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ORDER OF THE STANDARD ISOMETRIC MINIMAL

IMMERSIONS OF CROSS AS HELICAL

GEODESIC IMMERSIONS

By

Katsuya Mashimo

0. Introduction.

Let (p: M~*M be an Isometric Immersion of a Riemannian manifold M into

another Riemannian manifold M. Let j be an arbitrary geodesic in M para-

metrized by arc-length. If the curve <f>°yin M is of rank d and has constant

curvatures tcly･■■,Kd.x which are independent of the choise of the geodesic y,

then jt: M-^M is called a helicalgeodesic immersion of order d [7].

The standard isometric minimal immersions of compact rank one symmetric

spaces (CROSS) into spheres, which we will define in §.3, are examples of

helicalgeodesic Immersions. In [10] Tsukada calculated the order of the standard

isometric minimal immersions of CROSS as helical geodesic immersions except

the Cayley projective plane. In this paper we calculate the order of the standard

isometric minimal Immersions of CROSS in a differentmanner from the Tsukada's

one. Namely we prove the following

Theorem. The k-th standard isometric minimal immersions <pk of CROSS

into spheres are helical geodesic immersions. And the order of the immersions

are siven as follows:
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From Theorems of the author [5], [6], the order of the standard isometric

minimal immersions of CROSS coincide with their degree.
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1. Order of helices in a sphere.

Let c :I-+M be a curve parametrized by arc-iengrh In a Riemannian manifold

M. We assume that c(t),Vtc{t), ■･■, V{d~l)tc(f)are linearly Independent on / and

c(t),Vtt{t), '･･, V(d)tc{i) are linearly dependent on /. Then we have the usual

Frenet-Serret's formula;

Vttit)=Ky{Jt)YS)

FtYJt) = -fcM)c(t)+fc,(t)Y%(t),

F tY d^(t)=-Kd^{t)Y d^{t)+^-At)Y M

ptrd(o=-*d-a(oiVi(O,

where fctare positive functions on /, Ff are orthonormal vector fields along the

curve c and V is the Levi-Civita connection of M. A curve c is called a /ie//x

0/ or^fer d, if Kt are constants.

Let Sf be the unit sphere in RN+l centered at the origin. Then fo(t)= c(t)

･c(0), /i(0=c(0-c(0), ･■･, fd(t)^c(t)-Yd(O) satisfies the following differntial

equation ([2], p. 177).
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By a suitable coordinate transformation, a helix in the unit sphere Sf is an

orbit of the one parameter subgroup in SO(N+1) generated by the following

vector ([2], p. 177).

(1.2)
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Then the helix is contained in the totally geodesic submanifold Sf={(x0, x1; ■■･,

xd, 0, ■■･,0)|2f=0(xi)2=l} and is not contained in any totally geodesic submani-

fold of st.

The order of a helix in the unit sphere is characterized by the following

Lemma 1.1. Let c:I―>S? be a helix of order d. Then there exists a

polynomial P of degree rf+ 1 such that

(1.3) P(d/dt)(fo)=Q, te:I,

where fo(t)= c(t)-c(O). For any polynomial of which degree is less that rf+ 1

(1.3) does not hold.

Proof. Let Pit) be the charasteristic polynomial of (1.2). Then fQ(t)

satisfies(1.3)([3], p. 161).

We may assume that N~d, i.e., there does not exists any totally geodesic

submanifold which contains the helix c.

By the differentialequation (1.1) we get the following

(1.4) (d/dt)nfo=an,nfn + an,n-1fn-1+-+an.ofo, l£n£d,

where an>i, OfSzfSn, are constants and are>n^0, iSn^d. Let P^^EjLobjX '*,

l<Lm^d. Now we assume that(1.3) holds for P. Then by (1.3)and (1.4)we get

(1.5) 0= cmfm+cm-1fm-1+ ･■■+cofo

where cm=am,m, cm-i, ･･･,c0 are constants. (1.5)implies that c{t)is contained

in the linear subspace which is perpendicular to a non-zero vector (c0,c1}･･･,

Cm, 0,■･･,0), which is a contradiction. So we get the Lemma. Q.E. D.

Remark 1.2. (I) The above Lemma is also true, If the parameter t Is pro-

portional to the arc-length.

(ii) The polynomial with the smallest degree for which (1.3) holds is unique up

to constant factor.

2. Jaccbi polynomials and their finite cosine expansion.

Let p, q be real numbers which are greater than ―1. Then for each non-

negative integer k jacobi polynomial Pip'q)(t)is defined by

PP'^WMiP+Dk/WM-k, k+p+g+l) £+1; (1-0/2), t<=R,

where 2FX is the hypergeometric function of Gauss and (p + l)k = (p + l)-(p+2) ･･･

ip-＼-k).The Jacobi polynomials are characterized by the following
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Lemma 2.1. The Jacobi polynomial Pip-q)(t)is the unique analyticsolutionof

the following differentialequation with y(l)= l,

a-~nd2y/dt2-((p+q+2)t+(P~-q))dy/dt+k(p+q+k-i-l)y=0.

When p=q=n/2―l (n; positiveinteger), the Jacobi polynomial Pj,p>9)(cos6)

has finitecosine expansion.

Lemma 2.2. ([8], p. 94).

pyi/2-l.n/2-l)(cos0)

= aecoske + a1cos(k―2)0 + ･■･+

(Or.fe/2]COS6 , if k is an odd integer ,

o-Lk/21 , if k is an even integer ,

where ajf 0^/^S[&/2], are positiveconstants.

We can derive the finitecosine expansion for some Jacobi polynomials by

the following

Lemma 2.3.([8], p. 250). Let p, q, r be real numbers such that r^p^O,

q>~＼. Then

Pir-≪(O=

where dk,j are positiveconstants.

3. Proof of the Theorem.

Let (G, K) be an irreducible symmetric pair of compact type. Let g [resp.

I] be the Lie algebra of G [resp. K~＼,and p be the orthogonal complement of

I in g with respect to the Killing form B of g. Let g0 be the G-invariant

Riemannian metric on M=G/K, which is a G-invariant extension of ―B＼pxp.

Then (M, g0) is a Riemannian symmetric space.

Let F be a real irreducible representation of G with a G-invariant inner

product < , >, which contains a K-fixed unit vector v0 (such a representation is

called a classone representation of the pair). Then

(3.1) 0:M―>V;gK―> g-v0

realizes an isometric immersion of (M, c2g0) for some constant c into the unit

sphere in V centered at the origin [11].

Define a linear map A: F―>C°°(M)by
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A(v)(gK) = <v,g-vo>, g^G.

Then A{v) is an eigen-function of the Laplace-Beltrami operator A of (M, gQ)

[11]. Actually A is a G-homomorphism. Since A°g^g°d, j is a scalar

operator on A(V), i.e., A{V) is contained in some eigin-space of A, say the k-th

eigen-space Vk. If M is of rank one A(V)~Vk [1]. So we denote by <pk the

immersion defined by (3.1) when A(V)~Vk, and callthe k-th standard isometric

minimal immersion of M.

Hereafter we assume that M is of rank one. The v0 is unique up to sign

for each class one representation [1]. It is easily seen that <f)kis a helical

geodesic immersion.

Since v0 is a K-fixed vector h = A(v0) satisfies

(3.2) h(k-p) = h(p), k^K, peM.

The function in V* which satisfies(3.2) is called a zonal spherical function of

Vk, which is unique up to sign (since v0 is so).

Now we give a explicitexpression of h―A(v0) using Jacobi polynomials.

Assume that a function h^C°°(M) satisfies(3.2),then thre exists a function

h0 defined on [0, k~＼,where k is the diameter of (M, g0), such that

(3.3)
h(p)=hQ(d(p))

where dip) is the distance of p from the origin eK on M. For such functions

there exists a differentialoperator did) on (0, x) such that

(3.4) (Jh)(p) = (d(J)ho)(d(p)), rf(/>)e(O,n).

From [4, p. 270] or [9, p. 203], d(J) is calculated as follows

T tth/ta/ta 3 1

3(J)=

■ rf

. A

I A

*/dO2

2/d62~(n~l) cot 0 d/dd > if M=Sn, n^2

>-~dydd2-((n-l)cotd/2-＼-cotd)d/dd , if M=CPn , n^2,

-d2/dd*-(2(n-l) cot#/2+3cot 6)d/dd , if M=QPn, n^2,

-d2/d62-(4cot6/2+7cot6)d/dd , if M-CayP2.

After a change of variable t―cos 6, d(J) is given as follows.
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―(l-t2)dz/dt*+ntd/dt

-(l-nd2/dt2+((n + l)t-＼-(n-l))d/dt :

-a-ti)d*dtz+{2(n + l)t+2(n-l))d/dt..

-Q.-t2)d*/dt*+(12t+£)d/dt

if M=Sn , n^l,

if M=CPn , n^2

if M=QPn , n^2

if M=CayP2.

By a formula of Freudenthal[9] we can calculatethe eigenvalueof A

Lemma 3.3. The k-th eigen-valueof A is

k(k + n-l) , if M=Sn , n^l

Hk + n) , if M=CPn, n^2

fc(fe+2w-H), if M=QPn, n^2

k(k+ll) , if M=Ca.yP*.

Let k be an eigen-function of A corresponding to the fe-theigen-value which

satisfies(3.2). Then h0 (defined by (3.3))is an eigen-function of A corresponding

to the same eigen-value. So from Lemma 2.1, Lemma 3.2 and Lemma 3.3 we

get the following

Lemma 3.4. The zonal spherical function h of {M, ga) which is contained in

Vk is h(p) = ho(d(p)). where h0 is

hjid)=

p

p<

≫/8-l.n/2-l)(C0S Q)

."-'■■"(costf)

"^･"(cosfl)

･3)(cos0)

// M=--Sn, n^l,

if M=CPn, n>i2,

if M=QPn, n^2,

if M=CayP2.

Let jx{t) be a geodesic in M Issuing from the origin eK in the unit direction

XeTeKM=p. Since Mis of rank one (3.2) implies that A(vo)(Tx(t))= Tx(t)-Tx(fl)

is independent of the choise of X. From the uniqueness of the zonal spherical

function we get A{va){jx{t))= kha{t),fe(0, tz),for some non-zero constant k. So

we have only to calculate the smallest degree of the polynomial such that (1.3)

holds.

Case 1. M=Sn (n^2). Since h0 has finitecosine expansion by Lemma 2.2,

h0 satisfies(1.3) for



Order of the standard Isometric minimal immersions

f (£2+i), if k is an odd integer,

JP(0 =
UM-^8)-(f2+()fe-2)8)

I (t2Jr4)-t, if k is an even integer.

263

It is easily verifiedthat (1.3) does not hold for any polynomial of which degree

is less that k + 1. So the Theorem is proved.

Case 2. M=CPn (n^2), M^QPn (n^2) or M=Cay P2. Since h0 has finite

expansion by Jacobi polynomials from Lemma 2.3, h0 has finitecosine expansion

k
ho{d)― 2 djcos jd ,

where c,-are positive constants. So h0 satisfies (1.3) for

ra=(n (*･+/■))･*

Also In this case it is easily verified that (1.3) does not hold for any polynomial

of which degree is less than 2&+1. So the Theorem is proved.
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