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Introduction

On existence of harmonic maps, Guest [2] constructed equivariant harmonic

maps from a flag manifold to a complex Grassmannian manifold, and Ohnita [5]

developed a method of studying equivariant maps from a compact homogeneous

space to a complex projective space and investigated equivariant harmonic maps

from a compact irreducible Hermitian symmetric space to a complex projective

space, in detail. In particular, Ohnita classified equivariant harmonic maps

relativeto a unitary group between complex projective spaces.

In thispaper, we study existence and harmonicity of 5/?(n)-equivariant maps

between complex projective spaces, by using the fact the symplectic group Sp(n)

acts a (2n - l)-dimensional complex projective space CP2n~x transitively.In

section 4 we determine all complex irreducible representations of Sp(n), which

define S/?(≪)-equivariantmaps from CP2"~l to CPm (Theorem 4.3), with the aid

of the restrictionrule of representations of Sp(n), due to Koike and Terada [3,4],

Zhelobenko [6].In section 5 we prove that the associated S/?(rc)-equivariantmaps

are harmonic for any S/?(rc)-invariantRiemannian metric on CP2n~] (Theorem

5.2).In particular,we get 5/?(n)-equivariant minimal immersions from CP2"~l to

CPm ,but not S(/(2n)-equivariant.
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§1. Complex line bundles and harmonic maps Into a complex

projectlve space.

In this section, we recall known facts due to Ofanita [5]. Let CPm be an m-

dimensional complex projective space with the Fubini-Study metric. We denote

by <,) the standard Hermitian inner product on Cm+] .Let n＼Cm+l ＼{0} -≫CPm be

the canonical projection. Then C"+1 ＼{0} is a principal bundle over CPm with the

structure group C* = C-{0}. Let E = (Cm+i ＼{0})xc, C be the universal bundle

over CPm. The fiber Ex over each xeCP'" is the complex 1-dimensional

subspace of Cm+1 determined by x. Thus £ is a holomorphic subbundle of the

trivialbundle Cm+l = CPm x Cm+i over CPm. Let E1 be the subbundle of Cm+1

whose fiberat x is the orthogonal complement of Ex in Cm+[. The bundles E, E*

and E1 have natural Hermitian connected structures.We give E <8>EL the tensoi

product Hermitian connected structure. Then there exists a natural bundle

isomorphism h : T{U0)CPm ―>E R E1 preserving connections.

Let M = G/K be an n-dimensional compact homogeneous space with a

compact connected Lie group G and (p:M-^CPm a smooth map. Consider the

exact sequence of pull-back vector bundles over M:

0 -≫<p~＼E*R E)±><p-＼E* RCm+l)^(p-l(E* R Ex) -≫0 ,

where /is the natural inclusion and j is given by the orthogonal projection along

E. Pulling back h:T{mCPm -≫E*R E1 by (p, we get a connection-preserving

bundle isomorphism h :(p-](T(l0)CPm) -≫^~'(^*R £x).

Let (<r,C) be a complex 1-dimensional representation of the structure group

K and L = Pxa C a complex line bundle over M associated with a principal

bundle (P, n,M,K). Then the vector space C°{L) of all smooth sections of L can

be identified with the vector space C°°(P,C)K of all C -valued smooth functions

/ on P satisfying the condition fiuk) = a(kylf(u) for each u e P and k K ,by the

correspondence C°°(L)3/ h->/ e C°°(P,C)K,f(u)= u~](f(n(u)))for each mgP.

We consider a system {<po,...,<pm}in C°°(L)with no common zeros. Lei

(<zL...,≪S} be the corresponding system in C°°(P,C)K.We define a smooth map

q>:P->Cm+{ ＼{0} by (p:{%,...,(pj. Since q> satisfies(p(uk)= (J(k)x(p(u)for each

ue P and ke K, the map (j>:P^ Cm+l ＼{0} becomes a bundle homomorphism

from (P,x,M,K) to (Cm+1 ＼{0},x,CPm,C*) with the homomorphism cy"1: K-> C*

of the structure groups. Therefore m induces a smooth map (p:M ―>CFmand the

diagram below is commutative:
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p

M

4 Cm+1＼{0}
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Let H = E* be the fayperplane bundle over CPm. Conversely, every smooth map

(p:M -> CPm is obtained in this manner by considering the pull-back complex line

bundle qfxHover M and a system ofm+1 sections of qTxH given by homogeneous

coordinates on CPm.

We denote by VM the Riemannian connection of M and endow the principal

bundle P with a connection F. Then in the associated line bundle L, the covariant

differentiation VL is induced by F. For X&C°°{TMC), we denote by

X* e C°°(TPC)the horizontal life of X to P with respect to T.

We denote by T(ll0)er(f1T(ll0)CP") the (1, 0)-component of the tension

field T for the map cp.Then we have

Krm)f = h(i (Ve(d(p)m)(ei))q)

(=1 '

,=1 ' i=l ((p,(p)

where

= 7HA>)~-

{e,} denotes

AL = -T" (VLVL -VL ~)

a

≪<(v>r,£>

(=1 (&9)
(V >)"),

local orthonormal frame field on M and

PROPOSITION 1.1 (Ohnita [5]). q> is a harmonic map if and only if the

system {%,...,(pjsatisfies

for some function u on P.

§2. Construction and harmonlclty of equivarlant maps.

We are concerned with G-equivariant maps from an ^-dimensional compact

homogeneous manifold M = G/K with a compact connected semisimple Lie group

G to CPm with the Fubini-Study metric.

Let Aut(CPm) be the group of allholomorphic isometries of CPm . Aut{CPm)

is identified with a projective unitary group PU(m +1). A map q>:M ―≫CPm is
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called G-equivariant if ■there exists a Lie group homomorphism p:G^

Aut{CPm) satisfying p(a)o(p = (poja for each aeG, where ya denotes the

natural action of G on M.

We endow M with a G-invariant metric g. Let (G,7i,M,K) be the standard

principal bundle on M and (cj,C) a complex 1-dimensional unitary representation

of K. Then the associated complex line bundle L = GxaC becomes a G-

homogeneous vector bundle with a Hermitian fiber metric (,).

Let V be a complex (m+l)-dimensional irreducible G-submodule of C°°(L).

Choose a unitary basis {%,...,(pj of V with respect to the L2-inner product. Let

{%,...,<pj be the corresponding system in C°°(G,C)K.̂ Y using this system, we

obtain maps q>v = {%,...,(pm}: G-> CmH ＼{0} and (pv =(%,...,<pm): M-> CPm.

We define a unitary representation pv: G ―>t/(m+1) by

La(q>0,...,(pJ= (%,...,(pm)pv(a)for aeG, where LQ is the left action of G on

C°°(G,C)K. Then the map <pv is G-equivariant with respect to pv. Hence we

have

q>v(a)= (pv(a))un ,(Pv(a.o) = x((pv(a))vn) for each aeG,

where o = eKeM and v0 = q>v(e)e Cm+I ＼{0}.

On the other hand, let q>:M ―>CPm be a G-equivariant map relative to a Lie

group homomorphism p :G ―>Aut {CP"'). There exists a unitary representation

p:G ―>SU(m +1) of the finitecovering group G of G such that the diagram

G A

G A

SU(m + l)

I

PU(m + l)

is commutative. Take u0 e S2m+i with (p(o)= Cv0. Then we have (p(a-o)

= p(a)(p(o) = p(a)K(vo)-7t(p(a)vo) for each aeG with K{a) = a&G. In

particular, we have p(K)Cv0 <=Cv0. Hence there is a real-valued linear form ＼

on f such that p(X)v0 = V^lA0 (X) v0 for each Xef, where f is the Lie

algebra of K. Put W = CVr.. Then W is a complex 1-dimensional K -submodule of

Cm+l. Consider the associated homogeneous line bundle

M = G/K, where (a*,W*) is the dual K -module of W.

L-Gx
tW

over
a

We define a map

V = (%,...,q>J: G->(W*)m+1=Cm+1 by (q>i(a))(w)= (~p(a)w,£i)(i= Q,...,m) for

each aeG and weW, where {eo,...,ej denotes the standard basis of Cm+1.

Each q>tsatisfies(p^ak)= a (ky^^a) for each aeG and k e K, therefore we

have that ^. C°°(G,W).. Let {<jd0,...,(pjbe the corresponding system of

{%,...,(pj on C°(L) and V the G-submodule of C°°(L)spanned by %,...,<pm.If p
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is irreducible, then V is an irreducible

% = (%,...,q>J.

Now we recall the following.
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G -module and (p is equivalent to

PROPOSITION 2.1 (Ofanita [5]). Suppose that a homogeneous space M - G/K

with a G-invariant metric g satisfies the condition [f,m] = Ut. Then a G-

equivariant map q>: M ―> CPm is a harmonic map if and only if

(S"=i p(Xi)2)v0 eRvq, where {Xl,...,Xn} is an orthonormal basis of tit with

respect to g.

PROPOSITION 2.2 (Ohnita [5]). Suppose that M = G/K with the G-invariant

Riemannian metric gG induced by an Ad(G)-invariant inner product of Q satisfies

the condition [f,tn]= m. Then a G-equivariant map (p = <pv:M ―≫CPm is a

harmonic map.

§3. Representations cf symplectic group.

We consider the case G = Sp{n)(n > 2). Let Q be the Lie algebra of G and t

a maximal abelian subalgebra of Q . We denote by Qc and tc the complexification

of Q and t, respectively. tc is a Cartan subalgebra of gc. Let (,) be an Ad(G)-

invariant inner product on Q defined by -1 times the Killing form of Q. Let

X(ct) be the root system of gc relative to t. We have a root space

decomposition of gc:

fic

where ga = {Xgqc;(adH)X = 4^(a,H)X for He t}. Let D = {≪,...,≪,}be a

fundamental root system of X ･ Choose a lexicographic order > on X such that the

set of simple roots with respect to > coincides with Yi- Note that the Dynkin

diagram corresponding to gc is given by the following:

a, a2 an.|a.
O-O 0<=0.

Put X+ = {aeI;a>0}. Let {A,} be the fundamental weights of (gc,tc)

corresponding to II:

2(A,,a,)

(≪.,≪.) 10 (i±j)

A. is given by

A = a, +a2 +･･･ + (/-!)≪._, +i(ai +･･･ + ≪,_,+ ―an)
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We put U0 = {a2,...,an}and Xo=Sn{no}z, where {no}z denotes the subgroup

of t generatedby II0 over Z.

We note thatG = Sp(n) acts CP2"^ transitively.The isotropysubgroup K of

Gat [l,0,...,0]eCP2"~1is givenby

K

Ye o-o o o---o'

0 A 0 -B

: 0---0 e'ie 0 ― 0

, 0 5 0 A ,

M2n(C)-JA
U

-B

A

Let t be the Lie algebraof K and nithe orthogonalcomplement of t in Q with

respectto( ,)･Then the complexificationslc and mc of t and m are given by

fc=tc+ lQa, mc =

aeX0

X 8a.

aeS-So

respectively. Set Xm = Z+-2,o and Xm= -Sm ･ We definesubspaces nr of gc by

111* = I 8≪

We choose Ea e Qa for a e Zwith the followingpropertiesand fixthem once and

forall:

[Ea,E_J = 4^ia, (Ea,E_a) = l, Ea=E_a for a g £,

where we denote by X ＼->X the complex conjugation of Qc with respect to the

real form a. We see that [f,m] = m. Put Z={kA,;keZ}. For kA, e Zr, we can

define a complex 1-dimensional unitary representation okA of K by

crfcA(a) = exp(V^T(fcA,,X)) for each aeK, where a = exp X and Xet. Using

thisrepresentation(akAi,C) of K, we constructa homogeneous complex line

[Ea,E_a] = ^la, (Ea,E_a) = l, Ea=E_a fora e I, bundle Lk = Sp(n)x^ C

over CP2"~l=Sp(n)IK. Conversely, for each homogeneous complex line bundle

L over CP2n~l= Spin)IK , thereexistsan element fcA,e Z, such that L= L .

Lemma 3.1. Let p : Sp (n) ―>GL (V) be a complex irreducible representation

of Sp(n) with <f;et as its highest weight and (,) an Sp(n)-invariant Hermitian

inner product of V. Choose a nonzero weight vector v, e V for the highest weight

%. Suppose that there exists a nonzero vector w eV and an element X e I such

that p{X)w = 4-i{X,X)w for each Xet. Then we have <w,^)^0.

Proof. We define a complex valued linear function F by F(X) = (p(X)v£, w)
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for Xeqc .For each Iefc,we have
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F(X) = (p (X) vrw) = -(v4, p (X) w> = V^T(A, X)<w, 1^ >.

For each Fem+,we have F(Y) = 0 because p (F) u§= 0.

For each Z e m~, we have

F(Z) = <p (Z) ^ ,w) = -(v^p(Z) w) = 0

because p(Z)w is a linear combination of non-highest weight vectors. Thus we

have F(qc)czC(v^,w). If (i^,w) = Q, then we get F=0. But we have

V = Y,lJ=op(Q,C)jV^ for a sufficientlylarge integer N by the irreducibility of p,

thus we obtain w = 0. Hence (u, ,w)^0. q.e.d.

LEMMA 3.2. Let p :Sp(n)―>GUV) he a complex irreducible representation of

Sp(n). For every A e f,put

Wx={wg V;p(X)w = V^fCA, X)w for each X e 1}

Then we have dimr W2 = 0 or 1.

PROOF. As in Lemma 3.1, we denote by v, a highest weight vector of p and

by (,) an 5p(n)-invariant inner product of V. We define a linear map / : Wx ―>C

by f(w) = (w,v^) for weWx. By Lemma 3.1,/ is injective. Hence we have

dinv W, =0 or 1. q.e.d.

For keZ, we set Wk =(okK ,C). let D(Sp{n)) be the set of all dominant

integralforms of t. By Lemma 3.2, we obtain dimHomk(VA,Wk) = 0 or 1 for

each AeD(Sp(n)), where VA is a representation space of an irreducible

representationof Sp(n) with highest weight A. We put

D{Sp{n),K;k)= {A e D(Sp(n));dimHornK(VA,Wk) = 1}.

For each A e D(Sp(n),K;k), we obtain the 5p(n)-equivariantmap corresponding

to A. We shalldetermine the elements of D(Sp(n),K;k) for keZ.

As is well-known, thereis a bijectivecorrespondence between the sets of

equivalence classesof irreduciblerepresentationsof a complex semisimple Lie

group and its compact real form by using the Unitariantrickof Weyl. So we

identifytherepresentationsof Sp(n,C) and Sp(n).
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§4. Construction of Sp(n)-equlvarlant maps.

We take a Cartan subalgebra tc of qc = 3p(n,C)(n > 2) as follows:

tc =

e.

En

-£,

£,

;£..eC

Then the root system X of Qc is given by

I = {±(e,±£;)}1,,<.,nU{±2e,}1^.

We take a simple root system fl of X as follows:

n = {a1=e,-e2,...,an_1 =£,_,-£,,≪,=2eJ.

Then the weight lattice P and the set of dominant integral weights P+ are given

by

P = Ze{ + Ze2 + ■■■+ Zen

P+={fA+f2e2 +･･･ + /,£,eP;/,>/2 >･･･>/, >0}.

There is a one-to-one correspondence between the equivalence classes of the

irreducible representation of a connected complex semisimple Lie group G and

the elements of P+. We identify each element of P+ with the irreducible

representation corresponding to it.

In general any sequence A = (X],X2,...,Xn,...)(X] > A2 > ･･■> Xn > ･･･) of

nonnegative integers and containing only finitely many nonzero terms is called a

partition. We consider each element of P+ as a partition and identify each

partition with the Young diagram corresponding to it.For a partition X, the length

of X is defined to be the number of nonzero terms in X and is denoted by £(X),

the size of X is defined to be the sum of all terms in X and is denoted by ＼X＼,i.e.,

|A| = A,+A2H i-AnH―. If partitions A = (ApA2,...,An,...) and ji =

(/xp/x2,...,/in,...)satisfy the condition A,->//,-for all / > 1, we say that the Young

diagram A contains the Young diagram ji and denote it by A z> jj,.If Xz) ft, put

yU on A with the same top-left corner and remove fi out of A. Then the resulting

diagram is called a skew diagram and is denoted by X- fi. A skew diagram each

column of which consists of either zero or one square is called a horizontal strip.
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THEOREM 4.1(Koike and Terada [4], Zfaelobenko[6]).Let X he a partition

of length at most n and XSp(nC) the irreducible character of Sp(n,C)

correspondingto A. Then we have

^Sp(n,C)
I Sp(n,C)

GL(l,C)xSp(≪-I,C)
― L ln A VSp(n-＼,C)

'
(U.v)

where 1 ^"'£} denotes the restrictionof the representationof Sp(n,C) to

GL(l,C)xSp(n ―l,C) and the summation is taken over all pairs of partitions

(jil,v)satisfyingthefollowingconditions:

(1) A z>n and X - jiis a horizontalstrip,

(2) jizdv and ji-v is a horizontalstrip,

(3) t(y)<n-＼.

GL(1,C) x Sp{n -1,C) is the Levi part of

＼(tn * ^ 1

U
C'J

J

Theorem 4.2.

D(Sp(n),K;k) = {m]Ai +m2A2;mi eZ,ml -＼k＼> 0 is even, m2 >0}.

PROOF. Assume that A = (m,,...,mn)e D(Sp(n),K;k). Let A be the partition

corresponding to A, i.e., A = (ApA2,...,An) = (m, +... + m,r,m2 + ...+ mn,...,mn).

We may identify A with A. By virtue of Theorem 4.1, there exists a pair of

partitions (jU,v) such that (a)v = (0,...,0),{b){jA,v) satisfies the conditions (1),

(2), and (3) in Theorem 4.1, and (c)k =-|A- fj＼+ ＼ji-v＼.From (a) and (b), ju and

A-/z are horizontal strips, i.e., // = (//,,0,...,0)(A, >^, > A2), and A, =0 for all

i>3. Moreover, from (c), we have k = -A, - A2 +2^,. Thus we see the

following:

m,-|*l =
j 2(1,-/1.)

2(/i,-A2)

(*>0)

(*<0),
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i.e., m, -＼k＼> 0 is even.

Conversely, consider an irreducible representation of Sp(n) with highest

weight A = m,A, 4-m2A2(m, ―1&|> 0 is even, m2 > 0). Put

m,-＼k＼= L-X7-＼k＼ = 2m (m>0),

and

jU,

fA, ―m

[X2 +m

(k>0)

(*<0).

We take partitions ji = (jiii,0,...,0)and v = (0,...,0). Then we see the pair (/i,v)

satisfies the conditions (1), (2), and (3) in Theorem 4.1 and -|A-/x| + |/i-v| = k,

Hence we conclude that Ae D(Sp(n),K;k). q.e.d.

§5. Harmonlclty and isometriclty of Sp(n)-equivarlaet maps.

Let (,) be an Ad(5/7(n))-invariant inner product on 3p(ra)defined by -1 times

the Killing form of $p(n). If we endow CP2n~l with an 5/?(n)-invariant

Riemannian metric gl induced by (,), then an Sp(n)-equivariant map

corresponding to an element of D(Sp(n),K;k) is a harmonic map because of

Proposition 2.2. However, CP2n~x admits other 5/?(n)-invariant Riemannian

metrics.

We put

Let m,

x

≪

and m

_Ea+E_a _

V2 ' -a"
for each a e Xm

2 be subspaces of tilspanned by {Xa;ae £m, a*±(2X,st<n cck+

an)} and {Xa;a - ±(2^lik<ncck+≪,)}, respectively. Then the subspaces m,, m2

are irreducible ^f-submodules and not equivalent each other. Thus every Sp(n)-

invariant Riemannian metric on CPln"x can be described as gx = gl| m+xg{ |n,2

(x>0), up to a positive constant factor.

Lemma 5.1. Consider an irreducible representation of Sp(n). Let v be a

nonzero weight vector of a weight kAl such that it gives an Sp(n)-equivariant

map. Then the vector E±(TL ak+a
)v

*s a weight vector of the weight (fc±2)A,

such thatit gives an Sp(n)-equivariant map or zerovector.

Proof. We put a0 = 2^iik<n ak +an for convenience. From the condition, we

have E±av = 0 for each aej,o. We assume that E±IXov±0.Since [E±a E±Uq]=

0(aeS0), we have E±aE± v = E±aoE±av= 0 for each aeXo. Hence we
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observe that E±a V is a weight vector such thatit gives an Sp(n)-equivariant ma p

THEOREM 5.2. For any Sp(n)-invariant Riemannian metric on CP2" ', the

Sp(n)-equivariant map corresponding to an element of D(Sp(n),K;k) is a

hnrrnnnir mnr>

Proof. In case we endow CP2" ' with a metric g{,from Proposition2.1 and

･)
^0 = c,vQ for some c, e R

While we give CP2n ' a metric gx, a necessary and sufficientcondition for a map

to be a harmonic map is

( I p(Xa)2+ I ±p(Xa)2)v0=c2v0 for some c2eR,
aeln, a=±a0

where a0 = 2Xi<*<n ak+an. From (*), we claim that the condition above is

eauivalent to

{
I P(K)2

＼a=±a0

)

^0 =
(

X P(EaE_a))v0

V≪=±≪o J

But this holds by Lemma 5.1. q.e.d

= c3u0 for some c.eR.

We shall study the isometricity of harmonic maps constructed in Theorem 5.2.

Lemma 5.3. Consider that an irreducible representation of Sp(n) with highest

weight ra,A, +m2A2. Let w be a weight vector of a weight m,A, such that it

determines an Sp(n)-equivariant map. Then we have

(a) E_aE(E[aw) = -{mx-j + l)jE[aw for j = 0,...,m,,= 0

(b) EaE(Eiaw) = -(ml-j)(j + l)Ej;aw for j = 0,...,m,

where ao=2Ii<^ ≪*+≪,

Proof, (a) We shall use induction on j. Forj = 0, the claim holds because of

Ea w = 0. Assume it is true forj - 1. For j,
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E
a(E aEa

+4^ao)(Ej-c! w)

-a() v -a0 a0 v u/v -a0 '

= E_ao{-(ml-j + 2)(j-l)-(mi-2j + 2)}(Erc;w)

= -(ml-j + l)j(Ei-c!ow).

(b) From (a), we have

K^au(EJ-aw) = (E_aoEao+4^iao)(Ej:aw)

= {-K- j + l)j -{mx-2j)}{Ej_aw)

= -(m]-j)(j + l)(ELaow). q.e.d.

Using thislemma, we obtain the following.

PROPOSITION 5.4. Consider an irreducible representation p of Sp(n) with

highest weight A = m,A, + m2A2. Then the energy density e((p) of the Sp(n)-

equivariant map <p:{CP2n~＼gx)―≫(CPm,h) corresponding to a weight (m, -2_/)A1

of p is given by

e((p)= -[m2 2 +(m,+2n~ l)m2 +(n - l)m. +

where h is the Fubini-Study metric of CPm. If (p

then T is given by

Proof. We have

a+±a0

I

1

aelm

a*±a0

r =

-{(2j + 1H-2/}]|i>0|2,
x

h

a=±a0

= rg for some constant r > 0,

+
(l--l

I (p(Xa)2v0,v0)

-

＼
(2j + l)m{-2j2)＼v0＼2

2e((D)= I (p*h(Xa,Xa)+ I <p*h

e((p)

2n-l

(p(Xa)v0,p(Xa)v0) + - I (p(Xa)v0,p(Xa)v0)

X a=±a()

(p(Xa)2vo,vo) +
(l--)

I (p(Xa)2v0,v0)

V. X Ja=±aQ

= -<p(^>0,i>0>-(ml-2j)2(A1,A1)|i;0|2

= (A,A + 2g)|u/-<m'~2jfN2-(l-
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=
＼m22

+(ml +2n-l)m2 +(n-l)m1 + -((2j + l)m, -2j2)l |"L>0|2,
I * I
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where a0 = 2£1<t<nak +an,W is the Casimir operator of Sp(n) with respect to an

Ad(S/?(n))-invariant inner product (,) of Q, and 8 = A, H h AH. We note that

the eigenvalue of the Casimir operator p(£Q is -(A, A+ 25), by Freudenthal's

formula. If (p h = rgx, then we have

aeSm
a±±a0

= 2(2n-l)r

a=±aQ

q.e.d

THEOREM 5.5. Consider an irreducible representation of Sp(n) with highest

weight mxKx +m,A2. Let (p:(CP2n~l,gx)―>(CPm,h) be the Sp(n)-equivariant map

corresponding to a weight (mx ―2j)A1 (m, - 2j + 0). Then (p is an isometric

immersion if the following equation holds:

In case x

(*)

A

2(w-l)

x
{(2j + ＼)mx- 2j2}= m22 + (ml +2n- l)m2 + {n ―l)m,.

2, g2 is the Fuhini-Study metric. Then the equation above becomes

m22 + (m, + In ―l)m2 - 2(n - l)jm, + 2(n - l)j2 = 0

We may rewrite Theorem 5.5 as follows.

THEOREM 5.6. Consider the Sp(n)-equivariant map (p corresponding to

m, A, + m2 A2 G D(Sp(n), K; k) {k + 0). If the equation

(m2 +2mx-k2) = m2 + (m, +2n- l)m2 + (n - l)m,

2, the equation above

m22 +(m, +2n-l)m2 (m,2 -k2) = 0

= rgx for some constant r > 0 , then

= ― (p(XaoXa{))vo,vo) = ― {(2j + l)ml-2/}|i;0|2,
x 2x

n-＼

x

holds, then (p is an isometric immersion. In case of x

becomes

Proof of Theorem 5.5.Assume that(p*h

by virtueof Lemma 5.3,we have
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where a0 = 2^l<k<n ak+an. From thisequation and Proposition 5.4, we have

-±-{Qj + ＼)mx-2j2}
2x

1

2(2n -1)
[m22 + (m, + 2n - l)m2 + (n - ＼)mx + ―{(2j + l)m, - 2j2

x

Hence we get the equation (*).

Conversely, if the equation (*) holds, then we set

and get

r = [(2j + ＼)ml-2j2}＼vf /2x

<p*h(Xa /^,Xa l4x) = rgAXa l4^,Xa l4x),

i.e., (p h ― rgx q.e.d

}]

Remark.

(1) By the condition m, - 2j + 0( or k + 0), we see a map (p is an immersion.

(2) If the map corresponding to a weight kAi is an isometric immersion, so is

the map corresponding to a weight -&A,. Because the equations in Theorem 5.6

remains the same by replacing k with -k.

(3) In case of n = 2, k = 4, and A = 6A, + A2, we have an 5/?(n)-equivariant,

but not 5'f/(2n)-equivariant,minimal immersion from CP3 to CP230.
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