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0. Introduction.

In the last years, the use of an idea of A. Ros, [11], has meant an in-

teresting progress in the study of several families of submanifoids of the com-

plex projective space CPn. This idea essentially consists in considering the

firststandard embedding of CPn in a certain Euclidean space RN, and con-

templating the submanifoids of CPn in the light of that new embedding. The

firststandard embedding has parallel second fundamental form and makes CPn

to be a symmetric i?-space in RN.

In particular real hypersurfaces of CPn have been analysed under this point

of view, [6], [13], and new characterizations of this important class of hyper-

surfaces have been obtained.

In 1986, the second author and S. Montiel, [8], made a systematic study of

a certain family of real hypersurfaces of the complex hyperbolic space CHn.

In the process of classificationof that family they introduced new examples

without parallelin CPn. Therefore if we could get an isometric embedding of

CHn in some Euclidean space RN provided of as good geometric properties as

those of the firststandard embedding of CPn, we could try to profound in the

study of real hypersurfaces in CHn.

On the other hand fully immersed complete submanifoids of a Euclidean

space with parallel second fundamental form have been totally classifiedby D.

Ferus, [3], [4]. As a consequence his result implies that a complete irreducible

(as a Riemannian manifold) submanifold which is fullyimmersed in an Euclidean

space with parallel second fundamental form is congruent to either an hyper-

plane or to an irreducible symmetric i?-space immersed by means of its standard

embedding. Consequentely we see that there exist no an isometric immersion
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of CHn in an Euclidean space with parallelsecond fundamental form. There-

fore one should rather look for such a good isometric embedding of CHn in a

pseudo-Euclidean space. In this articlewe propose both to prove that the above

mentioned embedding exists and to use that embedding to analize real hypersur-

faces of CHn. In §1, we firstlyconstruct an isometric embedding <p of CHn

in the pseudo-Euclidean space R%, N=n*+2n + l, 5=n2+l, with parallelsecond

fundamental form, which makes CHn to be a space-like submanifold with de-

finite negative normal bundle in the ambient space R%. In this way CHn

whitin Rs is a pseudo-Riemannian symmetric i?-space in the sense of Naitoh,

[9], (see also Remark 1.2). Secondly if we take an isometric immersion 0 of

a (2?z―l)-dimensional Riemannian manifold M in CHn, and consider the induced

isometric immersion X―ip°0 of M in R$ then we ask which real hypersurfaces

M of CHn are minimally immersed by means of 1 in some non-flat totally

umbilical hvn^rsnrfarp of R.%. We ohfnin ■

Theorem 4.2. There exist no real hypersurtaces M of CHn, n^2, which

are minimal in either a (n2-＼-2n)-dimensionalindefinite sphere or in a (n2+2n)-

dimensional indefinite real hyperbolic space of R^t%＼n+l; that is to say no real

hypersurface M of CHn is mono-order in Rnt+＼n+1 via the isometric embedding (p.

This result contrasts with Theorem 3.1 of [6], where certain geodesic

hyperspheres were characterized as those whose immersion via the firststandard

embedding was minimal in some hypersphere of an Euclidean space.

At the same time, we discovered that Theorem 4.2 was accompanied by a

seemingly strange fact. Indeed, in computing the Laplacian of the mean

curvature vector fieldH of the horosphere M$ of CHn in the pseudo-Euclidean

space Rnz+＼n+l(see §3) we achieved AH―Q, where Q was a non-zero constant

vector of the ambient space. Fortunately we succed in proving its converse

and thus to characterize the horosohere MS as follows:

Theorem 5.7. Let M be a real hypersurface of constant mean curvature in

CHn, n^2. Suppose M satisfiesthe differentialequation

AH = Q

with H the mean curvature vector fid of M in Rn^%＼n+1 and Q is a non-zero

constant vector of the ambient space. Then M is locally congruent in CHn to

the horosphere

M*=7i({z^mn+1＼＼z0-z1＼2 = l})

described in S3.



An Isometric Embedding of the Complex 295

Finally one should notice that no real hypersurface of CPn with constant

mean curvature satisfy the above differentialequation AH = Q.

1. An isometric embedding of the complex hyperbolicspace in a pseudo-

Euclidean space. We consider the following Hermitian form in the (n + 1)-

dimensionalcomplex vector space Cn+1

(1.1)
_ n

F{z, w)=―zoivoJr IjZjWj

where as usual (z0, ■■■zn)=zt and (w0, ･■■, w^―w1 represent vectors of Cn+1,

( Y denoting transpose, and zj means the conjugate complex of Zj. The real

part of F is an indefinite Riemannian metric on Cn+1 with index 2, which we

call g. The classical definition of the n-dimensional complex hyperbolic space

CHn goes as follows: CHn is formed by the set consisting of the 1-dimensional

complex subspaces L=span {z} of Cn+1 satisfying F(z, z)<0, i.e. L is negative

definite with respect to g. The real hypersurface H＼n+l― {z^Cn+1＼F(z, z)― ―1}

of Cn+1 is, with the induced metric g, a complete Lorentzian manifold of con-

stant sectional curvature ―1, which is called the (2n + l)-dimensional anti-De

Sitter space. In terms of the usual action of the 1-dimensional sphere S1 on

H＼n+＼ we have that H＼n+1 is a S^bundle on CHn with canonical projection

%: Hln+1->CHn, z->[z]=:span{0}. If we additionally take on CHn the Bergman

metric of holomorphic sectional curvature ―4, it is a riemannian submersion,

[10], with time-like totally geodesic fibers.

Now take End(C"+1) as the space of all the C-linear endomorphisms of Cn+1.

Then by mapping L = ＼_z~],z<=H＼n+1, in the orthogonal projection with respect

to L of the metric vector space (Cn+1, F), we construct an embedding of CHn

in End(Cn+1), whose image is

(1.2) {p<=End(Cn+1)/p°p=p, F(p(z), w)=F(z, p{w)), z, w^Cn+1, trace(/>)=l}

By identifying End(Cn+1) with the space formed by the complex square

matrices of order w + 1, Mn+U we obtain a differentiate embedding <p of CHn

in Mn+U whose image is

(1.3) {A^Mn+1＼A2=A, GAl=AG, trace(^)=l}

where G is the matrix diag(―1, In), In is the matrix identity of order n, and

A (resp. A1) is the conjugate (resp. transpose) matrix of A.

Therefore, given any [z]GCi?n we have
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kol2

ZiZo
＼>([*])=

ZnZo

ZnZ＼ '"' ZnZn

＼~ 2 ... ,, 5

― 7 5 ... _ I 7 |2

and so (p{[z]) is the matrix of the orthogonal projection Pl with respect to the

line L=[z'] expressed in the usual basis of Cn+1.

Consider now the (n + l)2-dimensional real subspace of Mn+l defined by

H＼n + l)={A&Mn+l/GAt = AG).

If we define on H＼n-＼-l) the symmetric bilinear form

(1.5) g(A, 5)=-(1/2) trace(.4J3)

A, B in H1{n + 1), then g is a non-degenerate metric of index ≪2-j-l. Conse-

quently (H＼n + 1), g) is isometric to the pseudo-Euclidean space R%lXin+1.

If we agree in denoting by Ul(n + 1) the Lie group formed by the F-

isometric automorphisms of Cn+＼ UXn-tl)={A<=Gl(n + l, C)＼AtGA = G), then

we see that this group acts transitively on the anti-De Sitter space H＼n+1 by

means of the usual matrix product. CHn inherits this action in a natural way

(A, [>]>->[A?]. On the other hand, there is another action of U＼n + 1) on

HXn + 1) represented by (A, X)*->AXA~＼ This action leaves invariant the

metric g, (1.5), and <p is a f/^n + l^equivariant embedding. One can check

directely from (1.4) that the differential of <p at [e0], 6o=(l, 0, ･･･, 0), preserves

vectors length. Thus <p is an isometric embedding. Moreover, the image of <p

given in (1.3) is contained in the hyperplane Hl(n + l)= {^4ei/1(n + l)|trace(^4)=l}.

We end observing that In+1 is normal to H^(n + 1) with respect to g. Hence

//*(n + l) is a non-degenerate hyperplane of index n2 and there exists no hyper-

plane of H*(n-＼-l) containing <p(CHn). Finally we summarize these facts in the

following:

PROPOSITION 1.1. The map <p written in (1.4) definesan U＼n-＼-l)-equivariant

isometric embedding of the hyperbolic complex space CHn, with Bergman metric

of holomorphic sectional curvature ―4, into the pseudo-Euclidean space R^lX＼n+l

{represented as the matrix space (H＼n-＼-l),g)). In addition <p is an Ul{n-＼-l)-

equivariant embedding fully immersed in a non-degenerate hyper plane of index

n oj itn2+1

At this point we wish to emphasize some useful facts about the embedding
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We begin by computing the tangent and normal spaces to CHn at any

point. Identifying CHn with its image under <p and making as in [6], p. 306,

we get

TA(CHn)={XeH＼n + l)＼XA+AX=X}

(1.6)
Ti(CHn)={X^H＼n + l)＼XA=AX}

Choosing now any Q of HHn + 1), its tangential component to CHn at the

point A is

(1.7)

(1.8)

QA+AQ+4g(A, Q)A.

The complex structureof CHn is given by

JX = V=i(I-2A)X

for any X in TA{CHn), where / is the identity matrix of order n + 1.

We denote by a, S and H the second fundamental form, the shape operator

and the mean curvature vector fieldassociated to <p,respectively. Then if Z

is a normal vector to CHn and A is a point of CHn, it is not hard to check

that

a(X, Y)=(XY+YX)(I-2A)
(1.9)

(1.10)

(1.11)

SZX=(XZ-ZX)(I-2A)

o(JX, JY)=d(X, Y)

HA=-(2/n)(I-Cn + l)A)

for any X, Y tangent to CHn at the point A.

Hence from (1.10)and Codazzi equation we obtain

(1.12) Vcr= 0,

i.e., a is parallel.Now from (1.5)and (1.9)we get

(1.13) g(s(X, Y), J)=0, gCdCX, Y), A)=-g(X, Y)

for any .4 in CHn and X, Y in TA(CHn). Finally by using that CHn has

holomorphic sectional curvature ―4, and Gauss formula, we conclude from (1.8)

that

(1.14) g(d(X, Y), d(V, W))=-2g(X, Y)g(V, W)-g{X, W)g{Y, V)

-g(X, V)g{Y, W)-g(X, JW)g{Y, JV)

-g{X,JV)g(Y,JW),



298 0. J. Garay and A. Romero

for any X, Y, V, W of TA(CHn).

Perhaps to complete this paragraph we should make you notice some obser-

vations which fitin nicely with our discussion. Firstly we consider the Laplacian

A associated to the Bergman metric of CHn. We take the sign of A so as in

the standard Euclidean case A=―S =id2/<3;t|.Calling 1 to the position vector

in H＼n+l) from the point (l/(n + l))/,i.e.,Z([z])=y>(|Vl)-(l/(n + l))/,[z]c=C7/B,

and using (1.11) we obtain AX=― 4(≪+l)Z and therefore <p embeds CHn as a

minimal submanifold of the umbilical hypersurface

U={X^H＼n+l)＼g(X-(l/(n+l))I, X-(l/(n + l))/)=-n/2(n + l)}.

Identifying H＼n + l) with the pseudo-Euclidean space R%iXln+1, U is an

indefinite hyperbolic space H%l+2n of sectional curvature ―2(n+l)/n. Notice

that since CHn is a space-like submanifold of R%lX＼n+1(and with negative

definite normal bundle) it can not be a minimal submanifold of an indefinite

sphere (see [2], Theorem 1). The intersection of U and //i(n+l)(seen as

R$+2n) is the indefinite hyperbolic space Htftl*-1 and CHn is fully embedded

as a minimal submanifold in Hlllf1-1. In particular for n = l <pis the usual

isometric embedding of the real hyperbolic plane Hl―CH1, with Gauss cur-

vature ―4, into the Lorentz Minkowski space R＼.

Remark 1.2. The isometric embedding <p of CHn in f/#(n+l) is full,and

has parallel second fundamental form. In addition the normal vector field|

defined by £A=A, At=CH'n, satisfiesS§X=-X for any X^TA(CHn) and any

A<=CHn. This means that ip satisfiesfor any A in CHn conditions CX{A) and

C2{A) of [9], p. 739. Then identifying H&n+l) with the pseudo-Euclidean

space Rll+Zn, CHn turns out to be a pseudo-Riemannian symmetric i?-space in

Rfz+2n. In fact setting {x, y, z} = -2(yt-z)x―2(yt-x)-z and <x, y}=Real(xt-y)

for any x, y, z<E.Cn we have that (Cn, { }, < ≫ is a orthogonal Jordan triple

system in the sense of [9], p. 736, which satisfiescondition (S) of [9], p. 739,

and the pseudo-Riemannian symmetric i?-space associated to this orthogonal

Jordan triole svstem is orecesilv CHn in R%l+Zn.

2. Real hypersurfaces of CHn. We would liketo studyrealhypersurfaces

of CHn by making use of the embedding <p. To do thatitis worth taking the

time to compute severalformulae in some detail. They will be needed in the

next paragraphs. Whenever we mention CHn from now on, we shallassume

m^2 and it is endowed with the Bergman metric of holomorphic sectional

curvature ―4. Suppose Mis a real hypersurface of CHn and representby 7

and 7 the Levi-Civitaconnectionsof CHn and M respectively.The Gauss and
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Weingarten formulae are written as:

(2.1) VxY=;VxY+g(SX, Y)N; 1XN=-SX

where o(X, Y)-g{SX, Y)N is the second fundamental form of M in CHn, X, Y

are tangent vector fieldsto M, TV is a local unit normal vector fieldto M, and

S is the shape operator associated to N.

If / is the complex structure of CHn, then for any tangent vector X to

M we put

(2.2) JX=0X+f(X)N

where §X and f(X)N are respectively the tangent and normal components of

JX. As it is well known 0 is a (1, 1) tensor fieldand / is a 1-form over M.

It is not hard to check the following relations:

f(X)=-g(X,JN); f($X)=0; fX=-X-f{X)JN

(2.3) gtfX, Y)+g(X, 0y)=O

gtfX, 0Y)=g(X, Y)-f(X)f(Y)

for any X, Y tangent to M.

Now we return to the immersion 0 of M in CHn. If we compose this

immersion with the embedding <p given in (1.4) we obtain again an isometric

immersion 1 of M in H1(n + 1). Calling H and H to the mean curvature vector

fields of 0 and 1 respectively, one gets:

(2.4) #=(l/(2n-l))2i<K£i, £i)=(l/(2n-l))2i/*≪W

(2.5) HA=HA-(l/{2n-l))W-{n+l)A)+d(N, N)}

at any point A of M, a being as before the second fundamental form of M in

CHn; hij―g(SEi, Ej); {Elt ･■･, En) is a local orthonormal basis of tangent

vector fields to M and a is the second fundamental form of <p.

Moreover using (1.13) we obtain

(2.6)

for any point A in M, and also

g(H, A)=-l

(2.7) ||£||2=||#||2-4(2722-l)/(272-l)2.

One should notice that ||//||2=g(H,H) need not be non-negative because the

restrictionof g to the normal bundle of M in H＼n + 1) is not definite(compare

(2.7) with formula (2.21) of [13]).

By a symilar computation to that of [13], pp. 187-188, we are able to obtain:
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Proposition 2.1. Let M be a real hypersurface of CHn. If D denotes the

Levi-Civitaconnection of the pseudo-Euclidean space H＼n+l), SH the shape operator

of M associated to H, V1 the normal connection of M in CHn, a-=g(H, N), and

A the Laplacian of M, then the following relations hold:

(2.8) DEfi=-SHEi+lkiH + a{Ei, #)+[2(2n + l)/(2n-l)]£f

+ [_2/(2n-l)-]a(SEi, W)-[2/(2n-l)M/tf, Et)JN

for any i=l, ■■■, 2n ―l.

(2.9) (A^=-[4/(2n-l)]/S/A^-{2(3n + l)-||o-||2}//

+ [8(2n+l)/(2w-l)](/-(n + lM)

-{-4(n + l)/(2n-l)+(2n-l)||if|[2+(2/(2n-l))||(T||2}5(^7V)

+2a^id(Ei, SEi)+(2/(2n-l))^id(SEi, SEt)

+2S(grsida)+a^i,khiikEk-2d(grad(T, N)

-{2/{2n~l))Tii.Jhiij5{Ej,N)+{Aa)N

at each point A of M. Where ||oi|2is the square of the length of a, grada

represents the gradient of a on M and hijk―g((l'Eko)(Ei,E3), N) and la is the

usual Van der Waerden-Bortolotti covariant derivative of the second funda-

mental form a of M in CHn.

In particular, taking ＼＼H＼＼constant, formula (2.9) can be rewrite as

(2.10) (AH)A=(-4/(2n-l))JSJN-{2(3n + l)-＼＼o＼＼2}H

+(8(2n + l)/(2n-l))(/-(n + lM)+2aSz5(£i, SEt)

+(2/(2n-l))2iaf(SEi, SEt)

-{-A(n + l)/(2n-l)+(2n~l)＼＼H＼＼2+(2/(2n-l))＼＼o＼＼2}a(N,N)

at each point A of M.

Now we wish to obtain a specially useful formula in our context. By

direct computation we obtain from (2.9),(1.13) and (1.14) the following:

Proposition 2.2. For any real hypersurface M of CHn the following

formula holds

(2.11) g{AH, ^)=-(2n-l)||//||2+(4(2n2-l)/(2n-l)).

We should point out that it is possible to obtain formula (2.11) in a dif-

ferent way. Indeed, using (2.6) one sees that the function h defined by h(A)=

g(H, A) for any A of M is constant. Since {Ah)A=g(AH, A)+(2n-l)g(fi, H)
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one gets

(2.12) g(AH, A)+(2n-l)g(H, H)=0

for A in M. Combining (2.7) and (2.12) one derives (2.11). Observe also that

(2.12) remains valid for any submanifold of a pseudo-Euclidean space provided

h is constant.

We close this section by analyzing the behavoir of the Laplacian A of a

real hypersurface M of CHn. We are going to obtain some formulae which

will be used in §3.

Let M' be the Lorentzian hypersurface of the anti-De Sitter space H＼n+1

which is a S^bundle on M compatible with the fibration re of H＼n+1 on CHn.

Since k : M'―>M is a Riemannian submersion with totally geodesic fibers, we

have

(2.13) (Af)°K=A'(f°7T)

for any differentiate function / on M, where A' represents the Laplacian of

the Lorentz metric on M'.

If we agree to represent by D° and D the Levi-Civita connections of the

pseudo-Euclidean space R＼n+2 and H＼n+l respectively, then one has

(2.14) DxY=DxY+g(X, Y)l

which is nothing but the Gauss formula for H＼n+1 in Rtn+2, for any X, Y

tangent to H＼n+1, where g is the Lorentz metric on H＼n+1(see§1),and 1 being

the position vector at each point.

On the other hand, from the Gauss formula of M' in H＼n+l one has

(2.15) DxY=l'xY + o＼X, Y)

for any X, Y tangent to M', where 1' and a' are the Levi-Civita connection

and the second fundamental form of M' in H＼n+1 respectively. Now we use

formulae (2.14) and (2.15) to compute the Hessian of a differentiablefunction /

on M', represented by Hess (/),

(2.16) Hess(/)(Z, Y)--=X(Y(f))-(DxY)(f)

+g(X, Y)l(f)+a'(X, Y)(f)

for any tangent vector fields X, Y to M'.

Remenbering the known formula A'/ ――trace^ Hess(/) and using (2.16),it

turns out that for any function / on M' which is restrictionof a linear func-

tion of RT+2 in R we get

(2.17) A7 = -2n/-2n#'(/)



302 O. J. Garay and A. Romero

H' being the mean curvature vector field of M' in H＼n+l.

Finally, / being as above the restrictionto M' of a linear function / on

Rln+2 we get

(2.18) HV'/ll2HI£°/ll2+/2--(£'(/))2

V/ and D°f being respectively the gradient of / in M' and the gradient of /

in Rtn+2, and where £'is a unit normal vector field to M' in H＼n+1.

3. Examples. In this paragraph we present two families of examples,

constructed in [8], which will play a fundamental and quite different role in

the final sections. Example 3.2 give us a family M2p+i,2,+i(r),0<r<l, p-rq―

n ―1, of real hypersurfaces of CHn whose immersion in H＼n-＼-Y)via <p(stated

in §1) is never mono-order. We recall that an isometric immersion 1 into a

pseudo-Euclidean space is said to be mono-order if X=X0+y where l0 is a con-

stant vector and y satisfiesAy=Xy, X&E, with A the Laplacian of the sub-

manifold. This property of M2p+1,2a+i(r)is essentialin our proof of Theorem

4.2, and it contrasts with the complex projective case, where the analogue

family of real hypersurfaces of CPn has some members which are mono-ordei

via the first standard embedding of CPn. On the other hand, the horosphere

Mt of the Example 3.1 shows what at firstsight is a rather strange behaviour:

the second Laplacian ofits immersion in H＼n-＼-Y),via <p,is a non-zero constant

matrix (that will be proved below in this §3). Moreover M* has constant

mean curvature in CHn. Therefore it seems interesting to study the family oi

real hypersurfaces of CHn verifying these conditions. This problem will be

treated in last paragraph. Meanwhile we analize these examples in some detail

Example 3.1. Let Mn' the Lorentz hypersurface of the anti-De Sitter space

H＼n+l defined by

MB'=={z<=#?B+1l|zo-zil8=l}

where z=(zQ, zu ･･･,zn)^Cn+l as in §1. If z^Mn then

?z―( Zi,Zo Zzi, ―Zz,･･■, zn)

is a unit vector normal to Mn at the point z. The corresponding shape operatoi

S' is given by

(3.1) S'(o.o,di, ■■･, an)=(au 2av― a0, a2,･･･, an)

for any (a0, au ･･･, are)eC7n+1 representing a tangent vector to Mn' at the point z

From (3.1) it is easy to see that trace(S')=2n, and so formula (2.17) give:
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(3.2) A'/=-2n/-272(£/))2

for any function /: Mn~>R which is the restriction of a linear one from R＼n+2

to R.

Mn is S^invariant and M%=7:(Mn) is a real hypersurface of CHn, and jt:

Mn-*M$ is a Riemannian submersion with totally geodesic fibers. Using (3.2)

we obtain

(3.3) A'z=-2n(zo-zu zo-zlt 0, ･･･,0)

where we have written z=(z0, zu ･･･, zn) for the position vector of Mn'. From

this last equation we can compute the mean curvature vector fieldH of Mn

in R＼n+Z

(3.4) H=(zo-zu zo-zi, 0, ･･･, 0)=£z+z

and then H is an isotropic vector at any point. From (3.2)again together with

(3.4) one sees that

(3.5) A'tf=0.

Now let us write A and H for the Laplacian of M% and the mean curvature

vector fieldof M% in H＼n + l) via the embedding <p stated in §1. Thus making

use of (1.4),(2.13),(2.18) and (3.2), and the usual properties of A acting on the

product of functions, we have

(3.6) AH=Q

where we have out

'1-1

<2^-8(n2-l)/(2n-l) 1 -1
°

. 0 0 ,

Example 3.2. Given integers p, q with p-＼-q―n―1 and rei? with 0O<l,

we denote by M'2n+U2q+i(r)the Lorentz hypersurface of the anti-De Sitter space

mn+1 defined bv

MJp+1.tq+1(r)=＼z(EHVi+1＼r(-＼zo＼t+'k＼zj＼i)=- fj k*|4

where z=(z0, zu ■■■, zn). It is easy to see that M2p+li2g+1(r) is isometric to the

riemannian product

(3.7) #f+1(-l/(l-r));cS29+1(r/(l-r))

where ―1/(1―r) and r/(l―r) are the respective equares of the radii and each

factor is embedded in H＼n+1 in a totally umbilical way.
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If zeM2p+1,2g+i(7) we can see that

$≫=(―1/Vr )(rzQ,rzu ■■■,rzp, zp+1,■■■,zn)

is a unit vector normal to M2'p+i,2g+1(r)at the point z.

M2p+i.2fl+i(r)is S^invariant, M2p+i;2g+i(r)=7r(M2p+1,2?+1(7'))is a real hyper-

surface of CHn, and ^r from M2P+1,2q+i(r) onto M2p+i,2g+1(r)is a Riemannian

submersion with totally geodesic fibers.

Representing by (z, w) a generic point of M2p+1,2g+1(r) and from (3.7) we

can rewrite formula (1.4) as

X=<d[z, w~＼)=

where O^iS.p, Os^/i,k^q, O^j^p. In order to simplifycomputations we put

thisformula in the following way

(3.8) X=(p([z, w~＼)

with O^a, fi^p and 0£r, S^g.

We use now the properties of the Laplacian of a Riemannian product, along

with formulas (2.17),(2.18) and (3.7) to calculate the Laplacian of X(X being the

position vector of M2p+U2q+l(r) in H＼n + l) via ip). If p, q>0 one has

(3.9) M=
2(/>+ l)(r-l)aai8+4Jp+1

(r-lXp-(q/r))c8ft

If 6=0 and <7>0 we have

0
(3.10) AZ=

(r-l)(l-(2n-l)/r)c30

Finally, if p>0 and o=0 we have

(3.11) AZ=
4n(r-l)aap+4In

(r-lXl-(2n-l)/r)c0fl

(r-lXp-(q/r))bar

2(q+l)a-r)(l/r)ddr+4Iq+1

(r-l)(l-(2n-l)/r)6or

4n((l-r)/r)dSr+4:In

(r-l)(l-(2n-l)/r)^o

0

Compare (3.9),(3.10) and (3.12) with [13] formulae (3.4) and (3.5)
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Since 0<r<l it is easy to see from (3.9),(3.10) and (3.11) that no hyper-

surface of the family M2p+i,2q+i(r) is mono-order in H＼n + Y). Note that for

p=0, Mi,2n-i(r)is a geodesic hypersphere of CHn, [8], p. 255. On the other

hand certain geodesic hyperspheres of the complex projective space CPn are

mono-order via the firststandard embedding. Furthermore thisproperty charac-

terize them completely, [6~＼,Theorem 3.1.

Remark 3.3. Given an isometric immersion X of an indefinite Riemannian

manifold M in a pseudo-Euclidean space, X is said of finite type, [2], if the

position vection vector 1 admits a decomposition X=X0+XPl+ ･･･+XPk where Xo

is a constant vector and AXPi=AiXPi, l^R and A being the Laplacian of M.

In this situation if we additionally have AH=0, with H the mean curvature

vector fieldof X, then we conclude from the linear independence of the eigen-

functions XPi that H―0. Hence, from this and (3.5) we deduce that M^ of

Example 3.1 is not of finitetype in Rln+Z. Similarly from (3.6) we see that

the horosphere M% is not of finitetype in H＼n~＼-1).Finally, using (3.8),(3.9)

and (3.10), and because p, q are integers and 0<r<l, we obtain that certain

hypersurfaces of the family M2p+1,23+1(r)are of 2-type and some of 3-type.

4. Mono-order real hypersurfaces. As we have already said, we will

show in this section the non-existence of real hypersurfaces of CHn whose

immersion in the pseudo-Euclidean space H＼n + ＼)via the embedding <p stated

in §1, is mono-order.

In trying to find a satisfying proof of this fact we followed two different

ways. Firstly we took in consideration the proof of Martinez and Ros for real

hypersurfaces of the complex projective space CPn, [6], Theorem 3.1. Keeping

thisin mind we found a proof similar to that of [6]. To do that, we needed

a classificationresult for the matrices of H＼n + 1) up to the action of the group

U1(n-{-l). This is shown in Lemma 5.1. The first case of that Lemma is

treated in the same form as that of the proof in [6], leading to the fact that

our hypersurface should be locally one of the family Mzp+ljzq+i{r). But this is

impossible as Example 3.2 shows. As for the rest of posibilitiesof Lemma 5.1,

we can get rid of them on the base of algebraic considerations.

What we shall discuss now in detail is our second proof. As we shall

notice soon, we are able of adapting this new proof to the case of real hyper-

surfaces in CPn, giving an alternative proof of Theorem 3.1 in [6]. We begin

by rewritting a particular case of Theorem 7.4 of [7] in a more suitable way.

Let M be a real hypersurface of CHn, n>2, we say it is rv-umbilicalif there
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existreal numbers a, h such that SX=aX-＼-bg(JN, X)JN, where S is the shape

operatorof M in CHn associatedto N and X is any tangent vector fieldto M.

Thpn wp havp ･

Proposition 4.1(see [7], Theorem 7.4). Let M be a connectedreal hyper-

surface of CHn, n^2. Suppose M is iq-umhilical.Then M is locally congruent

to one of the followingspaces:

(a) A geodesichypersphere M0,2n-i(r).

(b) A real hypersurfaceM2n_i,0(r).

(c) A horosPhereMt.

Proof. Notice firstlythat a ^-umbilical hypersurface has at most two

principal curvatures at each point. Go now to Theorem 7.4 of [7]. Case "d"

of that Theorem is not possible now because it is not ^-umbilical. On the

other hand, hypothesis n^3 of that Theorem is used only to assure that JN is

a principal vector with constant principal curvature. We can deduce both facts

from the ^-umbilical condition. Finally note that although Theorem 7.4 of [7]

is formulated for complete hypersurfaces, it is local in nature because it is

proved on the base of Theorem 4.1 of [7].

The above ProDOsition leads in turn to

Theorem 4.2. There exist no real hypersurfaces M of CHn, n^2, which

are minimal in either a (n2-＼-2n)-dimensionalindefinite sphere or in a (n2+2n)-

dimensional indefinitereal hyperbolic space of Hl(n-＼-l),that is to say, no real

hypersur face M of CHn is mono-order in H＼n-}-l) via the isometric embedding

w stated in §1.

Proof. Suppose M is mono-order in H＼n + l), then from [2], Theorem 1,

the mean curvature vector field H of M in H＼n-＼-l)satisfies

(4.1) H=(-l/(2n-l))M=(-l/(2n-l))k(X-A0)

with X^O, where X=<p°f, f being the isometric immersion of M in CHn and (p

the embedding of CHn in H＼n + 1) given in §1.

Using (2.8) we have from (4.1)

(4.2) DxH^-aSX+l^-xH+diX, //)+(2(2n + l)/(2n-l))Z

+(2/(2n-l))d(SX, N)-(2/(2n~l))g(JN, X)JN

with the same notations as those of Proposition 2.1.

From (4.1) we have AH=XH and putting this in (2.11) we get
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(4.3) ^-(2n-l)||//H2-4(2n2-l)/(2n-l)

having used (2.6) also. But (4.3) tellus that ||f/||2=a2is constant and therefore

(4.4) VXXH=O

for any X tangent to M. Combining (4.1) and (4.4) we can rewrite (4.2) in

the following way

(4.5) -U/(2n-l))X=-aSX+d(X, H)+{2(2n + l)/(2n + l))X

+{2/2n-l))o{SX, N)-{2/(2n-l))g{JN, X)JN

so that equaling tangential components

(4.6) -W(2n-l))X=-aSX+(2(2n + l)/(2n-l))X

-(2/(2n-l))g(JN, X)JN

for any X tangent to M.

We can assume a^O. Otherwise from (4.6), one gets

(4.7) {2/{2n~l)g{JN, X)JN={{2{2n + l)+X)/{2n-l))X

for any X tangent to M. Choosing A'e(Span{/A/"})1 we have

(4.8) 2(2n+l)+^=0

Choosing X―JN we obtain from (4.7) again

(4.9) 2=2(2n + l)+^

which are clearly incompatible. Hence ≪=£0and from (4.6) we can write

(4.10) SX = aX+bg{JN, X)JN

where a, b are real numbers given by

fl=((2(2n+ l)+^)/(2n-l)a and 6=-2/(2n-l)a.

Showing that M is 37-umbilical. Using Proposition 4.1 we should have that M

is an open subset either a geodesic hypersphere M0,2re_1(r)or the horosphere

M$. But Examples 3.1 and 3.2 shows that this is not possible, and this con-

cludes the proof of Theorem 4.2.

By using the same method as that of the our Theorem 4.2, and taking intc

account formula (2.14) of [13], one can prove that a real hypersurface of the

complex projective space CPn which is minimal in a hypersphere of Rn'2+2n+]

via the firststandard embedding, is necessarily ^-umbilical. On the other hand,

as a consequence of Theorem 3 of [1], a 751-umbilicalreal hypersurface of CPn,

n>2, is an open subset of a geodesic hypersphere of CPn. But the only suet
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hypersurfaces which is mono-order via the first standard embedding is the

projection by the Hopf fibration of S＼V(l/(2n+2))xS"n-＼V(2n + l)/(2n+2)),

where V(l/(2n+2) and V(2n + l)/(2n+2) are the respective radii, [6], p. 309.

This gives another proof of Theorem 3.1 of [6].

5. Real hypersurfaces of CHn satisfying a certain differential equation.

This section is mainly concerned with a characterization of the horosphere M%

of the complex hyperbolic space CHn by means of a certain differentialequation.

The touchstone for its characterization is the behaviour of the Laplacian of its

mean curvature vector in H＼n + l). As we proved in §3 the Laplacian of the

mean curvature vector field H of M% in H＼n-＼-l)via the embedding <p(stated

in §1) satisfies

(5.1) AH=Q

where A is the Laplacian of M% and Q&H＼n + l) is a non-zero constant matrix

normal to M% at every point. As we mentioned earlier§3 this situationis not

possible for real hypersurfaces of the complex projective space CPn {H denoting

the mean curvature vector fieldvia the firststandard embedding). Even although

one considers a submanifold M of an Euclidean space Rm satisfying AH―Q,

with Q a constant vector of Rm which is normal to M at any point, we shall

prove soon Lemma 5.2 that Q has to be zero. Note that in this case M can

not be compact, because if M in addition was compact then H would be zero

necessarily and this is not possible. The case AH―0 is equaly impossible for

real hypersurfaces of CPn (for this consider formula (2.22) of [13]).

In contrast there may be submanifolds in a pseudo-Euclidean space Rf

satisfying AH=0 and H^O. It is enough to consider the submanifold Mi of

RT+2 described in Example 3.1. We shall treat here the case when Q^O.

This leaves open the possibility of studying the real hypersurfaces of CHn

verifying AH=0. (Compare our (2.11) with the above mentioned (2.22) of [13]).

We start with a technical Lemma which is an adaptation of Theorem 2, p. 229,

of [5], for our purposes, and hence it will not be proved.

Lemma 5.1. Let V be an n-dimensional complex vector space, and F a non-

degenerate Hermitian form of index two on V. Let f be an F-selfadjoint{complex)

endomorphism of V. Then there exists a basis B of V in such way that the

matrix of f relative to B, M{f, B), and the matrix of F with respect to B, MB(F),

fall in one of the following cases:
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-1 0

) M(f, B) real diagonal; MB(F)=

0 In-,

■a i o ＼ ro l o '

(ii) M(f,B)= 0 a ; MB(F)= 1 0

, 0 D
＼ 1

0 Jn_2 ,

where a^R and D a square real diagonal matrix of order n―2

(iii) M(f,B)=

'a 0 1

0 a 0 0

0 1 a

0 D' ,

'0 10 ＼

10 0 0

M*F)= o o !

, 0 JB-s ,

with a^R and D' a square real diagonal matrix of order n―3

' a b 0 ] ( -1 0 0 '

(iv) M{f, B)= -b a ; MB(F)= 0 1

k
0 D"

j I
0 7≫-2 ,

309

with a, b^R, bi^O and D" a square real diagonal matrix of order n―2.

Note that if / satisfiesa polynomial of degree 2, the case(iii)is impossible.

On the other hand if /2=0, the case (iv) is not possible too, and either /=0 or

case (ii) occurs with a―0. In this latter case M(f, jB)=diagf( A; Oj

Mg(i?)=diag( ―1; In-i) for a suitable basis B obtained from B of (ii).

Now we prove:

and

Proposition 5.2. Let M be a submanifold of a pseudo-Euclidean space Rf.

Denote by H and A the mean curvature vector fieldof M in Rf and the Laplacian

of M respectively. Suppose that A/f=C for some constant vector C of Rf, which

is normal to M at every point. Then either C=0 or C is an isotropic vector.

Proof. Let g be the usual flat metric of Rf, and suppose g(C, C)^0.

Note that g(H, C) can not be a constant function on M, otherwise 0=Ag(H, C)

=g(AH, C)=g(C, C), which contradicts our assumption. Then choose a unitary

vector 7] of Rf so that C ―ag(C, 7])r],a ―-＼-lor ―1. We can write H as

H=(l/n) S gtit,e*Xtrace(SO)f,
1=1

where {$i= rj,|2, ･･･, $m-n} is a local orthonornal basis formed by normal vector

fieldsto M, and Si is the shape operator associated to &. Since rjis constant,
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we have Si=O and therefore g(H, C)=0 which gives a contradiction and proves

the Proposition.

In particular if s=0 in Proposition 5.2, i.e. if the ambient space is the

Euclidean space Rm, then we obtain C=0.

Now take a real hypersurface M of CHn satisfying (5.1). Then formula

(2.11) turns to be

g(Q, ^)=-(2n-l)||i/||2+(4/(2n-l)X2n2-l)

at any point A of M. So that Q is normal to M at every point if and only if

＼＼H＼＼is constant. This shows that Q in Example 3.1 is normal to the horos-

nhprp M* of r,Hn

Remark 5.3. Let M be a real hypersurface of CPn with constant mean

curvature. Suppose that the immersion of M in En2+2n+1 via the firststandard

embedding of the complex projective space CPn in i?n2+2n+1 satisfiesthe dif-

ferential equation AH=Q, where H is the mean curvature vector fieldof M in

Rn2+2n+1 and A its Laplacian. As before, constant mean curvature is equivalent

to say that Q is normal to M(see formula (2.22) of [13]). But then using

Proposition 5.2 we see that Q=0, which is not possible from formula (2.22) of

[13]. Therefore there exist no real hypersurface of CPn with constant mean

curvature whose mean curvature vector fieldin Jtn2+Zn+1 satisfiesdifferential

equation (5.1).

Now we reach our goal by using some intermediate steps.

Lemma 5.4. Consider a real hypersurface M of CHn with constant mean

curvature. Then

(5.2) g(AH, d(X, N))=-4ag(SJN, 0X)-(4/(2n-lM(S2/M 4>X)

(see §2 for notations). If, in addition, there exists a function p. on M such

that SrN=uIN. we have

(5.3)
g(AH, a(X, N))=0

where X is any tangent vector field to M.

Proof. Use (2.10), (1.13) and (1.14) along with (2.2), (2.3) to get (5.2), (5.3)

follows early from (5.2) by using condition SJN=uJN.

Lemma 5.5. Let M be a real hypersurface of CHn

curvature and satisfyingthe differentialequationAH=Q.

function a on M so that SJN^uJN.

with constant mean

Then there existsa
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Proof. From (2.11) we have that g(Q, A)=r=cte. for any A of M. But

this means that Q is normal to M everywhere and therefore the tangential

component of AH is zero. Using now (2.10) we see that <f>SJN=0. Hence (2.2)

says that JSJN―rN where y is obtained from (2.3) as r=-g(SJN, JN). The-

refore SJN―uJN with ft=―y.

Lemma 5.6. Given a real hypersurface M of CHn with constant mean cur-

vature and verifying the difjerentialequation AH=Q, then the function X: M-^R

defined by X(A)=g(Q, NA) is constant.

Proof. From (2.11) Q is normal to M everywhere. Therefore X(X)=

g(Q, a{X, N)) for X tangent to M. Hence from Lemma 5.5 and the second

part of Lemma 5.4,we obtain X(X)=0. Therefore 2.is constant on M.

We finallygive:

Theorem 5.7. Let M a real hypersurface of constant mean curvature in

CHn. Suppose M satisfiesthe differentialequation AH ―Q, with H the mean

curvature vector field of M in H＼n-＼-l)and Q a non-zero constant matrix of

i/x(^ + l)- Then M is locally congruent in CHn to the horosphere M%=

iz{{zlE.H＼n+1＼＼z0―^x12= 1}) described in §3.

Proof. From (1.7) and Lemma 5.6, one sees that Q2 satisfies

g{A, Q*)={l*-Ap)/2

for any point A of M, where X―g(Q, N) and fi=g(A, Q) are real numbers.

On the other hand g(A, I)―― 1/2 for any point A of M. Hence because

Mis a real hypersurface of CHn and <p an isometric embedding which is full

in i/*(n + l)(see §1), then there exist real numbers r1}r2 and rs so that

(5.4) r1O8+r2Q+r8/=0.

Moreover by Proposition 5.2 we have

(5.5) trace Q2=-2g{Q, Q)=0,

and from (2.10) we obtain

(5.6) trace Q=-2g(AH, /)=0.

Now (5.5) and (5.6) means that r3^=0 in (5.4). Let us see that r2 is also zero.

Indeed, if r2 were non-zero then since Q=£0, rx would be non-zero. But in this

case Q would be a diagonalizable matrix which only admits as eigenvalues to

0 and ―r2/ru This contradicts (5.5). Therefore rz=0. Then (5.4) means that
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Q is a non-diagonalizablematrix satisfying

(5.7) <?2=0.

Call /3to g(Q, A)=―(l/2)tracQ(QA) and assume B is positive(otherwise we

could find P^UXn + l) so that F1(?Pi1 = -gi = -diag((_j
j); o)).

Because

Q^.H＼n-＼-Y) and verifies(5.7) we know from Lemma 5.1 that there exists Pfc=

UHn + 1) such that

(5.8)

'-11

PQP~i= -1 1 ° =Q1

,0 0 ,

(see comentaries following Lemma 5.1). As the metric g is U＼nJriyin＼ana.nt>

we have from (5.8)

trace(Q1A)=-＼z0-z1＼t=―2fi

for every A in M. Thus, M is locally congruent to the real hypersurface

7r({z(EHln+1＼|zo―Zil2=2j8}) of CHn, and this one is in turn congruent to M*=

7i({zgHT+1＼＼zo-z1＼2= 1}). (See [8], Theorem 5.1). This concludes the proof of

Theorem 5.7.

Corollary 5.8. M$=n({z^H＼n+1| |z0―Zil2=l}) is, up to rigid motions of

CHn, the unique complete real hypersurface of CHn with constant mean curvture

which satisfiesthe differentialeqhation AH=Q, for a non-zero constant matrix Q.
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