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A CHARACTERIZATION OF CLOSED s-IMAGES

OF METRIC SPACES

By

Zhi min Gao and Yasunao Hattori

Throughout the present note, we assume that all spaces are regular topologi-

cal spaces and all mappings are continuous. Let N denote the set of all natural

numbers.

Recall from [7] a collection P of subsets of a space X is called a k-network

for X if for every compact subset K of X and every open set U of X with Kd

U, there is a finite subcollection P' of P such that Kc U {P: P<eP'} C.U. A

collection P of subsets of a space X is called a cs-network for X if for every

sequence {xn: n^N) converging to a point x&X and every neighborhood C/ of

x, there is an element PgP such that PaU and {:cn:n^N] is eventually in P

([4]). A space is said to be an K-space if it has a ff-locallyfinite k-network

([6]). A mapping / from a space X to a space Y is called an s-mapping if f~x(y)

has a countable base for each jgF.

Recently, L. Foged [2] proved an interesting characterization of Lasnev

spaces: A space X is Lasnev space (i.e. X is a closed image of a metric space)

if and only if X is a Frechet space with a ^-hereditarily closure preserving k-

network. On the other hand, Y. Tanaka showed that every closed 5-image X of

a metric space is an K-space if any closed metrizable subset of X is locally com-

pact ([9, Lemma 4.1]). (Using this result, he gave a characterization for the

product space XX Y of closed s-images X and Y of metric spaces to be a k-space

(see [9, Theorem 4.3]).) He asked in the same paper whether every closed s-

image of a metric space is an K-space. The purpose of this note is to answer

the above question and simultaneously to get a characterization of Frechet K-

spaces.

Our result is the following.

THEOREM. For a regular space X, the following are equivalent.

(a) X is a Frechet ft-space.

(b) X is a closed s-image of a metric space.

(c) X is a Frechet space with a poi?itcountable, a-closure preserving,
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closed k-network.

PROOF. The implication (a)―>(b) can be shown by an argument similar to

that of [2, Proposition 5]. To prove the implication (b)->(c), let Xbean image

of a metric space Y under a closed s-mapping /. Let J§ be a ^-locally finite

base for Y. Then it is obvious that JP={f(B) : Be^} is a point countable

and er-closure preserving family of closed sets of X. Furthermore, P is a k-

network for X. Indeed, let K be a compact subset of X and U an open set of

X with Kczll. By [5, Corollary 1.2], there is a compact subset C of Y with

Cczf^CU) and /(C)=K Let Bu―, Bn be elements of £ such that CcBiU ―

UfireCJBiU---U5Kc/-1(f/). Then Kaf(Bi) (J･･･U/(£n) ct/. Thus f> is a k-

network for X and hence the implication (b)-≫(c) is proved. To prove the impli-

cation (c)->(a), by [1, Theorem 4], it is sufficient to show that X has a cr-discrete

cs-network. Now, let j°= U {/*≪:n^N] be a point countable, a-closure preserving

and closed k-network for X, where each J°wis closure preserving. Without loss

of generality, we can assume that each Pn is closed under finite intersections

and AcA+i for each n^N. Since Pn is locally countable, there is an open

cover Un of X such that each member U of %n intersects at most countably

many members of Pn. Since X is a ff-space (see [8]), there is a ^-discrete closed

refinement Jn= U (^≪: niG.N] of 2ln, where 9fnm= {f . :≪<eAi! is discrete in

X For each n, m^N and each a^An, we put

Since Am. is countable, let /)*ma= lP*TOa : k<=N} be the family of all finite

unions of J＼ma. For each n, m^N and each a^An, we put

l^Kma==Ur=i[(U{PeA:Pn(U{^m.8:i3Gv4w with /3^a})=^})

-(U{?£A:PnF≪e = ^})].

We have the following.

(1) Fnma<zWnma for each a^An and we AT.

(2) IFnma D W^m;? = ?5 for each a, /JeAi with a^/3.

For each n, m, k, reiV and each a^An, we put

QJSM=U{PeA:Pc^n≫.)1

and

^;={PLnQ^:≪GA}.

Finally, we put

0=U {0^L: (n,m,k,r)^NxNxNxN}<
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By (2), it follows that QkJmis discretein X. To show that Q is a cs-network for

X, let {xn: n^N) be a sequence in X which converges to a point xg! and U

a neighborhood of x. Since P is a k-network for X, there are a number we IV

and a finite subcollection Pn' of Pn such that {xn: n&N] is eventually in

U{P:PgA'}, U {P: PeA'}c[/ and xe fl{P: PgA'}. Since Jn is a cover of

X, there are a number m&N and an element a^An such that x&Fnma- Then

U {P : ?eA'}£^*B,. Let us put U {P: ?eA'l =i^ma for some k<=N. On the

other hand, since every sequence converging to a point of Fnma is eventually in

Wnma, it follows that there are a number re IV with r^n and a finite subcol-

lection JV of Pr such that {xw: n£JV} is eventually in U{P:PgA'} and

{J{P:Pz=P/}<zWnma by [1, Lemma 3]. Therefore, Q = PknmM Qlma' (eOjrRcc

contains a tailof {.rra:≪e IV} and Q is contained in U. Hence Q is a cs-network

for X. This completes the proof.

REMARK 1. (i) By the theorem, every closed s-image of a metric space is

an K-space. This is an affirmative answer to the Tanaka's question stated before.

(ii) The proof of the implication (c) ->(a) in the theorem showed that every

regular space with a point countable, c-closure preserving and closed k-network

is an K-space. This is an affirmative answer to a question in [11] whether

every regular space with a point countable, a-hereditarily closure preserving

closed k-network is an K-space.

REMARK 2. In the statement (c) of the theorem, the assumption of the

"closedness" of the k-network can not be dropped. Indeed, let X be the discrete

sum 0{Ja: ≪<&>!} of the copies /≪,a<eou of the unit closed interval /=[0, 1].

Let A be the subset of X consisting of all zero's. Let Y=X/A be the quotient

space. It is well known that Y has no point countable closed k-network (cf.

[10] or [3]). On the other hand, L. Foged [2] pointed out that every Lasnev

space has a ^-hereditarily closure preserving and point countable k-network.

Hence Y has a point countable, ^-closure preserving k-network.
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