-Exponential Localizations

^f(XMdX;u)

fWWUMiT&tfia-.a, d)＼＼-*＼＼Ui(l',^M-^^dX; ≪))

Therefore by Fatou'slemma,

(≪/)j/UM^;O]

7t £-+≪ L Jo

<:

X＼＼Uxa;a)')e＼＼-2ad(dX;a)')＼

f{Z)Ei[lQs{o)')＼＼Ux{t;7>')^(1; ≪', 0)||~2V(<U; at)

(2-17) sup

450, k<Sl,0£d<K

241

and that 1qs(q)')and

follow from (2-14) as

EllUMWM; 7>')^U;a/, ≪9)!|-2]<~

1

TtCl

Note that ae{dX; <w') and U'x(t; T＼(o') are 5-measurable,

Ox(l',(t>';0) are independent of S. Hence our claim will

snnn as we havp shnwrn

For this purpose, let

Q={<weQ; QM)=0, for fe[0, 1]}.

Then QsdQ} and it is easy to see that the process

{di(t;<o',d); 0£t£l}

is a nice diffusion process on the circle R/nZ under the measure Pi{da)'＼Q)

(see [9]), and by a standard method, one shows that it has a transition density

Px(t;x,y) which is jointly continuous in (x, y, X). Let Cx be its bound as

(x, y, 1) varies in [0, 7cfXl:

Ci= sup
px(l, x, y).

osx,y<x,-Je/

Then we obtain from (2-16),

E'tiajfit'Wiijt'.T&yxa;*', o)＼n

Jo

proving (2-17), and consequently our claim.
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Now let

A={(<o, X)^QxR; Ux(t;a>) has Ljapounov behavior at ±00},

i. e. let A be the totality of the pair (<y, X) for which there exist F|(o>) satisfying

the conclusion of Theorem 3. By examining the proof of Qseledec's theorem

(see e.g. [19]), it is easily seen that A belongs to GX${R), where &{R) is the

Borel field of R. The assertion of Theorem 1 is that for each X^R, the set

A(X)={<d<eQ; (a>,X)(EA}

has full probability measure. Hence by Fubini's theorem, the set

A(a))={X^R; (a, X)^A)

has full Lebesgue measure for P-a. a. ao. Therefore from what has been proven

above, follows

E＼loffi>)＼lAJfi>,X)o(dX; c)]

=*H, Uc-)≪(^2Cifl≫(rfi;c')]]=0

which shows that for P-a.a. q)^Q£, <r(a(/＼i4(<w))=0.But since P(i2s)>0, the

ergodic argument in the Appendix of [17] shows that actually am(I＼A(a}))=0

with probability one. Finally fix an o) satisfying this and the conclusion of

Lemma 1. Then we must have V|(o>)=Fj(o>) for a{- ;<w)-a.a. X^.1. Therefore

the solution of H(uu=Xu whose initial condition '(h(0),w+(0)) belongs to Vt((t))

―Vj(ft>)satisfies

t
Iim^ylog[|u(012+U+(0l2]1/2=-rU).

In particular it belongs to L2(R; dt) and we have shown that a{- ; <w)-a.e.X^I

is an eigenvalue of Hm. Letting IXR, we finish the proof.

Case b). Suppose y=y((― oo, 0))=0, and v((0,oo))<oo. In this case, without

loss of generality, we can assume that {QM)} is a step process, i.e. is constant

between its jumps. Then the spectrum I of Hw is [0, oo) almost surely. Set

r(o))=inf{/>0; AQJf)>Q),

where AQJfj―QJfy―QJjt―). Then r(w)>0 almost surely.

Now let us fix an arbitrary finite open interval / such that inf/>0. Cor-

responding to Qe, Q, and Ox(t;o),6) in the preceding case a), we introduce the

following objects:
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Q'={a)<=Q) 0<r(ty)^l};

S'=alQM), t^O; Qa,(r(Q>)+t)-QMa>)), ^0; JQw(r (≪))];

6i(fi>;0)=Ui(T(fi>)-;0y0.

Then noting that

＼＼U,(t+T(<o);<o)d＼＼= ＼＼U,(t;TrOt>(w)AUMa>); (oMco; 6)＼＼Wz(j(<o)- ; a>)d＼＼

where

AUxitifo); <o)=Ux(t(q>) ; <o)Ux(x(<o)- ; o))'1

and that

C0=inf{||C/a(r(tt>)― ; o>)^||;0^^<tt, ^e/, <yei2'}>0,

we eet as in case a).

Ei'[lo .(a/)J/UM^ ;<*>)]

[u^')＼'de＼

l r*

X＼＼Ux(T((o)-;a))d＼＼-2oe(cU ;<*)')

d[fa)EsJi＼＼Wi(t;a)M<o d)＼＼-^a＼dX;a))
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where we have set

Wx(t; a>)=Ui(t; TtWq>)AUx(t{<o) ; to).

Note that this and ae{dX;a)) are ^'-measurable.

It remains only to prove that the random variable d'x{to';6) has, under the

probability measure P^{do)'), a distributiondensity which is uniformly bounded

in (6, /0e[0, tt)X/. Indeed, if this is true, then in the same manner as in

case a), we will obtain

Ei'la(dX;tof)2<d2, on /,

and from this, the conclusion will follow.

Now t(q))is independent from Q', and it obeys the exponential distribution

with parameter /3=y((0, °°))>0. Hence by the definition of O'x(to;d), we have

for any Borel function F^O,

Jo

where a)o(t)=O. By a direct calculation,we can show without difficultythat the

right-hand side is bounded by
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Jo
F(6)dd,

C i being a constant which depends only on /. (The

important in this respect.) Therefore the distribution

uniformly bounded, as was claimed.

assumption inf/>0 is

density of 0x(<o'; d) is

Case c). Let v(dx)=vs(dx)+vfac(x)dx be the Lebesgue decomposition of the

Levy measure v{dx), where we assume v'ac{x)^§,and let S be a Borel set of

zero Lebesgue measure which supports vs(dx). If we set

J=J(5, M)={x<=Sc; ＼x＼>8,0<v'ac(x)£M},

then / has positive Lebesgue measure for 8 sufficientlysmall and M sufficiently

large. Fixing such 5 and M, let us decompose {QM)} as

Qa>(t)=Ql(t)+Ql(t), Qi(O=J xNa((O,Qxdx)

Then {Q%(t)} is a step process. Let

･･･<r-i(ft))<ro(6))^O<T1(ft))<r2(6))<･･･

be the points at which Q%(t) jumps, and set

Sj=alQi(jt), t^R; {Tn(a>)}n=-~;{dQi(Tn(a>))}n*j~],j^Z.

Then under the conditional probability Pii(do)'),only AQlfa}{<*>'))is random, and

its distributionis proportional to lj(xWa(:(x)dx. Now let us define the mapping

0j: Q-^Q by

f QM), for t<Tj(a>)

{ Qm(jt)-AQm(xM), for ^r≫

i.e. 0j(a))is obtained from <o by removing its j-th jump. Then from the con-

struction of the Green function of Ha, and H$jia)-)(see §2-1), we see that

gx(Tj(fi>),Tj(q)); <*>)=-{-gxkfa), r≫; 0>(o)))-1-J(?a,(r>(a≫))}-1

holds for 1gC+. If we set

Ua>)=K(o)+iy(<o)=-gz(.Tj(<o), Tj(a>);#≫)~1eEC7+,

then C is a 5rmeasurable random variable. Therefore, with some constant M,

EBj＼＼mgx{T{fi>'),Tj(fi>');a>)]

^m[° .... V(^ . .2dx=Mx
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Hence from (2-8),

£― YimEfy

7C eAO

[＼

lmgs+i.{Tj(.a>'),TjW); a)>)＼^M＼I＼,
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for any bounded open interval /, namely

This implies, as in case a), that for P-a.a. <weJ2,

(2-18) <ru(4(fl>)e;7r>c≪>c)=0, /eZ.

The proof will be finished if we have further shown that o(A(<d)c; *y)=Q. To

this end, fix an m for which (2-18) holds. Then from (2-12),

(2-19)

JA(,a>)cU, 7=1 J

for t=Tj(a)), j'<bZ. Let pk(X;a)), k ―＼,2, be the eigenvalue of the matrix

(tail; a))),K(X; m) the orthogonal matrix which diagonalize (r, ,･),and set

(f

f

i(t; A, a)

t(t; X, (i>
)=K{A; Q)){r

D

(2-19) means that for </(･; a>)-a.a. ^e/l(&>)c, one has

S/*U; a>)fk(Tj(a>);X, a>)=0, ;gZ.

Then for such X, one and only one of the following two cases is possible:

(i) for every /eZ, F(O=Sf=ij≪ftU; (o)fk(t; X, ai) does not vanish identically on

(r/a>), r^+1(a>));

(ii) F(0=0 on R.

For suppose (i) does not hold. Then F(t) vanishes identically on some open

interval. But fk is a solution of H^u―Xu. Hence F(t) must vanish entirely

on R.

Now let Aj((o) be the totality of eigenvalues of i/J[:r>cao.r/+1cao]with Dirichlet

boundary conditions. It is clear that if (i) holds, then X^A{(i))=(~＼jAj{q}). On

the other hand, if (ii) holds, it is also clear that [ik{X, o))fk(t;X, to), £=1,2,

vanish for all t. In particular,

fik(X; a>)fk(0;X, (o)=[tk(X, a))ft(O;X, (d)=0, k=l, 2,

and we get
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f

JA(.W)c＼A(.a>-)
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f

jAra)-)c＼A(<D-) i

J 4(0))c＼yl(a))

2
S Tt>W; o>){<Pi(Q;X, <d)<pj(Q;X, <w)

+<pt(O; X, <o)<p}(0; X, a>)}o(dX;o>)

{ruU ; Q))+t22(X, (s)))a{dX; at)

a(A(fo)c＼A(<o); <o)=0.

Thus we have proved that the spectral measure o(dX; <o)is concentrated on

A(q))＼jA(<o).It should be noted that this already proves that Hw has only point

spectrum because A(<o)is at most countable, and because for a{- ; <w)-a.a. X^A(o)),

one can show the existence of exponentially decaying eigenfunctions as before.

However some additional probabilisticconsiderations show that we have actually

A(o>)=0 for P-a.a. <w. We will show in fact that A1(<D)r＼A2((i))=0 almost surely.

First note that Aj(o>)is determined from {QJfi―QJjjiai)); fe[r/<w), ri+i(o>)]}.

Therefore A^m) and A2(fl))are independent (set-valued)random variable because

of the strong Markov property of {QM)}- Hence it sufficesto show P(^eyfx(o≫))

―0 for each fixed L Now let 0<Si(6>)<s2(ft>)<･･･be the positive zero's of the

solution of Hcou=Xu, u(0)=0. Then X^A^m) if and only if sn(Tricfl))a>)=r1(Tri(a))(u)

for some n^l. On the other hand, sB(a))=ri(<u)is equivalent to sB(a>)=s≫(?"(c))

=Ti(o≫),where we define ?T(a≫)by @yc≫>(0=Q2≫(0- From the statisticalindepend-

ence of {QUO} and {Ql(t)}, we see that sn(W(<o)) and ri(<o)are independent.

Since ri(a>)has a continuous distribution, we finally obtain

?(;G^1(ai))^|p(s1,(Trito)(≫)=r1(Tri(s)a)))

= 2 P(Sn(Q>)
71= 1

= Ti(<0))

^ S3 P(s≫(?r((o))=r1(a)))=0
n=l

completing the proof.

§3. Proof of Theorem 1.

Except the assertion y(X)>0, the theorem follows from the well known

theorem of Oseledec (see e.g. ["191 and [281) as soon as the condition

(3-1)
£[suplog||[/i,a;a>)||l<oo
Lostsr I

is verified for some T>0. But if ＼eue2] is the standard basis of C2
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||£7||£||t/≪il|+ ||tfe,||,

so that in order to prove (3-1), it sufficesto prove

(3-2) e＼ sup log＼＼Ux(t;<o)v＼＼＼<oo
LOStiT J

for each fixed v=＼a, j3)eC2, |a|2+|£|2=l.

Now let u(t) be the solution of E^u―lu, u{Q)―a, u+(Q)=fi. Then we have

＼＼Ux(t;o))v＼＼2=＼u(t)＼2+＼u+(t)＼z.On the other hand, Levy's canonical form can

be rewritten as (see [11])

QM)=c8t+vBa(t)+ Jl*l>5
*WW((O, Qxdx)+[+

Jo
＼ xNm(dsdx)

for each 8>0. Here we have set c6―b―＼ a(x)v(dx). Then for each fixed
JlxI>5

a and ft,the random equation H^u^Xu, u(0)=a, u+(Q)=fi can be consideredas

the followingpair of stochasticintegralequation:

u(t)^a+＼tu+(s)ds
Jo

u+(t)=p+(c8-X)

+n

[tu(s)ds+v[tu(s)dBm(s)
Jo Jo

xu(s)N(0(dsdx)+＼t+[

]x]>d J0 JIXIS

xu(s)Nw(dsdx)
5

Hence from the generalized Ito's formula ([11], Chapter II, §5), we obtain

(3-3)

where we set

(3-4)

(3-5)

(3-6)

(3-7)

iog(iK(or+iK+(or)=r/>(2(s))ds+M(o+s(o,
Jo

z(t)=u+(t)/u(t)e=C＼J {<*>},

p{z)=2(l+cs)

+v

+s

M{f)=2v＼

Re z
l+M2

(Re;Q(Rez)+(Im;p(Imz)

l+|z|2

. l-(Re^)2+(Imz)2
l+＼z＼2

ixisS

t

r, l+(x+Rez)2+(lmz)2 2xRez＼
llog i+ur i+wrdx)

Rez(s)
°l+|*(s)|2

JO J＼x＼sd

rt+r
S(f)=＼ Jog

Jo Jixi>o

dBw(s)

rl+U+Reg(s-))*w
gl 1+U(s-)|2 ＼1"^asax)'

rl+(*+Rez(s-))*+(Im^))M
I 1+U(s-)I2 }iv^s^x;
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For each 5>0, it is easily seen that p(z) is a bounded continuous function

on C＼J{oo), and that {M(t)) is a square integrable martingale with right

continuous paths. Therefore

(3-8)

and

(3-9)

E＼ sup

＼_OitsT

r/>(*(s))ds|]^T||/>||..<oo

E＼ sup ＼M(t)＼]<co

by martingale inequality.

On the other hand, it is elementary to show

so that

(3-10)

sup log{
l+Q+Rez)2+(Imz)2

1+UI2
j|^31og(l+U|)

e＼ sup |S(Oll^£[r+( 3log(l+＼x＼)N(dsdx)]

Lostsr J LJo Jixi>5 J

=3T( ＼og(l+＼x＼)v{dx)<oo

JIxI>S

from the assumption.

Combining (3-8), (3-9), and (3-10) with (3-3), we arrive at (3-2).

It remains to prove j(X)>0. Having established the almost sure existence

of the limit, it sufficesto let t->oo through some discrete set, namely it suffices

to prove that for some a>0, we have

lim ―＼og＼＼Ux(na; o>)v||>0, a.s.

for each veC2＼{0}. But Ux(na ; <o)is a product of independent random matrices

Ux(na ; a))=Ux(a ; Tln-oao>)Ux(a ; T(n_2)aG))･･･Ux(a ; cd).

Hence it sufficesto verify that for some a>0, Ux(a;a)) satisfiesthe condition

of the following Furstenberg's theorem:

Furstenberg's theorem―two dimensional version ([1] Part A, Chapter II,

Theorem 3.6, Theorem 4.1, and Proposition 4.3.)

Let {Yn}nil be a sequence of independent, identically distributed random

variables in 5/(2, C), and let pt(dY) be their distribution. Further, let G^ be

the closed subgroup of Sl(2, C) generated by the topological support of pi. If

ft and Gp, satisfy the following three conditions;

(i) £"Clog||r1||]<oo;

(ii) G/j,is not compact;

(iii) for any x<eP(C2), {M-x ; MeG≪} contains at least three different points,
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then for each t;GC2＼l0},

lim-loglirjVi-lVIIX), a.s
n-oo n
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Here the definitionsof the notation in (iii)are the following: We identify

two elements x, y of C8＼{0} if x=ly for some ieC. This defines an equiva-

lence relation ~ in C2＼{0}. We set P(C2)=[C2＼{0}]/~. The equivalence class

to which ieC2＼{0} belongs is denoted by x, and we define M-x=Mx for

Mc=S/(2, C).

Now for each a>0 and X<=C, set Yn=Ux(a ; T(n-oa0≫), and let ftk(a) be

the distribution of Fj in Sl(2, C). We have already seen that £[log||F1||]<aD

holds for all a>0 and A(=C. Let us show that for each fixed 2eC, we can

find an a>0 such that GMxia->satisfiesthe conditions (ii)and (iii).

Verification of (ii). First consider the case ?.>lnfl, which is the most

important.

Let Supp(P) be the topological support of the probability measure P on Q.

As we already noted, Q={(D<^D(R-^R); a>(0)=0} is endowed with the Skorohod

topology. In order that condition (ii)holds for a given ≪>0, it is sufficient

that there exists an G>oeSupp(P) satisfying the following two conditions:

(1) <o0(0is continuous both at f=0 and t=a;

(2) ＼trUx(a;a>o)＼>2.

Indeed (1) implies that the correspondence (D->Uz{a; a>)is continuous at o>=(Uo

(see [25], Lemma 2). Hence Ux(a ; <w0)belongs to Supp(fix(a)). On the other

hand, (2) implies that ＼＼Ux(a;(Q0)n＼＼->ooas n->oo, so that G/^ca) cannot be

compact (see the argument of Matsuda and Ishii [23], p. 67).

In order to show the existence of such o>0, we divide our argument into

four cases.

Case 1. v=v((―°o, 0))=0, and ＼xv(dx)<cv in the Levy's canonical form
Jo

in which case we may assume that {Qm(t)}1S of the following form

P≪(O=r*W≪((O,f]Xdx)
Jo

Then 2=[0, oo) and we consider only ^>0. Fix an og(0, oo)nSupp(v), and set

for each /}>Q. Then cy^eSupp(P), and an elementary calculation gives

(3-10) ^(i8)=trt/^(i8;^)=2cos(VTi9)+-^sin(VTi8);
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in particular g(0)=2, g'(0)―a>0. Hence for a sufficiently small /3>0,

trUx(ft;a)p)>2. Since t->trUx(t; a)p) is right-continuous, trt/^(a ; <w/S)>2 still

holds for a>jS which is sufficientlyclose to /}. These top and a satisfy the

desired conditions.

In the next three cases, we have Z=(― °°,°°),so that we shall consider

an arbitrarily fixed ^>0.

Case 2. v=y((-oo, 0))=0, but
＼＼v(dx)=

Levy's canonicalform as

+ oo. In this case, if we rewrite

where

c-n―b―X a(x)v(dx),

then cn | ―oo (-qi 0) from the assumption. Choose 7]>0 so small that cv<j

and v{{rj,co))>0, and fix an a^{rj, oo)nSupp(y). If we set for each $>0,

a>iS(7)=r<V+al[/9,cO)(0,

then as in [25], one shows a>£eSupp(.P). The rest is the same as in case 1.

Case 3. v=£0. In this case, a)r(t)=Ytbelongs to Supp(P) for any y<=R. It

sufficesto take T>1, because then we have

trU'k(a; o)r)=2 cosh(Vf―Ja)>2,

for all a>0.

Case 4. y=0 and v((―oo, 0))>0. As in [25], it can be shown that there

exists a fi^R and an a<0 such that <op,defined by

Q)/9(0=juf+alc/9,ao)(0,

belongs to Supp(P) for any j8>0. We shall assume ft=O for simplicity.

Consider firstthe case ^>0. Then g(P)=trUx(ft;<i>p) is given by (3-10)

with a<0. Then g(2jr/VT)=2, and g'(27v/V1)=a<0. Hence we have

£(/3)>2 for fi<2it/s/~J sufficientlyclose to 27r/VT. As before, we choose an

ae(]3, 27r/VT) sufficientlyclose to /3,to obtain trUx(a ; co^)>2.

Secondly let ^e(-oo, -a2/4)W(-a2/4, 0]. Then

g(P)=trUx(P; 0)^=2 cosh(j9VW)+a/vTOsinh(i8vTI|).

In this case, we have lim/9^Oc|g'(J8)|=+ oo) so that we have to choose a /3>0

sufficientlylarge and then an a>/3 sufficientlyclose to ]3.
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Finally in case X =―≪2/4, we consider a)p,r,defined by

(Op,r(t)={ltp.^(t)-＼-lzp+r.Ut)}

with /3,r>0. Then

tr£/itt/4(/3+7; o>i8,r)=(coshb―2 sinhfr)(cosh c―2 sinhc)―sinh b sinh c

where b
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= |a|j8/2, c=＼a＼T/2. Let /3>0 be such that cosh/3-2sinh/3=0. Then

lim trUt(B+Y ',ws,v)=lim(―sinhb sinhc) = ―oo ,
r-,oo

so that it suffices to pick a sufficientlylarge f>0 and an a>fZ+Y which is

sufficientlyclose to /3+?＼

Now that we have verifiedcondition (ii)in the case X>'mfl, let us consider

the case X^C＼R or A£infZ. For this, it sufficesto show that for P-a.a. a>,

there exists a solution u(t) of Hau=Xu such that

(3-11)

Indeed, since we have

lim (＼u(na)＼2+＼u+(na)＼2)= +

n~>oo

/ u(na)＼

＼u+(nay
-Y Y ...WM(0)N!

(3-11) implies that YnY'n_i ･･･F1gG^U), n ―l, 2, ■■･are not bounded as n-^oo,

contradicting the compactness of G^x(_a^-

Now suppose X^C＼R, and a>0. For P-a.a. co,i/fflis in the limit point

case at +00. Hence there is a solution u of Hmu―lu such that

D M(f)r</f=+oo

But from the Green's formula (§2-1)

(2ilmX)＼na＼u(t)＼2dt=[u,ujna)-[u, ≪](0)
Jo

so that {(u(na), u+(na))}ni0 cannot be bounded.

If X^infZ=c, then Hm~^―d2/df+c, and by a simple comparison argument,

we can show that for the solution <p of Hau―Xu with ^>(0)=0, ^+(0)=l,

{(p(na)}ni0is unbounded for any a>0.

Let us pass to the verification of the condition (iii).In fact, we will prove

that for all a>0, 2eC, and xeP(C2), {M-x; MeSupp(^;(c))} already contains

more than two points. To this end, we will find, each time we fix a, X, and

x, three elements o)u (o2, and o>3 of Supp(P) of which ?=0 and t―a are

continuity points, and such that Ux(a ;(i)j)-x,j―l, 2, 3 are different from each

other.
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But if x = ＼a, ft), Ul{t)<oi)x = t{u^t),u^{t)), and if we set z-fi/a and

zx{t',o)j,z)=uj(t)/Uj(t), then it is clear that the last condition is equivalent to

saying that zx(a; <d},z), /=1, 2, 3 are different from each other.

In order to show the existence of such <w/s, we divide our argument into

two cases. First fix a>0, ieC, and 2gCwI<≫1.

Case 1. v^O, Let us define <or,T,gby

0 ; t^v

a)r.r.a(O=-r(J-T); T^t£v+d,

T-d ; r+8£t

where r, ^>0 and z+8<a. Clearly fi)r>r,5eSupp(P). First choose a re(0, a)

such that L,^z＼(r＼(Dr,T,8>z)^°o. This choice does not depend on 3 and y. At

this stage, we note that zxit'.Q),z) satisfiesthe equation

(3-12) z(.t)=Z(s)+ Q<o(t)-Qa,(s)-＼＼x+z(a)i)dff
J*

provided zx(a;a>, 2)^00 for all <;e[s, Q (see §4-1). Hence

zi(t;<or.v.8,z)=£+7(t-T)-^{X+zx(s;a>r.r,8, zf}ds,

for t^z sufficientlyclose to z. By differentiatingthis with respect to Y, we

can show without difficulty that for each compact interval F, there is a

de(0, a―t) such that

-Q-zx(r+t;(or,T,s>z)^0,

for all(Y, t)^Fx[0, 5]. In particular ^(r+d; G>r,r>(5,2) takes various values as

we vary Y^F. Finally,if we note that z-≫zx(t;(d, z) is a bijectionfrom C＼J{°o]

onto itself for any t^O and a>^Q, we see that

zx(a ;(s)r,z,8,z)=zx(a―T―8; TT+da)r,T,8,zx(t+d;Q}r,T,s>z))

takes different values as one varies Y^F. It suffices to choose suitable three

values of r.

Case 2. v=0. In this case, we choose a pt^R and an aeSupp(v)＼{0} so

that for every sequence S={aj}f=i with 0<<7i< ･･･<on,

ms{t)=ptt+aj:ita oo)(0
.7=1

belongs to Supp(P). Again we may assume ^=0. First let Si=0 so

that (DSXt)=0. Choose a <re(0, a) such that ^zx{a ;(i)Sl,z)^<^. Let
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K={z^C; ＼z―C|<^3|a|}. Then it is easy to see that one can choose a

≪5e(0,a―a) such that for any z^K, zz{t;<oSl,z) remains in the disk of radius

＼a＼/6centered at z for fe[0, 8~＼.If S2={a}, S3={a, a'}, <j<<j'<o+d, then

from (3-12) (note that Jz(0=JQ≪(0 when z(t)±oo),

zx(o;(DS%,z)=zx(a― ; o)Sl,z)+a=C+a,

zx{o'; <os3,z)=zx(o'― ; <oSi,z)―a

=zx{o'―<j ; o)Sl,Z+a)+a,

and consequently it follows that

＼zi(o+8;<oSi, z)―zx(<t+8;g>sj, z)＼^＼a＼/Z, for i^j.

Therefore zx(a ; Q)Sj,z), j=ls 2, 3 take different values as well The proof of

Theorem 1 is now complete.

§4. Proof of Theorem 2

4-1. Outline.

Our problem is to show, under the condition I log＼x＼v(dx)=oo and

*>inf2, that the solution u(t) of Hmu=Xu, m(0)=≪, m+(O)=j8, (a2+/32=l) grows

up faster than exponentially, i.e. that

(4-1) l＼m-log(u(t)2+u+(ty)

t-00 t

=lim ―
flV(2(s))ds+M(0+S(0}

= + °o, a.s.
0 J

(see (3-2)). Since everything is real-valued in this case, p, M, and S above

take the following forms:

(4-2)

(4-3)

(4-4)

and

z(f)=u+(t)/u(t)t=R=RU{°o};

p(z)=2(l+c8-X)
z
T+72
+v2
1-z2

a+z2f

J＼x＼s3＼. 1 + 2 1 + 2 I

Ml^2vi-TT$? dB(s)

+ ＼ log]―＼
2―＼N(dsdx)
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(4-5) S(t)=

Nariyuki Minami

J 0 JixI >5 I

l+(x+z(s-))2
＼N(dsdx)

As we noted in §3, for any <5>0, p(z) is bounded continuous on R, and

{M(t)} is a square integrable martingale. In fact,it can be shown at the same

time that

(4-6) E＼_M(tf＼=O{t), as *->≪>

Therefore we have, firstof all,

(4-7) lim II
0

and next, from (4-6) and Lemma

^||/>||≫<oo

1.2 of [15],

lim ―M(0=0, a.s.
£-°°t

Thus, the sole thing which is not trivialis to prove that for some suitable

choice of d>R,

(4-8) lim ― S(0= + °°, a.s.
t-≫oot

We do this by analysing in detail the asymptotic behavior of the process {z(t)＼

defined by (4-2) and the Markov chain associated to it.

First suppose that w(r)^0 for re[s, Q. Then from (1-1), it is easily seen

that

(4-9)

d+(
-<?.(r))=-(

＼2

u(t)

＼og{l+z{on-f)

u+(t)

u(t)

In other words z(t) satisfies

z(t)-z(s)= QM)-Q(s)-＼＼^+z(TY)dt

provided z(r)=£oofor re[s, ?]. In particular, Az{t)―AQm{t) whenever z(t)^oo.

Moreover it is clear from (1-1) that u+(t)=u+(t―) whenever m(0=0. Hence

z(t)=z(t―)=oo whenever 2(0=00.

Keeping these in mind, we proceed as follows. Let us define a sequence of

random variables <ro(a>)=0<(7i(<y)<<72(a>)<･･･by

an+1(o>)=inf{t>an(a>); ＼AQM)＼>8＼, n^O,

and set

on£t

S+(t)= S log(l+z(anf)
anit
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with the convention that log(l+oo2)=0. Then from (4-5) and z(on)=z{on―)

+AQ(1){on), we have the decomposition

s(o=s+(o-s_(o.

Hence it is sufficientto show that

lim ―S_(0<°o, a. s.,
t-*oot

and limis+(O=

t-≫ooT
+ oo, a. s.

Our plan is the following.

In §4-2, we prove that

1) {z(t)} is a strong Markov process, and if ^>inf 2", it has an invariant

distribution n{dz);

2) {z(t)＼satisfies the individual ergodic theorem, i.e. for any bounded Borel

function f on R, and for any starting point z=z(0), one has

tf(z(s))ds
=

0
＼J{z)Tz(dz), a. s
JR

In particular,(4-7) can be strengthened so that

1 f£
lim―＼ p(z(s))ds =
J-oo t J 0

＼_p(z)7t(dz),
a.s.

In the next § 4-3, we prove the following;

3) if we set (£,,qn)=(z{on ―), AQ(on)), then it is a Markov chain in RxRb,

where Ra=R＼[_-d, 5];

4) if ^>inf I, then {(£,,qn)} has an invariant distribution p.{dt,dq). Moreover,

the individual ergodic theorem holds as follows: for any Borel function

0^F(C, <7)<°°on RxRs, and for any starting point (£,q),

lim- S FCCj, ^)=((. ^(C qMdZdq), a.s.

5) ^ is a product measure: p(d£dq)=-m(dQv(dq).

Concerning this m{dQ, we prove in § 4-4, that for a suitable choice of <5>0,

6)
fjCl^m(dO<°°

for any 0</3<l,

Ji2

in oarticular

f.log(l+C2)m(dC)<°°.
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From (l)-(6),(4-8) can be deduced without difficulty.Indeed, if we set

n(t)=max{n; an^t},

then noting that an―an-i, n^l, are i.i.d. which obey the exponential distri-

bution with parameter v(Rs)>0, we see that

lim-^=lim(- S (ffi-ffi.1)y1=£[<r1]-1=≫<l?i).

Therefore from 4) and 6),

SfTs-(()=H2-!f -k'M**1**"-"

n(t) 1 n=lim^lim- S log(l+CJ)
£-.00{ Jl-ooTIj=l

=v(i25)j_log(l+C2)m(rfCX°o, a.s..

On the other hand, we have from the assumption,

lim

£->oo
T5+(0 *-.≪, t nit) 1=1

=lim-^lim- S log(H-(C,+fc)≪)

£-.00 t n->°o71 3=1

JrJrr

+ oo, a. s

and this completes the proof of Theorem 2.

In fact, the assertions l)-6) (hence Theorem 2 as well) seem to hold without

the assumption ^>inf I, but we did not investigate this because it is not neces-

sary for our final purpose. We also remark that the condition ＼
|X|>1

log t x jv{dx)

=+oo is not used until the very last step of the proof.

4-2. Analysis cf ＼z(t)}.

To begin with, let us fix our basic notation. On our probability space

(Q, 3, P), define the increasing family {S^J^o of sub <r-fieldsof 3 by

3t=alQm(s); ―oo<s<;f|. It is well known that if 0^r(a>)<oo is an {3t+}~

stopping time, where 2t+―p＼s>t3s, then the process {QTHa)^(t); t^O} has the

same distribution as {QM)', ^0}, and is independent from 2v This is the

strong Markov property of Levy processes. (See e. g. [2].) Note that TT

does not preserve the measure P itself in general. We set W―RxQ, its

element being denoted by w=(z, cd),and B ―B(E)X'3, Bt = B(R)XSt+. For
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Xa, jS)ei22＼{0} and for the solution u(t) of E^u^lu, u(0)=a, u+(Q)=p, set

z(t)=u+(t)/u(t)(=R. z{t) is determined from z=a/f2 and {Qw(s); s^t}, hence

MO}120 is a stochastic process on (W, B) adapted to {$t}- We shall also

write z(t;w) {=z(t; z,(0)), zx(t), or zx(t;w) whenever it is necessary to

emphasize the dependence of z(t)on each of its variables. For w―{zt <o)eW

and for f^O, we define dtw=(z(t; z, o>),Tt(a)<=W. Finally, note that from

(1-4), we have z(t+s;z,Q>)=z(t;z(s;a>),Tjo) for t,s^Q, i.e. z(t+s; w)=z(t;$sw)

Proposition 4. Let Pz(dw)=5zxP. Then the triple(z(t; w), {-0j£2o,{^he*)

is a strong Markov process in the following sense:

a) z(t;') is Bt-measurable for each t^O;

b) for any B<^$(R), z-^Pz(z(t; w)^B) is $(R)-measurable;

c) P,(2(0;u/)=2)=l;

d) let t{w) be a finite{Bt}-stopping time, f(w) be bounded and <Bx-measurable

and g(z) be bounded and Borel on E, then

ESf(w)g(z(t; dTwm=ESf(w)EzMwy, w,[g(z(t)m.

Proof. Obvious from the constructionand the strong Markov property of

the Levy process IQJt)}.

Remark. Let t(w)=t(z, g>)^0 be such that v(z,･) is an {2^+}-stopping time

for each z<eR. If r{z,a>)is, as a function of z<bR=(―<x>, +oo], non-decreasing

[resp. non-increasing] and left-continuous [resp. right-continuous], then t(w) is

a {.3 J-stopping time. Indeed, if we define

tn(z, o))= .S l[J/B.U+i>/n>(2M//n, Q>)+lm(z)T(oo, (i))

[resp. rn(z, Q))=J}p-colWn.tj+i)/ni(z)T((j+l)/n, a>)+l,oo,(z)r(oo,c)], then rn's are

{.Sj-stopping times and rn(w) | r(w) as n->oo.

Now let us define

Tn+1(w)=Ti+1(w)=inf{t>Tn(w); zx(t; w)=oo} t n^O.

Then since rn's are zero's of the solution of Umu―lu, we have rn<rre+i and

z(tn{w); w)=z{rn{w)― ; w)―oo whenever rn(w)<oo.

Lemma 3. For each z^R, zn{z, -)'sare {31]-stopping times. For each

rn{z,(o) is non-decreasing and continuous as a function of 2G(-oo, co].

0),

In
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particular, Tn(w)'s are {St}-stopping times. Finally, if Z>pt and if r^wXoo

then tI(w)<t1(w).

Proof. The firstassertion is obvious. The monotonicity and continuity in

z, as well as the monotonicity in X can be shown in the same way as in

Kotani [14] (Proposition 1.5 and Proposition 1.3).

Lemma 4. Assume X>inf2J. Then for each z<^R, we have z{(z,<w)<oo for

P-a.a. (a. Moreover, we have E[r＼{z,g>)*]<oo> for all &>0.

Proof. Consider the eigenvalue problem (2-3)-(2-4) with I=It = [―/, /]

/3=0, and cota=£. Since Hw is self-adjointalmost surely, we have for P-a.a. a>

o(d$; o),Ii)=((Tn+(Tz2)(.d{;;(a, /,)―> a(d£j;a>),

vaguely as /^co, and

Supp(>(- ; <o))=I.

In particular, for ^>inf2I,

Hence

Hm<r((―oo, X); m, Ii)^ff((―°°,X); c)>0, a.s..

=1,

or what is the same, for any s>0, we can choose / so large that

PCUtoiI.XX^l-e.

Next, consider the eigenvalue problem on the interval Ji= [0, 2/] with the

same boundary conditions as above. Then by the stationarity of the random

potential Q'JS), we stillhave

with the same choice of X, e, and /. On the other hand, if Xi(o)',Ji)<X, then

from Lemma 3,

Tfe;w)<r1iiw^;ffl)=2/.

Therefore for any e>0, one has

P(W(z;<y)<2/)^l-e,

for / large enough. Letting e | 0, we arrive at the firstassertion of the lemma.

Now from the monotonicity of Ti(z;g>)in z, there exists a T>0 such that

0^/> = suprGjsP(r1(2;a))>T)=P(r1(oo;a>)>T)<l.
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Using the Markov property of {z(t)},we can show inductivelythat

P(Ti(oo;<o)>nT)^pn, for all n^l,

whence follows the second assertionof the lemma.

259

Proposition 5. Assume /l>inf 2. For any bounded Borel function f on R

and any z^R.

Set! f(z(s; w))ds =
＼f(z)n(dz), Pz-almost

surely
0 JH

Here, 7:{dz)is the unique invariant distributionof {z(t)}. which is given by

(4-10)
＼j{z)7l{dZ) 1

£-[£7(*(0)df]

Proof. By Lemma 4, we see that the right-hand side of (4-10) defines a

probability measure on R. For a bounded Borel function /, set

Jo

(w)

f(z(t; w))dt

Then since Tn+1(w)=zn(w)+T1(dTnw), n^O, one has

＼Tn*liWyf(z(f;w))dt=0f(eVnw)

Since z(rn)=oo) from the strong Markov property of {z(t)}} it follows that

0f(dTnw), n^l, are i.i.d.,and that

In particular,rn+1{w)―zn(w)=01{OTnw), w^l, are i.i.d.. Hence from the law

of large numbers, we have

"

41

£-*oo t J

t

f(z{s; w))ds ―

0

lim

n-≫oo

1

_

n

ns
0f(TjW)

"f(z(f))dt＼
1

n

&.M *E
as desired.

Having shown such an individual ergodic theorem, it is now easy to see by

general considerations that the probability measure x(dz) is the unique invariant

distribution of the Markov process ＼z(t)＼.

4-3. Analysis of {(£,,qn)).

For w=(z, G>)eW, set Zn(w)=z(an(fl>)―; w), qn(w)―JQ(0(<Jn(o))),n=l, 2, ■･･,

where an(oo)'s were defined in §4-1. (We do not define Co(w) and qQ(w).)

Since oVs are {"3 A -stopping times which do not depend on z, they are also
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{3}t)-stopping times. Set

n(C,<i;AxB)=P(UC+q, ≪)eA qxto^B)

for A^2(Jt) and Be .c(Jig). Finally set mn-SOn.

Proposition 6. {(C,n,qn)}mo is a Markov chain in the sense that for any

bounded Borel function Fit, q) on RxRs and for each z^R,

(4-11) £,[F(C≫+i, qn+i)＼#≫](m>)=
JRxRg
n(Cn(w), qn(w): dUq)F(C a), P,-a.s.

The transition probability II is given in the following manner:

(4-12) n(C,q;AxB)= (£dte-tl**8>P>t(£+q;A))xv{B),

where (i) A^Bifi), B(E$(R8); (ii){Qi(t)＼is the Levy process obtained from

{Qu(f)} by removing all of its jumps such that ＼AQw(t)＼>8;(Hi) {zs(t;z, a>)}is

the Markov process constructed from {Qi(t)} in the same way as {z(t; z,q>))＼

and (iv) P＼(z;A)=P(z＼t; z, <o)e=A).

Proof. (4-11) follows from Proposition 5. Let us verify (4-12). From the

definition of z＼f),it is clear that

2s(<Ti(g>); z, o>)=^((T1(a>)―;z,a>).

On the other hand, (<ri(a>),AQm{ax{(o))is independent from {Qi(t)}, and hence

from {z8(t;z, a))}. Moreover, as is well known,

P{al{<o)^dt,AQw(al((o))^dg)=e-tv^dtv(dg).

Therefore by the definition of II,

mil, Q',AxB)=P(zs(al((i)):C+Q, a>)<=A, AQJff,(<≫))<=B)

= ( [°P(z5(t'X+q,Q))GA)P(a1((o)^dt> AQa)(<T1((o))(Edq)
JBJQ

=([~dte-wPi(Z+q; A))xv(B).

PROPOSITION 7. Suppose A>inf2', then the transition probability U has a

unique invariant distributionp.{d^dq). For any Borel function 0^F(£, q)<oo and

for any z<=R3

lim- S F(C≫, gj(a)))=＼＼_ F(C, q^Wq), P,-a.s..
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The measurep is a productmeasure:

(4-13) ft(d?:dq)=m(dQv{dq),

where m satisfies

(4-14) m(dQ=＼ m(dC)＼ ≫W)['dte-WPfc'+q'; dQ,
JR JRs Jo
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Proof. Since o^-*-00 and rn-≫<≫(n->oo), /^-almost surely, we can define

an integer valued function J(n, w), n^l, so that ffnG[^(n), tjw+i). Clearly

/(≪)->oo as ?z-->oo.

If we set

F(u;)=F(z, a))= S FWoiim)- ; w), AQ^a^m))),
i:<ri(a>)<ri<;MO

then

(4-15)
11
F(Zj, *,)=^'s

W^u;

firJ―* ft J―i-

As in Proposition 5, we see that

)+- S FMot-), JQ(at))
71iin,ai>Tj.ny

W(Otnw), n^l, are i.i.d.with Ez＼W{dTw)-]

=Eca＼W(w)~＼,and the last term on the right-hand side of (4-15) is bounded by

W(0Tju^w)/n. Hence by the law of large numbers,

lim-isF(C,,*,)=lim-^^

n-oo n 7=1 n-oo n (7re

EM

J(n)

Tj(n-)

1

7=1 3

eJ S F{z(ai-),AQ{ai))＼
＼-<ti<Tl J

P,-a. s.

The right-hand side defines a measure fi(d£dq)on RxR$, and it is a probability

measure as one sees on setting F=l on the left-hand side. It is clear that this

a is the unique invariant measure of our Markov chain. In particular,we have

ft(AxB)= ^/tMdqmCq'.AxB)

(§ttMdq)£dte-t>**≫Pl(!;+q; A))v(B)

by (4-12), whence follows (4-13) and (4-14).

Finally we remark that from (4-14) and

[°llao)(zs(t;
w))dt=0, Pr&. s..

Jo

it follows ra({oo})=0.
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4-4. The moment condition for m(dQ.

For 5>0, set Hi=-dydt2+Qi(t), and let I6 be the spectrum of (P-almost

all)Hi. In this subsection, we choose and fix a 3>0 so that I8=S. This is

possible: When t>=0 and v((―<x>,0))>0, we shall take a ^>0 (possibly large)

so that v([―d, 0))>0, and in all the other cases, d>0 may be chosen arbitrarily.

(See Proposition 2.) In any case, we have a=v(Rs)>0, because we are assuming

＼X]>1

＼og＼x＼v(dx)= + oo.

Proposition 8. // we chose <5>0 as above, and if ^>inf2＼ then

( ICI'WCXoo, for any 0<J8<l

Proof. Define rg(u;)=0, and r£+1(u/)=inf{t>tsn(w); z＼t;w)=*>) for n^O.

From the assumption and the choice of <5>Q, we have A>'mfls, and hence

Tsn(w)<oo, a.s. by Lemma 4. It sufficesfor our purpose to prove

rrri(U)) i
7=sup£, ＼ ＼zs(t; w)＼fidt＼<co

zeR LJo J

for each £e(0, 1).

property of {zd(t)},

＼:

Indeed if this is the case, then using the strong Markov

dte-'JpftC+^dOIC'l*

=£c+2 [jYati2W<tt]

n=0 LJ rS J

re=0 LJo J

^^^
U

.

'1
^"**! ^(0' ^d*]+(≫5i ^^[^'^^^^-tL'e""'' ^^ ･/irf*]

<j(i+^,[e-"i]).

But Tsn(w)=^porKdT8w), and /o=E.0[>-ari]<l,so that we have

Etole-*^=Eto[e-**]p≫~l<p*-1

Therefore from (4-14),
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( ICI'm(dC)=(m(dC)( v(dq)＼~dte-t＼p>t(!:+q;dC)＼tit＼l'

JR JR JR$ Jo J

^m(RMR5)j(l+f]pn-l)<^.
＼ 71=1 /
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Let us fix a<0<5. a and b will be suitably chosen in the sequel, but for

the moment we assume d<＼a＼/＼b. Then to prove J<°°,it is sufficient to

prove the following inequalities:

Jt= sup Ez＼

a<zsb LJO

/2=sup E
zSa
･B

and

where we have set

aa＼z＼t)＼Pdt]<oo

'1 1
＼zs(t)＼Pdt＼<

0 I

/3=sup£2rrv(oi^l<^
z>& LJO J

<xc(u;)=inf {£>(); z＼t; w)<Q .

Indeed if we note that a^{z, o})<z＼{z, <o)for any C<z, and that £―d£zs(ad£C,,

then for a<z<b,

4J
for z>b,

Ez

V(oi^]=
o J

*V(OI'df]
+ £,[£,ac,a>|]4i:

o
|2≪(0I^JJ^/i+/a;

+Ez[EzScaa,＼＼jTo1＼At)＼?dt]^j3+j1+j2.

and finally

£j(V( t)＼fidt] =lim
Ctco
m

=lim E

Ctoo

＼z＼Wdt

oO

[£A.C>[j

()

ri|^(0l^^]^/3+/1+/2

Therefore /^max{/2, /!+/2, Ji+J2+Jz)<°°.

Now let us proceed to the proof of Jk<co, k―1, 2, 3.

Proof of Ji<°°. For notational convenience, we assume 8<1 in the fol

lowing. Define

sr(w)=inf{t>0; z＼t;w)>Q .
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Then we have

(4-16) Ez
[j

o
'V(OI'df]

Narivuki Minam

=4$:

<:

+

+

a＼z5(t)＼Pdt;aa<sz+^

1=1 LJo J

sup ＼x＼nEz[aa; <ra<s2+i]
-d&xsb+l /

S( sup ＼x＼nEz[aa; sz+i<aa<Sz+i+il
1=1＼a-dsxsb+l+l '

But we have

Eal<raI sz+i<oa<sz+i+1~]^(EloUr＼Pz(sz+l<<ja<sz+i+1)y/2

by Schwarz's inequality, and

EzlaU ^ Eg[tfn ^ £-[(*!)a3< °°,

Etl<ra; <Ja<sz+i^E<x>lrsl-]<

by Lemma 4. Hence if we have shown that for some 0<r<l,

(4-17) Pz(sz+l<aa<sz+i+1)^Pz(sz+i£Tsl)^rl, all /^0,

then the series on the right-hand side of(4-16) converges uniformly in ze(a, 6],

and Ji<co follows from this. On the other hand, (4-17) is a simple consequence

of the following

Lemma 5. sup,e≪P,(s,+*<Tj)<l, for any k>0.

Proof. Let Ps be the distribution of {Ql(t)＼ in Q. We will find an

£w0eSupp(P5) such that for some neighborhood U of <y0,

(4-18) sz+k(z,ft>)>r?(2,a))

holds for all z^R and o>e£7. Then

mfP,(sI+*(u0>tf(u/))^Pa(tf)>0,

which is equivalent to the assertion of the lemma.

We divide our argument into four cases.

Case 1. Levy's canonical form reduces to

Q≫(O=f*Ak((0,f]Xdx)
Jo

and X>0. In this case, we choose <y0(0=0. Since z(t)=z5(t; z, o>0) satisfies
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z(t)=z-＼＼x+z(s))2ds
Jo
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z(t) is monotone decreasing in ?<T=rf(oo, (y0)<co. Let 0<s<&, and U=

{(o^Q; ＼(o(t)―(oa(t)＼^e,for Q<Lt<,T}. A simple comparison argument shows

that for <*><=£/and z<=R, one has z＼t; z, a))<±z(t;z+s, o>0) for t^t＼{z 'a)). Hence

(4-18) holds for all z^R and cdeeU.

Case 2. v^O and 1<=R is arbitrary. In this case, it suffices to take

Q)o(t)=rt,with J<1. The rest is the same as in case 1.

Case 3. v=v((-oo,0))=0 and

be so small that

I xv{dx)=oo. In this case,let r/e(O,d)nSupp(y)

cv=b-＼
d
a(x)v{dx)<l.

Then, (i)o(t)=cj sufficesfor our purpose.

Case 4. v=0 and v((―8,0))>0. Fix an ae[-5, O)nSupp(p). Then for

some fi^R,

belongs to Supp(P5) for all /?>0. It is not difficultto see that z＼t;oo, q)P)hits

oo in a finitetime for sufficientlysmall J8>0. Fix such a j9>0 and a T>ri(co,fy^).

Finally let

U=＼m(t)+ g adUt.o≫(t);＼ai-a＼<e, ＼bt-ip＼<ej

with sufficiently small s>0. This U and q)q=(d^ satisfy the desired condition.

Now let us verify(4-17). Set k=l―d in Lemma 5, and let

r=supi>,(sl+1_≪<r5)<l.

If we assume

sup Pz(sz+l<ti)<rl,

z<ZR

then by the strong Markov property of {z＼t)},

PziSi+i+tKzb^P&t+iKT8!, sz+iUdSz+lw)<v{{dSz+lw))

=Ez[sz+l<rs1; PAs,+t)[s2+f+1<r?]]

<Ez＼_sz+i<t＼; ^(!2+i)[s2≪(!i+1)+i-5<:f]]

<Lrl+l,

where we have used the fact z+l^zs(sz+i)^z+l+8.
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Proof of /2<oo. To begin with, note that for each z^R, we have

<j,-n(z,w) t zsi(z,(o), n-≫co P-almost surely. Then by the strong Markov property,

(4-19) Ez
H

Let a<― 2(V(―/i)VO+l). We want to show that the series in (4-19) converges

uniformly in z^a, and to this end, we will estimate

*4J ''n'1＼z8(t)＼^dt＼, n^O,

for an arbitrary zn^-{z― n―d, z―n~＼

Now for each n.

mi: 1＼z＼t)＼^dt＼£＼z-n-2＼^E2nlaz-n-1;
<r,_B-i<Sc,-n>/a]

+ ＼z―n―2＼PEZn[o2-n-1; s(2_n)/2<<y2_n_1<s-2+n]

+ S ＼―z+n+j+l＼?Et [<r2_n_1; s-t+n+j<<rz-n-i<s-,+n+i+i']

=Ii(n, 2)+/2(≪, 2)+/3(w, ^).

First let us estimate /i(^, n). To this end, note that on the set

{oz-n-i<S(Z-n->ii＼, one has for 0<Lt<oz-n-u

Hence if we define

Jo

£zn+ Q8(t)-{z+j(z-ny}t

S(A)=mf{t>0; Qs(t)-At<-1},

then <r/s-n-i<S(X+-j(z―nf) on the set {<r*-.B_i<s<,-B)/a}.Therefore,

(4-20) h{z, n)^＼z-n-l＼*E ＼s(z+j(z-nT)]

Next consider I2(z, n). By Schwarz's inequality and Lemma 5, we can fina

an re(0, 1), so that

E'ZnY.Gz-n-l > S(2-n)/2<COr3-re-i<CS-2+nJ

= -SzB[ff2-ri-i; S2ra+[|3-7l|/2]<ir1]

^(^[(rf)2])1/2(P2n(s,n+cl2-n,/2,<rf))1/2
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^(^-[(■r?)2])1^12-"1^

Consequently

(4-21)

In the same way,

h{z, n)^const.＼z-n-2＼Pri]z~nl/zi

(4-22) /,(*,n)£JZ＼-z+n+j+l＼? (^[(r?)2])1/2(^n(s,n+2,2-nl+,<r?))1/2

/
＼!/2 °°

^(£oo[(rf)2]) S ＼-z+n+j+l＼Prlz-nl+jlz

267

Therefore,if we have shown

(4-23) E＼s(x+j(z-n)2)]^const.＼z-n＼-2,

then the supremum over z^a of the right-handside of (4-19)is bounded by

sup fj (h{z, n)+h{z, n)+I3(z, n))

^const. sup fl (＼z-n＼P-2+＼z-n＼Pr]z-n]/2+＼z-n＼Pr]z-ni)

which is finite provided /3<1.

Now (4-23) is an immediate consequence of the following lemma.

Lemma 6. For any q^l, E[S(A)^=O(A-q), as A-+00.

Proof. Since ＼AQl(t)＼^d,＼Qi(t)＼has moments of all order ([2]). Without

loss of generality, we shallassume -E[Qi(0]=0, so that {Qiit)} is a martingale.

Noting

AT = -(Q*m(T)-AT)+Qi(T)

^- inf (Qi(t)-At)+ sup ＼Ql(t)＼,
osjsr oust

we see that

P(S(A)>T)=P( inf(Ql(t)-At)^-l)

=p(sup ＼Ql(t)＼>AT-l)

= 1 If T^A-1

^(AT-l)-2pEUQi(T)＼2p, for any p^l, if T>A~＼

by martingale inequality. Hence
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(4-24) ElS(An£{2/AyP(S(A)^2/A)+^(K^)qp(^<S(A)^^)

^-.{2,+!_(,+!),__!__£[ ≪Ox)IT}

Now we claim that for every integer p^l, thereis a constant CD>0 such

that

(4-25) EUQi(t)＼2^CpP.

Indeed, since we are assuming E[Qi(t)']=O, {Qi(t)＼has the expression

Ql(t)=vBa(t)+

Hence by Ito'sformula,

Qi(tTp=2pv^Q

rt+r ,
＼ ＼ xNJ^dsdx)

Jo Jt-S.di

i(sTp-1dB(s)+p(2p-l)vz[tQi(s)2^-1"ds
Jo

JO Jl-O,dl

JOjr-8,82

so that

{(Qi(s-)+x)^-Qi(s-ynNw(dsdx)

{(Ql(s)+x)2p-Ql(s)2p-2pQl(sYp-1x}dsv(dx),

(4-26) ElQ8(typ^=p(2p-l)v2[tEWd(s)^p-1^ds
Jo

+ ＼tds[ El(Qs(s)+x)zp-Qs(s)2p-2pQs(s)xMdx)
Jo Jr-5,5]

Setting p =1, we first obtain £[(?a(08] = C1f, with

h-8,si

i shown E[＼Q5(t)＼Zjl£Cjtjfor j^p. Then nSuppose we have shown El＼Qs(t)＼Zjl^Cit}for j^t>. Then noting that

^(Cj-iC,)1^ -"'*, j^p,

we obtain from (4-26),

EW8(ty +in^(b+l)(2p+l)v2

Jo
＼ E

£Cp+1t*>+＼

with some constant Cp+1.

['CpsPds

[lT(2tf+1>w<->-'ui<>(<*x)
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Letting p=q+2 in (4-25), and substituting thisinto (4-24), we finally get

ElS(A)^A-^+Cq+2A-^

2

^^＼==O(A^),

completing the proof of the lemma.

Proof of/3<oo. We assume 6>V|M0|. Let z>b and N=N(z)=[z―b~]―1.

Then as before,

(4-27) 4f: b＼z＼t)＼^dt]=E^y＼z＼t)＼^dt＼

+'s>[^--jli.'""""V(0|H]

Since z＼az-N)^.[b,6+1], one can show

4£*-"[i.'*i^i'<≪]]s≫pB.B;t]<=o

as in the proof of Ji<oo.

As for the second term of (4-27), we have, for some og(0, 1)

£.≫[L''~B~V(oM

^＼z―n＼pEtn[ot-n-i; az-n-i<s2-n~]

<＼z-n＼PE[Sa+(z-n-im

+ fl＼z-n+j+l＼fip>(EtS(X+(z-n-im)U*

^const. 12―n＼P~2.

Here we have set zs(a2-n)=zn. Similar estimation being valid for the firstterm

of (4-27), we finallyobtain

-K^r^'H+T^ur-'^H])

JVC≪5-l
<;const, sup S 12― n|^"2<co.

z>6 n=0

The proof of Theorem 2 is now complete.
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§ 5. Proof of Theorem 3.

For notational simplicity, we shall omit X and o> from our notation in the

most part of this section. Hence for example, we write U(t) instead of Uz(t; ay).

Moreover, we consider the Ljapounov behavior at +°° only.

By Theorem 2, we have ＼＼U(t)＼＼>lfor F-a.a. o> and for t>0 large enough.

Hence the matrix U(t)*U(t) has two different simple eigenvalues ||£/(0ll2and

||£7(01|~2.Let P(t) be the projection belonging to the eigenvalue ＼＼U(t)＼＼-＼Then

there is an orthogonal matrix K(t) such that

(5-D mt^Kmmtm-Pw+imm-'PV)}.

Now suppose we have shown that for P-a. a. w, the following two statements

hold:

(i) lim^cP(f)=P(oo) exists;

(ii) limt-0oylog{||t/(OIII|P(°o)-JP(OII} = -o°.

Then Vt{(o)=P{oo){Rz) satisfies the conditions of Theorem 3. Indeed, for

v=P(oo)w with ||w 11= 1, we have from (5-1),

(5-2) l|£/(Oi;||= l|{||t/(OII(l-/'(0)/>(oo)+||^)||-1P(Oi>(≪J)}u'll

<＼Mt)＼＼＼＼(X-P(!))P(°°)＼＼+ ＼Mt)＼＼-1

^||£/(0lll|P(≪>)-P(0||+ ||£/ft)||-1.

Since Theorem 2 implies in particular that lim^oo―log||£/(OII= + 00, (ii) and (5-2)

show

＼]m―log＼＼U(t)v＼＼= -oo.
t-.oot

On the other hand, if v£Vt(a)), then

＼im＼＼a-P(t))v＼＼= ＼＼a-P(°°))v＼＼>0.

£-.00

Hence

l＼m^＼og＼＼U(t)v＼mYim^log{＼＼U(t)＼＼＼＼a-P(t))v＼＼}= + co.

Below, we will prove (i) and (ii) by explicitly analysing the asymptotic

behavior of P(t). To this end, let us introduce the polar coordinates rjit)

=rj(t;X, <w)>0, dj{t)=dj{t;X, w), ;=1, 2, by

<p+(t)+i<p(t)=r1(t)expli$1(t)],

4>+(t)+t(P(t)=rz(t)expU62(m.

This determines 0/t) only with modulo 2tz. But if we start with ^1(0)=?r/2,
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08(O)=O, and if we define 6^t)―2niz when we have 0/0=0 (mod. 2iz)for the

n-th time, we obtain a well-defined real valued function.

Some elementary calculations give

(5-3)

where

P(t)=

PR
2cos(01-02)

_i
r i w＼

l+j8(0≪ Lj8(f) ^(02J

＼(I*--li-＼-((r* _l riV 4 Y/21

Since 4r1(f)"V2(0"2-*-0, a.s. by Theorem 2, (i) follows from the lemma below.

Lemma 7, Under the condition of Theorem 3, r^fi/r^t), rzifj/r^t), and

0i(t)―02(t) have limits as £-≫+oo, for P-a.a. w.

Proof. We shall show that for a. a. ay, the limit

Iim[log(^+(O+^(O)-log(0+(O+^(O)]

exists. But if u(f)=<p(t) or <p{t),then by Ito's formula,

log{u+(t)+iu(t)}-log{u+(Q)+iu(Q)＼

Jo

/m+(s)

u+(s)+iu(s)

+v＼'

Jo

ds+ica-xtf
Jo

tt(s)

u+(s)+iu(s)

u+(s)+iu(s)

dB(s)―j-＼

u(s)

h(s)+i

u(s?

ds

o(u+(s)+iu(s))2

+ f+f Vog{(u+(s-) + xu(s))+iu(s)}-log(u+(s-)+iu(s))W(dsdx)
JO Jm>5

+ ft+f tlog{(u+(s-)+xu(s))+iu(s)}-log(u+(s-)+iu(smN(dsdx)
Jo J＼x＼s8

Jo JiiissL ＼

=A＼(t)+A$(t)+M?(t)+AKt)+Su(t)+M2(t)+Aftt).

Noting <p(t)(h+(t)―<p+(t)df(t)=l>one obtainsfirst

and

But ＼(<p+(.s)+t(p(s))(ip+(,s)+t(p(s))＼~1=r1(sy1r2(s)~1decays faster than exponentially

as s-*co by Theorem 2. Hence Af(t)―Af(t), /=1, 2, have limits as t-*°o almost

surely. The same reasoning is valid for

ds

u+(s)+xu(s))+tu(s)＼ xu(s)

w+($)-fzu(s) / u+(s)+iu(s)

Jo (<p+(s)+t<p(s)X<p+(s)+l<p(s))
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A%(t)-Ai(t) = -VY＼
≪<p(s)<J>+(s)+4>(s)<p+(s)+2i<p(s)4>(s)

o (.<p+(s)+i<p(sm<p+(s)+ms)y
as

Now Re(M^(0-M^(0) and Im(MftO-AfftO) are square integrable martin-

gales,and theirquadraticvariationalprocess satisfy

lim{<Re(M'{-Mi)>(t)+<Jm(M'i-Mi)Xt)}

=lim v2
f
|(<p+(s)+^(s))(0+(s)+i<p(s)) ＼-2ds<oo

£-*coJ 0

Hence by martingale convergence theorem,

lim(MS(0-Af<?(0)
£-≫0O

exists almost surely.

Next consider M%(t)―Mi(t). We have

<Re(M%-Mt)Xt)+<lm(M%-Mi)y(t)

Joa6J,x,s5 UgV <p+(s)+i<p(s) (d>+(s)+x<p(s))+id)(s)n K )m

It is easily seen that the quantity inside log{ } remains on the same branch

such that log 1=0. Therefore

with

gV
≪++*> {<b++x<b)+i<b)

l0^l+Ws>x))

≫(s, x)
X

{(d>+(s) + xd>(s))+i<p(s)}(<p+(s)+i<p(s))

is small if ＼v(s,x)＼is small, namely it is O(|w(s, x)＼). On the other hand,

W, x)＼ ＼x＼{<p+{s)+x<p{s))+i(p{s)

1

ri(s)ro(s)

where C is a constant not depending on x, s

JlziSd
|log(l+w(s, x, cy))|2v(rfx)^const.

£C＼x＼

1

r.isy.Cs) '

, and a). Hence for P-a. a. a)

(＼ x2v(dx))― ,
2

for s sufficientlylarge, and we get

<Re(M%-Mi)X°°)+<lm(M%-Mi)X°Q)< °°･

Again by martingale convergence theorem, M%(t)―Mi(t) has a limit as t-+°o

almost surely.

As for Af,(t)―Ai(t),we have
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Aftt)-Ai<t)

H
＼lof,((<P+(s)+x<p(s))+i

ms<sL
s＼

p+(s)+/co(s)

(s) +(s)+#)
(4>+(s)+x<p(s))+i<p(s)

Jo Jixis5l ＼

)

x<p(s) x<J){s)

S)+ X0(s))+;

<p+(s)+i<p(s)

Ms)

<p+(s)+td>(s)

(^+(s)+zWs

]v(dx)

X

))(<p+(s)+Ms))
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(<p+(S)+i4>(s))(<p+(s)+i<p(s))rdx)-

As before, for P-a.a. m and for s large enough, the integrand above is estimated

/(<p+(s)+x<f>(s))+i4,(s)

ffs)

Hence

(0+(
* ,0( *2 ＼

s)+i<p(s))(<p+(s)+i<p(s)) ^ Vr1(s)Vz(s)2/

<P+(s)+td>(s) (0+(s)+^(s))(co+(s)+^(s)) + °Vr1(s)V2(s)2/

f
[･･･>(<* *)^const.(f x*v(dx))―-4

for s large enough, which implies the existence of ＼imt^A%t)―Ai(t)).

Finally, let us consider Sv>(t)―S't'(t).As was already considered in §4, let

tt≫he the. n-th Hmp nf whtYh I AdSfA I ""xS Thpn

a W ^ w-^≪10gL^(a,)+^ff,)

^+(^)+^((7re)J

<rnsj
L
i+<p+(on)/<p{on) i+(p+(an―)/(p(an)!

onit
L
(<P+((Tn ― )+t<p(<7n))<p(<7n)

]

We consider the firstsummation only, the other one being treated similarly. In

fwAckVi-r＼rwrwra.fKof ^Tho1imif

£ton*t ^L1
{(p+{an)+i<b{an))w{an)＼

-Slog

71= 1

[l ! 1

exists,it is sufficientto show that with probability one
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converges to 0 faster than exponentially as n-≫oo

cot dx(t)=z(t; 0, a))=<p+(t)/<p(t),and <P(t)=r1(t)sind1(t).

＼og＼4>+{an)+i<p{an))-lip{(in)-l＼'

=-log{r,(<rJ-2r,(c?J-2(l+2(ffJ2)}

To this end, note that

Then

― lOg r2(<7n)2-iQgr&nY + lOg (l + 2((?n)2).

But from §4, we have

-logr,(tf≫)a+log(l+z(<r≫)a)=-logr1(<rB-)8-log(l+z(ffB-)2)

and

lim-log(l+a(<rn-)2)=0, a.s.

Hence applying Theorem 2,

!im^log|(^0+^(0)-Wn)-T

=―lim ―log r1(<rn―)2―lim ― Iogr2(<yn)2= ―oo .

This completes the proof of Lemma 7.

When f(t) and g(t) are positive real function on (0, oo), we shall write

f(t)Xg(t) if

0<ljm4^lim"47^<°°-
t^ f(t) t~~f(t)

Then Theorem 7 implies in particular r^t) X r2(t). From this and (5-3), we see

that (ii) follows from the lemma below.

Lemma 8. Let S+(0=S,BSt log(l+2(<yra)2), where z(t)=<p+(t)/<p(t)or <p+(t)/<J>(t).

Then under the condition of Theorem 3, we have for any e>0,

ri(Q

ra(0

<x>) = 0(e-ci-os+<o)

oo) _0(g-Cl-OS+<O)

(B1(t)-ei(t))-(e1-di)(oo)＼ = 0(0-<1-°s+<t>)

Iu particular,for j=l, 2,
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and similar relation holds when we replace rjri by rjr-i or 8^―Bz.
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Proof. Let r{t)=rl{t) or rz(t). The results of §4 tellus that we can write

(5-4) r(t)=exp[x(t)+jS+(t)],

where X(t)=O(t) and (l/t)S+(t)^oo a.s. as t->°o. Therefore the second part of

the lemma is a direct consequence of the firstone. This, in turn, reduces to

proving

Indeed.

K^§)-'°^)H<-"-"-">

＼n{t)/rt(t)-{rJrtXoo)＼

= |exp [log (r1(0/r2(0)]-exp [log((ri/r8)(oo))]|

= 0( Ilog (rx(O/r,(0)- log ((r,/r.Xoo)) |)

= Q(llog(y+(0+l'y-^Vtog((y++l'y>>)>)
)

_0(g-Cl-OS+CO)

gives the firstestimate of the lemma. The second one is obtained in the same

way. Finally

l(0i(O-02(*))-(0i-0sX°o)l

HtaK$a$W(£&M)l

gives the third estimate.

Now let AJ=A1-A*i, j=l, 2, 3, 4, M}{t)=Mi{t)-M%t), j=l, 2, and S(t)=

S^it)―S^(t). We will estimate the rate of convergence to zero of these processes.

First from Lemma 7 and its proof, there is a constant Cw for P-a.a. m such

that

＼A1(t)-A1(oo)＼^cTr1(s)-2ds

Since S+(t)is non-decreasing, we have

["r1(s)-tds£e-il->s+w＼'"e-iXw-tS+wds
Jt Jo

for any e>0. The last integral being convergent almost surely, we get
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In the same manner, we can show

IAj(t)-Aj(oo)＼==0(<rcl-°s+{t)).y=2, 3,4.

Next consider M^t). Since {Re(Mi(0)} and {ImCM^O)} are continuous

square integrablemartingales,we can constructtwo Brownian motions {J5/OL

/=1, 2, such that

ReM1(0=Bx≪ReM,>(0) and ImMx(0=51≪ImAf1>(0).

But from the localHolder continuityof the Brownian motion, we have

sup ＼B1(t)-B1(s)＼/＼t-s＼llt-8<oo,a.s.,

for any 8>Q and T>0. Hence on the set {(ReM^XT}, we have

|ReM1(0-ReM1(oo)|^o(|<ReM1>(0-<ReM1>(^)l1/2-a)

//f°° ＼1/2~5＼^0((U(s)^s) )

for any £>Q. Since the same result holds for {ImM^OK and since

Ur>o{<ReMi>(oo)<T}=Ur>o{<ImM1>(oo)<T}=fl up to null sets, we finally

obtain, for any s>0,

IMxCO-MiCoo) |=O(e-(1-s)S+ct)), a.s.

As for {M2(0}, we could not find out how to use its martingale property,

because, being discontinuous, there is no good representation theorem like that

for {Mi(t)}. But if we assume I ＼x＼v{dx)<co, then {Mz{t)} is locally of
Jlxi<i

bounded variation, and we can treat thisin the same manner as A/tYs. Indeed,

under the assumption,

＼Qd＼(t)=f ＼x＼N((OfQxdx)

J＼x＼£d

is well defined, and it is an increasing process with ergodic increments. Hence

Yim-^＼Q5＼(t)=EUQ8＼(m, a.s.
£-00t

From this we obtain,using the notationin the proof of Lemma 7,

|M2(oo)-M2(0|^r f |log(l+?(s, x))＼N(dsdx)
Jt+Jixis8
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^CaT
[
＼x＼r1(s)-2N(dsdx)

= cS°r1(ks)-td＼Q'＼(s)
Jt+

^CS)e-tl-°s+(I)(V2I(s)-E5+(!)(i | Qs＼(s)
Jo
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= 0(g-cl-°5+co), for P-a.a. a.

Finally let us consider S(t). Again using the notation in the proof of Lemma

7, we obtain without difficultythe following estimates: for tlarge enough,

*

£

t

l0g I1
{<p+(an)+i<p{on))<p(an)

＼I

On>t

^const. 2 r1(an)-1r1(<Tn-)-＼l+z1(<jn
an>t

)2)-l/2

^const. e-(1-os≫(t)S e-r(a≫)-rcff≫)-eS'≫c''≫-a)(H-2:i(<TB-)a)1/2
71=0

=0(e-(1-i)5+(O),

for any s>0. Here we have set Z＼(t)―(p+(t)/ip(t).Similarly we can show

S log|"l+
1

{<P+{<Jn) + i<p(On))<p{<Jn)

]l
0(g-ci-os+cm

and consequently

|5(oo)-S(0l =0(e"cl"oS+co)"

This completes the proof of Lemma 8, and hence of Theorem 3.

§6. Proof of Theorem 4.

Let Vx((o) be the one-dimensional subspace of R2 which was constructed in

§5, and let t>i=.P(°o)u/eVl(a>)＼{0} with ||u;||=l, v2£V$(q)), ＼＼vt＼＼=l.Our pur-

pose here is to obtain more precise estimate of the asymptotic behaviors of

||£/00vi!land ||£7(0^2IIthan those in §5. This, on the other hand, reduces to

estimating the growth of S+(t) which appeared in Lemma 8. In fact, we have

from (5-1),

＼Mt)vi＼＼£＼Mt)＼＼＼＼P(<*>)-P(t)＼＼+ ＼Mt)＼＼-1,

and

＼＼U(t)＼＼＼＼a-P(t))v,＼＼£＼＼U(t)vz＼＼^＼＼U(t)＼＼.
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But as we have already seen, it holds that

lim||P(0vill= l|P(~)vill>0.

Iim||(l-P(0)v*|| = l|(l-P(oo))i;2||>0,

I|£/(OIIXn(0,

and

const. e^^-'^+^^riCO^const. g^+os+ct) ,

the constants depending on e>0 and m.

Combining these, we see that for each s>0, there are positive constants

Cj,e,a,7=1, 2, 3, 4, for P-a. a. (D such that

C1...<Be-cl/8+≪>5+{O^||£/(0vill^C8lI,a,e-cl/2-jS+t≫,

C3,s,^cl/2-°s+co^l|£/(0y2||^C4,s,a)e(1/2+^s+<≫.

Therefore Theorem 4 follows immediately from the lemma below.

Lemma 9. Under the conditions of Theorem 4. we have

^c≫(s+(O)=0,
a.s., for a>^,

C-+OO L

Um^c*>(s+(0)= + 00, a-s-> for <a<$'1

For the proof of this lemma, we need the following

Lemma 10. Let Xn^0, n = l, 2, 3, ･･･, be a sequence of i.i.d. random vari-

ables with the common distributionfunction F(x). Suppose that for some k^Q

and fi^Q,

l-F(e,k,(x))=x^L(x),

where L(x) is slowly varying at +°c>. In case k=0, we shall further assume

j8^1. Then

(6-1)

and

(6-2)

lim

n-fco

-^■*<≫(fi*>)=0- a-s-> f°r a>p~l

lim^rr;*(*)(maxX,)= + oo, a.s., /orO<≪<^1.

Proof. First suppose k-0, O^jS^l. Them for any a>P~l, we have

£[XI/a]<oo with 0<l/a<l. Hence (6-1)for k-0, namely
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fim ― S Xj-Q , a.s.
ra-ootl j=i

is a consequence of a well known theorem (see Neveu [27], Proposition 4.7.1.)-

Next consider (6-1) for k^l and /3^0. From the elementary inequality

hk^xy)^hk^u)+XaAy), x, y^O ,

we get

*c*>(S ^>)^^c*)(w max X,)

^Xlk>(n)+max Xik)(Xj).

Hence (6-1)is reduced to proving

I
lim――max X(,k->(Xj)=0a.s..
B-oo71 lSjSn

On the other hand, for any sequence an^0, Bn>0 of real numbers such that

Bn | oo,one has

hm-^- max a,―lim ^―an .

Hence the problem is furtherreduced to showing

(6-3) lim―^<fc)(ZB)=0, a.s..
n->oon

But for any e>0, we have

71 = 1

(~Za>(Xn)>e)=Za-F(sna))=Xe-Pn-aPL(x)<
＼n > n n

provided a>^~1. Therefore by Borel-Cantelli'slemma,

I
lim―-X^k^(Xn)£e, a.s..
n-≫oo71

Letting s 10, we arrive at (6-3).

Now let us turn to the proof of (6-2). For each K>0, we have from the

assumption,

13
n =

^(■i-^*)(max^)^/Cn≪)=s(P(i(≫)(^x)^iCn-))"
＼n ＼lsijSn / / n ＼ /

= a exp [n log F(Kna)']

n

^ 2 exp [_-n(l-F(Kna))2

n

= 2 exp l-K^nx'^UKnay＼<oo ,

n

whenever 0<a<i8"1. Hence again by Borel-Cantelli'slemma,
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lim

n-*oo
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―XuJ max Xj)>K, a.s..

Letting iff oo, we obtain (6-2).

Now we can proceed to the proof of Lemma 9. First note that

log(l+＼dQ(on)＼). n^l, are i.i.d. with distributionfunction Fix) given by

l-F{x)=P{＼AQ{od＼>ex-l)=v{Ra)-A v(dy).

Hence the assumption of Theorem 4 implies that we can apply Lemma 10 to

Zn=log(l+1AQ{an)|), n^l, with given k and /3.

It is clearthat

^ 23 a<*>(log(l+2z(<rB-)8))+ S ^≫(log(l+2(JQ(^n))2))
<rnst ＼ ' anit ＼ '

The first term on the right hand side is 0(0 by virture of the results of §4.

Hence the firstpart of Lemma 9 follows from (6-1). On the other hand,

^*)(S+(0)^^c*)(log{l+(max|2(aB-)+J(?(aB)

Again noting that maxB:<,_stlog(l+2(<rB―)2)=O(t), we have

iirn^c≫(S+(O)

0})

=HmT^<*)(maxlog(l+|J(?(<r≫)|)

= + oo, a. s.

from (6-2),showing the second part of Lemma 9.
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