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CONSTRUCTION OF INVARIANTS

By

Akihiko Gyoja

1. Introduction.

Let G be a connected reductive group defined over the complex number

field C, V a finite dimensional vector space and p: G->GL(V) a rational repre-

sentation of G. Such a triplet(G, p, 7) is called a prehomogeneous vector space

if 7 has an open G-orbit, and calledirreducibleif p is an irreducible representa-

tion. A complete list of irreducible prehomogeneous vector spaces is given by

M. Sato and T. Kimura [12]. The purpose of this paper is to construct ex-

plicitlyan irreducible relative invariant for every irreducible prehomogeneous

vector space. If (G, p, V) and (G', p', V) are in the same castling class, then

an irreducible relative invariant of (G, p, V) can be constructed from that of

(G', p', V). (See proposition 18 in [12, section 4].) Hence it is enough to con-

sider irreducible reduced prehomogeneous vector spaces. (See [12, section 2]

for the generalities concerning the castling transformations.) In the tables I

and II of [12, section 7], irreducible relativeinvariants are given except for the

following six cases;

(6) (GL(7), A9, 7(35)),

(7) (GL(8), A,, 7(56)),

(10) (SL(5)xGL(3), A*RAU 7(10)07(3)),

(20) (Spin (10)xGL(2), (half spin)R^ 7(16)07(2)),

(21) (Spin (10)xGL(3), (half spin)<8>Au 7(16)07(3)),

(24) (GL(l)xSpin(14), (half spin),7(64)).

Irreducible relative invariants of (6) and (7) are constructed by T. Kimura [8],

and that of (20) is constructed by H. Kawahara [7]. (Concerning a construc-

tion of an invariant of (7), see the last section of the present paper.) Hence

our task is to construct irreducible relative invariants nf C10V (21) and (24 V
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2. Invariants cf SL(5)xGL(3).

Let A2C5 be the Grassmann tensor product of C5 of the second order. If

＼ex,･･･, es} is a basis of C5, a general element x of A2C5 is uniquely expressed

x= S xtjetAej
lii<j£5

In this section, we reserve the lettersx, y, z, w and u for such elements. Their

coordinates are written as xih y>ijetc. and we put Xji= ―Xij etc. A general

element of the representation space V=(A2C5)(g)Cs can be regarded as a triplet

(x, y, z) and the action p of G―SL(5)xGL(3) on V is given by

pigu gz){x, y, z)=(gi*, giy, giz)-lg2

for (gi> g2)^G, where gxx etc. are the natural action of SL(5) on AZC5. Con-

sider the following polynomials;

/l(%)―X23X45 X2iX$s~＼-X25X34,

J 2(^)==X34X5!―X35X4iH~X31X45,

/3(^)==^45-^I2 Xi＼Xz2~T~£42X51>

fi＼X.)―X5iX2z―X.52X13+ -£53^12>

/ b(x)=Xi2X34 XizXh~＼-XiiXzz-

Remark 1. We introduced these polynomials by a representation theoretic

consideration as in [8], so that the property (3) below is satisfied.

Let D,. r be the polarization which transforms a letter x to y [13], In our

case

Let

and

Dy.X = 2 yt}jr-

lSt<i<5 OXij

gi(x, y)=Dy.xft(x),

5
P(x, y, z, w, u)= S gi(x, y)gj{z, w)ui,j

i. i=＼

By the definition of P,

(1)

Hence

(2)

P(x, y, z, w, u)=P(y, x, z, w, u)――P(z, w, x, y, u)

P{x, y, x, y, z)=0
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Lemma. The polynomial P is a relative invariant with respect to GL(5).

More precisely,

(3) P{gx, gy, gz, gw, gu)=(detg)2P(x, y, z, w, u)

for g<=GL(5).

Proof. Invariance with respect to the scalar action of GL(＼) is obvious.

By the symmetry, it is enough to show the invariance with respect to the

matrix unit E12. Note that ―E12 acts as the polarization which transforms 1

to 2. Hence ―Elift=―fi and Elsfi=0 for ii=2. Hence ―E12g2=―g1 and E12gt

=0 for i^2. Using thisfact,we can easily show that E12P(x, y, z, w, u)=0. □

(4) If at most two kinds of letters appear among {x, y, z, w, u), then

P{x, y, z, w, m)=0, e.g., P(x, x, x, y, y)=0 etc.

Proof. In such a case, P gives a relative invariant of (GL(5), A2Q)A2,

7(10)07(10)) which is a prehomogeneous vector space without relativeinvariant

other than constants [12; p94]. This fact can also be shown by a representa-

tion theoretic consideration as in [8]. □

By (4), P{z, z, y, y, y)=0. By the polarization Dx, y> we get

(5) 2P(z, z, x, y, y)+P{z, z, y, y, x)=0.

Hence by (1),

(6) 2P(z, z, x, y, y)=P(y, y, z, z, x).

By (4), P(y, y, y, x, #)=0. By the polarization DZtX, we get

(7) P(y, y, y, x, z)+P{y, y, y, z, x)=0.

By (1) and (7),

(8) P{y, y, y, z, x)=-P(y, y, y, x, z)=P(x, y, y, y, z).

By multiplying the both sides of (6) and (8),

(9) 2P(y, y, y, z, x)P(z, z, x, y, y)=P(x, y, y, y, z)P(y, y, z, z, x).

Theorem 1. Put

F(x, y, z)=P{x, x, x, y, z)P(y, y, z, z, x)2+P(y, y, y, z, x)P{z, z, x, x, yf

+P(z, z, z, x, y)P(x, x, y, y, zf

―P(x, x, y, y, z)P{y, y, z, z, x)P(z, z, x, x, y)

-4P(x, x, x, y, z)P(y, y, y, z, x)P(z, z, z, x, y).
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Then F is an irreducible relativeinvariant of(SL(5)xGL(3), AZ$)AU V(10)RV(3))

which corresponds to the character

(Ru Ri) ―^ (det s2Y , (su go)^SL(5)xGL(3).

Proof. Since the degree of an irreducible relative invariant is known to

be 15 [12, section 7, Table I (10)], it is enough to prove the relative invariance

of F. The invariance with respect to SL(5)xGL(l) is obvious, where GL{＼) is

the set of scalar matrices in GL(3). Hence it is enough to see the invariance

with respect to the actions of the matrix units £^<ELie(GL(3)) for *=£/. Since

x, y and z appears symmetrically in F, it is enough to consider only one of

them. The action of {£^|z=£/} are nothing but the polarizations DVtX etc.

Hence it is enough to show that Dy,xF(x, y, z)=0. By (2) and (4), we have

Dy, xF(x, y, z)=P(x, x, y, y, z)P{y, y, z, z, x){P(y, y, z, z, x)-2P(z, z, x, y, y)}

+2P(z, z, x, x, y){2P{y, y, y, z, x)P(z, z, x, y, y)―P(x, y, y, y, z)P(y, y,z,z,x)}

+4P(x, x, y, y, z)P{z, z, z, x, y){P{x, y, y, y, z)-P(y, y, y, z, x)＼

By (6), (9) and (8), the right hand side equals zero. □

Remark 2. Let G be any reductive group and p: G->GL(V) any rational

representation. Let [fo]eF/G be a generic point, v0 a point in the closed G-

orbit lying above [i>0], GVo the isotropy subgroup of G at v0, T a maximal

torus of GVo, N the normalizer of T in G, 7r={vGVrUv=v, ^T}, C[V] the set

of polynomial functions on 7, 0 a rational character of G and

TO^={/eC[F][/(^)=^)/(t;UGG}.

Define CIF21]^'*5 in the same way. Then we have an isomorphism of Chevalley

type

c[y~＼G'<f>=c[yTY-K

which is given by the restriction.(See [11; Appendix 2].) For many prehomo-

geneous vector spaces (G, p, V), it is quite easy to give a non-zero element of

C＼VT~＼N'$.Thus we can describe the restrictionof an irreducible relative in-

variant in C[V~＼G''*'to VT. In our case, this description gave us enough infor-

mation to determine the explicit form of F in our theorem.

Remark 3. In our case (G, p, V) has a unique split Z-form [3]. For this

Z-form, V(Z) may be identified with the lattice of V(C) generated by

(etAej, 0, 0),(0, etAeJt 0),(0, 0, etAej),
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where l^z</^5. Then ±2~5F(x, y, z) are the irreducible relative invariants

in Z[F].

In fact, since gi(x, x)=2fi(x), we can show that 2~zP{x, x, y, y, z),

2~1P(y, y, y, z, x) etc. belong to Z＼V~＼. If we take

OiAe2+03A04> 02A03+04A£5, eiAe3+e2Ae5)

as v0 in remark 2, then we can take

{diag(l, t,t~＼t＼t-2)xdiag(t-＼1, t)＼ts=C-{0}＼

as T. Then C―VT is the linear span of the following elements;

(0iAe8, 0≫0).(≪3A≪4)0, 0),

(0, e2Ae3, 0),(0, e4Ae6j 0),

(0, 0, e1Ae3),(0, 0, e2Ae5).

An easy calculation shows that

2~5F{x,y, z)＼c=-xs12xliy2syii5z3nzts.

Hence 2~5F(x,y, z) is irreduciblein Z[F]. Note that we have also shown that

in our rase.

3. Invariant of Spin(10)xGL(3).

The purpose of this section is to construct an irreducible relative invariant

of (Spin(10)xGL{3), (half spm)<g>Alf F(16)(g)F(3)). In this section, we need the

theory of spinors. See [12; pp. 110-114] and [1] for the generalities concerning

the spinor groups and spinor representations. Here we use the same notations

as in [12].

A general element x of the representation space F(16) of the even half spin

representation of Spin (10) can be written uniquely as

x = xo+ S xiJeieJ+ 2 xwieiejekei .

In this section, we reserve the letters x, y, z and w for such elements. Their

coordinates are written as x0, ytj etc., and we put xji= ―Xij and

for any permutation p of i<j<k<l. A general element of the representation

space V(16)RF(3) can be regarded as a triplet(x, y, z) and the action p=piRpz
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of G=Spin(lO)xGL(3) on V is given by

p(gu £≪)(*,y, z)=(pl(gl)x, px(gi)y, pi{gi)z)-tp2(g2)

for (gu gi)<E:G, where px is the even half spin representation of Spin (10) on

F(16) and p2 is the natural representation of GL(Z) on V(3).

Consider the following polynomials;

J 1＼X)― X12Xisi5~rXisXi2ib X14X1235
+ X15X1234 ,

f 2＼X)――■^23-^2451"r-^24-^2351-^25X2341~T-^21-^2345>

f S＼X)= X34X35i2"1~X35X3412 X31X3452~TX32X3451 ,

J i＼X)=z X45X4123
+£41X4523 X42X4513+ X43X4512 ,

J 5＼X)― X5iX5234+ X52X5i34 X53X5124+X54X5123 ,

/6(£)::::::£o£2345-^23-^451-^24-^35 ^25-^34>

/7(x)=:XoX345i X34X5i + X35X4i X31X45 ,

J 8＼X)= X0X4512 X45Xi2~rX4iX52 X42X51 ,

_/9VX_)=XoX5i23 ^51^28~T^52^13 X^%X＼i,

J ld＼X)―XqX 1234 X12X34+ X13X24 ^ 14^23 >

£rf(x,y)=Dxvfi(x),

P{x, y, z, w)―
5
2 (gt(x, y)gi+5(z, w)+gi+5(x, y)glz, w)),

Then by the definition of P,

(1) P{x, y, z, w)=P(y, x, z, w)=P(z, w, x, y).

The polynomials /* are known as spinor invariants [1]. Concerning the pro-

perties of the spinor invariants, what is necessary for our purpose is the fol-

lowing fact;

10
fi(pi(g)v)=%X(g)ijfj(v)

･7=1

for g<E Spin (10) and 1^/^10. Here 1 denotes the vector representation of

Spin(10) ([12]), and x(s)a denote the matrix components. Since the image of

X is the special orthogonal group which preserves the symmetric bilinear form

5
S (£i7<+6+£i+6i?i),

the polynomial P is a S/>zn(10)-invariant,i_e>>
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(3) P(gx, gy, gz, gw)=P(x, y, z, w)

for g^Spin(10). Here we wrote gx etc.for px{g)x etc. Of course, (3) can also

be shown by a direct calculation as in section 2. Since P(x, x, x, x) is an

(absolute) invariant of the non-regular prehomogeneous vector space (Spin(10),

half spin, F(16)) without relative invariants other than constants [12; section 7,

Table III(6')],

(4) P(x, x, x, je)=O .

Polarizing (4) by Dyx, we get

(5) P{x, x, x, 30=0 .

(Here we used (1).) Polarizing (5) again by Dyx, we get

(6) P(x,x,y,y)+2P{x,y,x,y)=Q.

Polarizing (6) by Dzy, we get

(7) P(x, x, y, z)+2P(x, y, x, z)=0.

Theorem 2 (H. Kawahara [7]). An irreducible relative invariant of

(Spin(10)xGL(2), (half smn)RAu F(16W(2)) is given by F2(x, y)=P(x, y,x,y).

Proof. It is easy to see that F2(x, y)=tO. (See remark 4 below.) By (3),

the invariance with respect to Spin(10)xGL(l) is obvious, where GL(1) is the

set of scalar matrices in GL{2). By (1) and (5), we have

DxyFt(x, y)=P(x, x, x, y)+P(x, y, x, x)=0.

Since F2(x, y)=zF2(y, x), Fz{x, y) is a relative invariant with respect to Spin(10)

XGL(2). Since the degree of an irreducible relative invariant is known to be

4 [12; section 7, Table I (20)1, F2 is irreducible. □

Remark 4. In the case treated in theorem 2, (G, p, V) has a unique split

Z-form [3]. For this Z-iovm, V(Z) may be identified with the lattice of V(C)

generated by the elements

(1, 0),(0, 1),

(etej, 0), (0, etej), (l^i<j£5),

(eiejekei, 0),(0, eiejekei), (l<i<j<k<l^5).

Then ±F2{x, y) are the irreducible relative invariants in Z＼V~＼. In order to

prove this, take

(1+6,6263^4, 6,65+62606465)
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as v0 in remark 2. Then we can take as T the inverse image by (Xxidentity)

of the set of

diag(l, U, tt,U, tl;l, r2＼ ti＼ Ul, ^2)Xdiagtf5, U1)

where t2,t3,t4,f5GC-{0} and tztsti=l. Then C=VT is the linear span of the

following 4 elements;

(1, 0),(0102^304, 0)>(0, e^i), (0, 22232&C) .

An easy calculation shows that

F2(x, y)＼c=x2x133iy15y23i5.

Hence F2 is irreducible in Z[V~]. We have also shown that

in our case.

Theorem 3. An irreducible relative invariant of ((Spin(lO)xGL(Z),

(half spin)R^ 7(16)07(3)) is given by

Fs(x, y, z)=P(x, x, y, y)P(x, y, z, z?+P(y, y, z, z)P(y, z, x, xf

+P(z, z, x, x)P{z, x, y, y)2―P(x, x, y, y)P(y, y, z, z)P(z, z, x, x)

+2P(x, x, y, z)P(y, y, z, x)P(z, z, x, y).

Proof. It is easy to see that Fs(x, y, z)^0. (See remark 5 below.) By (3),

the invariance with respect to Spin (10) xGL(l) is obvious, where GL(1) is the

set of scalar matrices of GL(3). Since the degree of an irreducible relative in-

variant is known to be 12 [12; section 7, Table I (21)], it is enough to show

that DxyF3(x, y, z)=0. By (1) and (5), we have

DxyF3(x, y, z)=2P{x, y, z, z)P(x, x, y, z){P(x, x, y, z)+2P(x, y, x, z)}

+2P(x, x, z, z)P(x, z, y, y){P(x, x, y, z)+2P(x, y, x, z)}.

Hence by (7), DxyF3(x, y,z)=0. D

Remark 5. In the case treated in theorem 3, (G, p, V) has a unique split

Z-form [3]. For this Z-form, V{Z) may be identified with the lattice of V(C)

generated by

(1,0,0), (0,1,0), (0,0,1),

(etej, 0,0), (0, eteJt0),(0,0, e^e,) , l^z</^5 ,

(eiejekei,0,0), (0,0^0*01,0), (0,0^0*0*01), l^*'</<&</^5 .
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Then ±2~iFz(x! y,z) are the irreducible relative invariants in Z[V"].

since gi{x,x)=2ft{x), we can show that 2~2P(x, x, y, y), 2~lP{x,y,z,z)

long to Z＼V＼ Hence 2-"Fz{x,y,z)^Z＼y＼ If we take

(1 + 01020304, 0105 + 02030405, 0102+010S0405)

445

In fact,

etc. be-

as v0 in remark 2, then we can take as T the inverse image by (Zx identity^

of the set of

diag (1,(UU)-1,h, U,{UUY2; 1, UU, rx＼n＼ (^?2)2)Xdiag((t1t2)-＼Uh, 1),

where tu t2^C―{0}. Then C ―VT is the linear span of the following 6 ele-

ments ;

(1,0,0),(0^04, 0,0),

(0,6x65,0),(0, e2e3e4e5,0),

(O,O,0i02),(0,0, 0i08040b).

An easy calculation shows that

2" Fz＼X,y, Z)＼C― ^0-^12343'l53;234o^l22l345･

Hence 2~4Fs(x,y,z) is irreducible in Z[F]. We have also shown that

in our case.

4. Invariants of (GL(l)xGL(7), AtRAu F(35)cF(7)).

The purpose of this and next sections are to construct an irreducible rela-

tive invariant of (GL(l)xSpin(H), (odd half spin),7(64)), where GL( 1) acts on

7(64) as scalars. First, we need to construct irreducible relativeinvariants of

(GL(l)xGL(7), AZ@AU 7(35)c7(7)), where GL(1) acts on 7(7) as scalars. A

construction of the irreducible relativeinvariants of this prehomogeneous vector

space is given by T. Kimura. See [8; p. 96, Table A (14)]. Here we give

another construction.

Let {elt･･■, <?7}be a basis of 7(7). Then {eiAejAek＼l£i<j<k^7} is a

basis of 7(35). We write eijk for efAe,-Ae*. A general element of F = F(35)

07(7) can be uniqely expressed as

7

Put xjik――xijk etc. If we take

0123+567+0145 + 0246+^347)004
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as v0In remark 2, we can take

{diag(tu u,n,i,n＼n＼t-^uuu^i)

as the maximal torus T of GVo, where G=GL(l)xGL(7). (See remark 2 for the

notations.) Then C=VT is the linear span of the following6 elements;

#123>0567Ĵ145>̂246>̂347>#4･

The relativeinvariantsof (N, VT) are products of

(4.1)

(4.2)

#i28^567^4 >

･^■123^-567-';'145^-246^'347 j

and scalars. Let /6 and /7 be the relative invariants of (G, V) whose restrictions

are (4.1) and (4.2) respectively.

Theorem 4. (1) We have

T ―V"r2 r2 r2

―Z2J Xi23-^124-^356^456-^7

-＼-Z2jXi23Xi24-^356^457-^6^7

-＼-/jZj■^123-^124^'356-^5G7^4-^7

4^j X 123.X15$%216%345-^7

4^J XiZ3Xii5X2igXs57XeX7 ,

where S'x?23X456x? e£c.means the sum of distinct terms among

＼XpW, PC2),pC3)-^pC4),pC5),pC6)^p(7)I/)fc=@7}-

T/ie relative invariant J6 corresponds to the character

(gu g2)-^gi(detg2y , (gu g2)(EGL(i)XGL(7).

(2) We have

Ji^1^^ i X 123X124X135X246-^^357^467^567

2j iXi23Xi45X246:'('357^467^567

"TZLl i Xi23Xi45X246X347X667

~T^J HZ Xi23Xi24Xi35X256X347X4g7X587

"T^J i Xi23Xi24Xi35X2SgXq(!7X457X4(;7
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^2-i i X123X124X156-K257%345･£367x467

4S ±Xl23X246X356-^2B7Xl45^167X347･

where S/±Xi23%i24... etc. means the sum of distinct terms among

{sign (/>)£Pa),pc2),p<3)*pc4),jjC5),p(6)-lP^&i＼ ･

The relative invariant /7 corresponds to the character

(gu gz) ―> (det£2)3, (£1, g,)^GL{l)xGW).

447

Remark 6. The above formula for J1 is already obtained by J. Igusa [5].

A different formula for /7 is given in [2]. (See also [8].)

Proof of (1). We write

(abc, def, ■■■,i,j, ･･･)

for the monomial

Xabcxdef '" XiXj '" ,

and

p(abc, ･･･)

for

(p(a)p(b)p(c),･･･),

where p is a permutation. Put

m1=(123,123,456,456,7,7),

m,=(123,123,456,457,6,7),

m,=(123,124,345,567,6,7),

m4=(123,124,356,456,7,7),

ra5=(123,124,356,457,6,7),

m6=(123,124,356,567,4,7),

m7=(123,156,246,345,7,7),

m8=(123,145,246,357,6,7).

By considering the invariance with respect to the maximal torus of GL(l)x

GL(7) and the permutation matrices in GL(7), we can show that J6 is of the

fnrm
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Sa*(2'ro≫),

with flj―1. Since (34)m8= ―m3, S'm3=0. So we may suppose that a3=0. Let

us consider the derivation Dtj (i=fcj)such that

DtjXkim―5jkXiim+djiXktm+3jmxku (l<Lk<Km^7),

and

Dtjx^djtxt {l^k^l).

Since ―Di} is nothing but the action of the matrix unit En, it is enough to

determine ak's so that

k

If (y)=(76)

appears only In

Hence 2ai+a2=0, a2―

(123,123,456,457,7,7)

D76(123,123,456,456,7,7)=D76m1,

£>76(123,123,456,457,6,7)=£>76m2,

-2. If (y)=(34),

(123,123,356,456,7,7)

appears only in

#34(123,124,356,456,7,7)=Z)s4m4,

Z?M(123,123,456,456,7,7)=Z)84W1.

Hence 2a1+a4=0, at=-2. If (y)=(34),

(123,123,356,457,6,7)

appears only in

#34(123,124,356,457,6,7)=D3im5.

D34(123,123,456,457,6,7)=Dum2.

Hence aB= ― a2

appears only in

Hence g6=

=2. If (i/)=(34)

(123,123,356,567,4,7)

D34(123,124,356,567,4,7) =DstmB,

a*

#34(123,123,456,567,4,7)=Du(46)mz.

=2. If (:;)=(25),

(123,126,246,345,7,7)
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appears only in

Z>25(153,126,246,345,7,7)=-JD25(13)(25)m4,

D25(123,156,246,345,7,7)=D25m7,

D25(123,126,546,345,7,7)= -£>25(465)m4.

Hence a^=2ai=-4. If (y)=(34).

(123,135,246,357,6,7)

appears only in

£34(124,135,246,357,6,7)=L>34(124653)m6,

#84(123,145,246,357,6,7)=Dum8,

£34(123,135,246,457,6,7)=£>84(23X45)roB.

Hence a-3+a6+a8=Q, a8――4. Thus we have completed the proof of (1). □

Remark 7. Let Pt={p^<&1＼pmi=mt}. Then

A=(c(123)0(456)) x <(14)(25)(36)>,

P2-(5(123)X<(45), (67)>,

P4=<(12),(56),(15)(26)>x<(34)>,

P,=<(12),(34X67)>,

/J,=(@(12)x@(56))x <(15)(26)(47)>,

P7=<(26)(35),(12X45),(23)(56)>s<54,

P8-<(24)(35),(23)(45X67)>,

where an isomorphism c4―>P7 is given by

(12) ->(26)(35),(23) ->(12)(45),(34) ->(23X56).

Hence the number of terms apearing in S'm* (i―1,2,4,5,6,7,8) are 70,210,315,

1260,630,210 and 1260 respectively. Let /v=r/=/6. Then /v(grad)/s+1=6(s)/s

with a polynomial

Ks)=Ws + l)(s+!)(S+y)2(s+4)(S+5)

[6]. Since &(0)=/v(grad)/=255272, bo=2＼

Proof of (2). We keep the conventions above. Put

mx=(123,124,135,246,357,467,567),



450 Akihiko Gyoja

m2=(123,124,134,256,357,467,567),

m,=(123,123,145,246,357,467,567),

7n4=(123,123,145,246,347,567,567),

mB=(123,124,135,256,347,467,567),

m6=(123,124,135,256,367,457,467),

m7=(123,124,135,267,367,456,457),

m8=(123,124,156,257,346,357,467),

m9=(123,124,156,257,345,367,467),

roio=(123,246,356,257,145,167,347),

mu=(123,123,123,456,457,467,567),

m18=(123,123,124,345,467,567,567),

mi,=(123,123,124,356,457,467,567),

m14=(123,123,145,245,367,467,567),

m18=(123,124,125,345,367,467,567),

m16=(123,124,125,346,357,467,567),

By considering the invariance with respect to the maximal torus of GL(1)>

GL(7) and the permutation matrices of GL(7), we can show that /7 is of th<
form

s a*(2'±m*),

with a4=l. Since(23)(67)m2=―m2, (45)mn―mn, (56)mi3=mls and (12)mu=mu,

we have

S'±w*2=2'±w*n=2'±wi18=2'±m≫=0.

So we may suppose that a2=an=aiS=ali=0. As in the proof of (1),let us

determine the coefficientsak so that

DijBak(Z'±mk)=0.
k

If (i/)=(34),

(123,123,123,345,467,567,567),

appears only in

Z>34(123,123,124,345,467,567,567)=£>34m12

Henr.fin,≪=0_ Tf(7?W34Y
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(123,123,125,345,367,467,567)

appears only in

D34(123,124,125,345,367,467,567)=Dsimu ,

#34(123,123,125,345,467,467,567)= -D34(45)m12

Hence a15=-2a12=0. If (*/)=(34),

(123,123,125,346,357,467,567)

appears only in

£34(123,124,125,346,357,467,567)=DMmu ,

DM23,123,125,346,457,467,567)=-Z)84(45)m18

Hence a16= -als=0. If (iY)=(54),

appears only in

Hence as= a4

appears only in

(123,123,145,246,357,567,567)

£64(123,123,145,246,347,567,567)=£54m4

ZU123,123,145,246,357,467,567)=D5iniz

= -1. If (i/)=(34),

(123,123,135,246,357,467,567)

#34(123,124,135,246,357,467,567)=DMm1,

#34(123,123,145,246,357,467,567)=Dtim,,

#34(123,123,135,246,457,467,567)=-Z)84(23)(45)mls

Hence a.i+az― a13―0, Ci=l. If (y)=(34),

(123,123,135,256,347,467,567)

appears only in

#34(123,124,135,256,347,467,567)=D3im5,

D34(123,123,145,256,347,467,567)=-D84(45)ms,

Hence a3+as=0, aB = l. If (*/)=(34),

(123,123,135,256,367,457,467)

appears only in

£>34(123?124,135,256,367,457,467)=D^m,,

£>34(123,123,145,256,367,457,467)=-£>M(12)(456)m8,

5,4(123,123,135,256,467,457,467)=DM(23)(4567)m12,

451
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Hence a6+a3+2a12
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=0, fl8=l. If (≫)=(34),

(123,123,135,267,367,456,457)

appears only in

Du(123,124,135,267,367,456,457)=Dum7,

#34(123,123,145,267,367,456,457)=D34(123X46)(57)m14,

D34(123,123,135,267,467,456,457)=£84(23X457)m13.

Hence a7+ali―an―Q, a1―0. If (ij)=(SA),

(123,123,156,257,346,357,467)

appears only in

I>34(123,124,156,257,346,357,467)=Z)34?n8,

D34(123,123,156,257,346,457,467)=D84(23)(46)m8.

Hence as+az -0, a8=h If (y)=(34),

(123,123,156,257,345,367,467)

appears only in

#34(123,124,156,257,345,367,467)=Dum9,

D34(123,123,156,257,345,467,467)=-Z>M(4567)m4.

Hence a9+2a4=Q, a≫=―2. If (y)=(34),

(123,236,356,257,145,167,347)

appears only in

Z)34(124,236,356,257,145,167,347)=-D84(24573)m9.

#34(123,246,356,257,145,167, M7)=D3im10,

L>34(123,236,456,257,145,167,347)=ZU123)(4657)m9.

Hence ―a9+aiQ―a9―0, a.iO=―4. Thus we have completed the proof of (2). □

Remark 8. Let Pi={£e(57|^mi=sign(/>)mj}. Then

P1=<( 1357642),(17)(26)(35)>=Z2 k Zn,

P3=<(23)(45)(67)>sZ2,

P4=<(12)(56),(23)(67)>x <(17)(26)(35)>s@8 *^2,

JP5-<(23)(45)(67)>sZ2,

P≪=<(17X26X34)>sZ2>
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P8=<(156)(274)> = Z3,

P9=<(12)(67), (16)(27)> x <(34)>^Z1 x Z2,

r^io= 0x^3(^62) ･

(Note that SLS(Z2) is of order 168 and is the automorphism group of the finite

projective plane over Z2.) Hence the numbers of terms appearing in S'±w≪

(i=l, 3, 4, 5, 6, 8, 9, 10) are 360, 2520, 420, 2520, 2520, 1680, 630 and 30 respec-

tively. Let fv=zf=L. Then /v(grad)/s+1=6(s)/s with a polynomial

6(s)=&o(s+lXs+2)(s+-|)(s+3)(s+|-)(

[9]. Since 6(0)=/v(grad)/=253527, 60=24.

s+4)(s+5)

5. Invariant of GL(l)xS/>m(14).

Our purpose here is to construct an irreducible relative invariant J8 of the

odd half spin representation (Sipn (14), p, F(64)). Our method of construction

is similar to that of J. Igusa [4]. In this section, we use the same notations

as in [12].

A general element x of F(64) can be uniquely expressed as

where

Put ftJ

X

i i<i<k i<3

0Z, = 01234567 >

etc

―fifi etc. xjik = -xijk etc. and x1...j...j...7=(-l)i+J'-1xf;-

Lemma. In general, put

(II(l + 3;rS/rS)XZ!*i0ei0+ S Xioi,i2enlt + ―)

Then

r<*

^i0il-f2g

*0

io *o<fi<f2

P>0.

where Pf denotes the Pfaffian

In fact,

9

S PKyiris)zq<r,Si2p' Xio...i2
i2q+l<"'<i2p
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^
q2p-q(p ― tf)!i2<7+r-*2P 29 +lf29 + 2'"

:Vi2p-1*2pX/<29
+l<23 + 2 ''"

/*2j>-l*2p)

'Xio-i2peio-hp

-s 1 ^(yi2q+1i2q+2 ■■■yitp-1itp)xiv..iip(―i)p-qetv..l

S

^
J?
<;2p2*-≪(£-?)!fi2g+1^

lJzq+1 ･･･J2p＼

･sign _ _ )XH~i2qhq+r-J2P(-Vp-qei0~i2q

S 2 PKyiris)2q<r,s&2p'Xi
i
( ― 1)P 92i0-i2g

Via t9.n+i<"<i≪n y

By the above lemma, we have

(5.1) (H(l + Xl1X?sfrs))x= "EZi 2i + S Zii i£ii^^+XLet
r<s i0 io<ii<iz

where

Zi0=Xl*{(-iy°-＼ S Pf(^?ri,)lSr..Se

(5.2)

and

(5.3)

+

ii<

^
i
PfU*ris)lsr,s<;4-*toil"*4

ll<*2

*3<"<l6

―
.S. ^*3t4;[:ioil-i4}+X*O*li2-

As is easilyseen,every genericelement of C@A3C/SL7(C) has a representative

of the form

(cf.[9; Prop. 2.14]). Hence if we put

z^^lzio&ioJt-^2iZioiliieioi1i2-[-xLeL,
then

(5.4) p{g)z=w'e1+w{elzz+eii6)+w-＼eUT＼-eZsr＼-eZs1)+xLeL

with some w, w' and g^SL(7)(CZSpm(lA)). By theorem 4,

Mz)=Mp(g)z)=w'w'＼
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Mz)=Mp(g)z)=-w.

Here we regard /6 and /7 as polynomial functions on V(64) via the natural

projection y(64)->C7c(A3C7). Hence

(5.5) w=-Uz), u;/=(/.W,U)-4)1/".

Let U be the linear span of

{&T, 0123>̂ 4B6>#147>e257>6367>gil ･

Since J8 is invariant with respect to the action of {Ui=i{tietft+ti1/ie^Ui^C―

{0}} and deg/8―8 [12; section 7, Table 1(24)],we can see that /8|j/is of the form

CLXfX123X456XL~rDX123X456XuiX25iX36iXL.

Since

(l+2-1/14Xl+2-1/25)(l+2-1/36Xl+e14)(l+e25Xl+e36)

･(<?7+ 0123+ 0456+ ei425367)

==0123+ e456+ 2~1(0147+ e257+ £367)+ 20i425367,

we have

J8(e7+e123+ei56―eL)

=/8(ei23+e456+2-1(ei47+e257+e367)-2eL).

Hence a =―6/4, and

(5.6) J%＼VZ=X1X 123^456^/, 4x123^456;I£:I47^257^367-^i

up to non-zero scalarmultiple. Thus

Ux)=Uz),

=Jlw'e1-＼-w(elzz+eiU)+w-＼eul+eK1+eZs1)+XieL)

=w'2wixl―AwxL,

=Mz)xl+4Mz)xL,

by (5.1)

by (5.4)

by (5.6)

by (5.5)

Theorem 5. An irreducible relative invariant J8 of (GL(l)xSpin(lA),

(odd half spin), F(64)) is given by

Js(x)=Uz)xl+4Uz)xL

with

z=^zioei+ S .Zioili2eioili2+xLeL,
io<il<l2

where zt and ztii are given by (5.2) and (5.3).
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Remark 9. In the case treatedin theorem 5,(G, p, V) has a unique split

Z-fovm [3]. For thisZ-form, V{Z) may be identifiedwith the latticeof V(C)

generated by

eHeH ■･■eHk> 0^k^3, l£io< ■■■<:≫*^7.

Then ±J8(x)are the irreduciblerelativeinvariantsin Z[F]. In fact, as is

seen from theorem 4,(5.2),(5.3)and theorem 5, /8(x)eZ[7, xz1]nC[F]=Z[F].

As is seen from (5.6),L is irreduciblein ZTV"]. If we take

as v0 in remark 2, then we can take as T the inverse image by X: Spin(14)~>

SO(U) of the set of

diagfo, u, u, u, u, u,i; K1, n＼ rs＼n＼ n＼ n＼ d,

where ^^3=^Bf6=l. Then C―VT is the linear span of the following 4

elements;

e-i,ens, e456,Ql-

As is seen from (5.6),

in our case.

By a direct calculation, we can show that

(gradlog/s)Oo)=2v0.

As is seen

/8v(grad)/§+1 =

Ks)

(cf. [11]).

from (5.6),/8(v0) = l. Hence /8((grad log/8)(i;o))y8(yo)= 28, and

b(s)Jl with the polynomial

=28(s+l)(s+ |)(S+|)(S+4)(S+5)(S+§)(S+f)(s+8),

6. Invariant of GL(o).

In [8; Remark 4.6], a construction of an irreducible relative invariant of

(GL(8), Az, F(56)) is given. In order to write down this relative invariant

explicitly,we need to know the explicitform of polynomials

appeared in [8; Example (II)]. It would be worth noting that, although the

explicitform of these polynomials are not given in [8], they can be constructed

immediately as follows: Let D8i be the polarization z->8, i.e., D8,iXaBi = xaps
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(a, j3^8, lrg/^8). Then

Fi＼,i＼,i＼=Dfi.tiD^itDStiif,

where / is an irreducible relativeinvariant of (GL(7), A3> V(35)). In order to

see that these polynomials satisfy(4.7) and (4.8) of [8], it is enough to notice

that D8i is nothing but the action of the matrix unit ―Eis.
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