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THE DIRICHLET PROBLEM WITH Lp BOUNDARY DATA

IN DOMAINS WITH DINI CONTINUOUS NORMAL

By

Gary M. LIeberman

In a series of articles[1-4, 6-8, 15, 16, 22-26], Mikhailov, Chabrowski, and

others have used energy inequality methods to study the Dirichlet problem with

Lp boundary values in C2 domains. Here we show to adapt this method to

C1>Dinidomains. Certain important elements of our analysis are present in work

of Petrushko [26] for C1-" domains, but our approach was motivated by different

considerations. The key idea in the energy method (concerning boundary values)

is that the traces of the solution of a suitable ellipticequation on "parallel"

surfaces to the boundary should have a limit as these surfaces converge to the

boundary. For C2 domains this convergence is readily understood because there

is a natural C1 diffeomorphism between a level surface of the distance function

(at least near the boundary) and the boundary itself. Petrushko provided special

local diffeomorphisms between level surfaces of a regularized distance and the

(n―1) dimensional ball which fittogether nicely. Here we use essentially any

regularized distance and our conditions on the coefficientsof the equation are

weaker than Petrushko's.

A second approach to the Dirichlet problem with Lp boundary data is given

by the methods of singular integrals. See [9-12, 17, 18]. This approach has

the advantage of considering weaker regularity hypotheses on the leading coef-

ficientsof the ellipticoperator and on the domain; however, none of the papers

mentioned here considers lower order terms (in fact, several are concerned only

with Laplace's equation) and some deep and subtle machinery is required. In

addition a different definition of trace is used; the solution of the differential

equation now approaches its boundary values nontangentially a.e. with respect

to the ellipticmeasure induced by the differentialequation. A key step, then,

is the verification that this measure is absolutely continuous with respect to

ordinary surface measure. Some connections between the two definitions of

trace appear in [1],

An intermediate approach was recently proposed by Gushchin [14] to show
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that solutions of the differential equations considered here have traces. He

defines a space Cn i(Q) for a domain Q, via Carleson measures, with two im-

portant properties. Every element of Cn_x(Q) has a trace on dQ and WU2(Q)

is a subsapce of Cn.i(Q). From an energy estimate simitar to our (3.3) below,

Gushchin uses properties of the nontangential maximal function and area in-

tegrals to infer an estimate on the CM_i(i2) norm of solutions of the differential

equation and hence the existence of traces in either sense.

We begin in Section 1 with some definitionsand the introduction of various

regularized distance functions, which play a key role in our considerations.

Section 2 deals with the definition of an L2 trace for suitable solutions of dif-

ferential equations. An energy inequality and its application to the Dirichlet

problem appear in Section 3. Extensions to Lp boundary data are considered

in Section 4.

1. Regularized distance and a mollification.

In this section we introduce two regularized distance functions (as defined

in [19]) and we show how to extend functions which are continuous on the

boundary. Throughout we denote by Q an open subset of Rn with nonempty

boundary and we write v for the inner unit normal to dQ.

As in [19], we defined the signed distance function d by

f distQc,342) if xelQ
d(x)=＼
{ -dist(x,dQ) if x£Q.

A regularized distance is a function p<=C2(Rn＼dQ)r＼C0tl(Rn) such that the ratios

pid and dip are positive and uniformly bounded on Rn＼dQ. If also there are

positive constants cx and c2 such that Q<＼p＼^cx implies ＼Dp＼}>c2,we say that

p is proper. For a proper regularized distance p, we write C^p) for the set

of all such cu If we set

f min{l, d(x)} if x^Q

＼
max{-l, d{x)} if x^Q

and replace d by d* in the definition of regularized distance, we callthe result-

ing p a regularized bounded distance.

To examine C1 domains, we need some notation. We denote by MOC the

set of all bounded, concave, continuous, increasing functions on [0, oo) which

vanish at zero, and we denote by DMOC the set of all elements of 8 of MOC

for which
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For Z,(bMOC we define Z by Z(t)―＼ogtC,(t).If u is defined on some open set

S, we define

|m|0-s=sup|m|,

[m]z;s=sup{|m(*)―k(30|/C(U ―yD: x^y in 5},

LuyZ;S=sup{＼u(x)-u(y)＼/Z(＼x-y＼): xeS, j>eaS},

IM IZ;S―IM I0;S+＼_U~＼Z-S, ＼u＼Z;S=＼u＼0;s/W+WZ; S

＼u＼i+Z;s=＼u＼0;S+＼Du＼z;s>

Hz(S)={u: |m|^;5<co},

H1+z(S)={u: ＼u＼1+Z;S<c°}.

We say that dQ^H1+z if there is a function g<=H1+z{Rn) such that the ratios

g/d and d/g are uniformly bounded on Rn＼dQ. If Z,(t)=ta for some ae(0, 1),

then Z(t)=a and our definition of dQ^H1+a is equivalent to the usual defintion

of di2eC1>a(with appropriate uniformity for unbounded Q); see [19, Theorem

2.3] for details. According to [19, Theorem 1.3] every H1+z domain has a

proper regularized distance p such that

LDplz^8lDg-}g, ＼D*p＼^C(n, ＼Dg＼z%{＼p＼)/＼p＼.

Because of its later importance, we denote by RD the set of all proper regu-

larized bounded distance functions p with

＼D*p＼^ca＼p＼y＼p＼-

For our energy estimate in Section 3, a more specificelement of RD will

be used. To construct it, we consider d^DMOC and 9i2e//1+j. For fixed

X = {L: Lu = aijDiju+biDiu: l£(aij)£rl

and we define the operator M on C2(Q) by

Mu(x)= sup Lu{x).

＼b＼<CAp)/p],

As in the proof of [19, Theorem 4.1], we can find e>0 and feeC'tO, co)n

C2(0, oo) with k"<J), &'(0)=l, kf(e)>0 such that po=k(p) satisfiesMpo^-8(p)/p

in 10^ rxr'si Tf wpi tinw ≪Pt
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f k(r)

＼

^(£)+£^'(£)(l-e1-r/s)+i(£2^//(£)+^'(£))(l-e1"r/£)2

if r^e,

if r>£.

the function pi―kx{p) is in RD and satisfiesthe estimates

(l.D MPl£―%£-+ct.

Now let X be a positive constant, and for i?>0, set QR―{x^Q: |*|<i?}

and write vR for the unique solution of the problem

Mvr―Xvr― ― in QR, vR=p1 on dQR
P

given by [28] and [20]. The maximum principle and (1.1) imply that 0SvR^

Cs/X+pu and then the results in [20] show that ＼vr＼1+Z;qr/2is bounded in-

dependently of R for some CeMOC. Taking the limit as R tends to infinity

then gives a bounded function v^H1+z such that

Mv-Xv=―^- in Q, v=0 on dQ.
P

Hence for d a small positive constant, there is a constant c4 such that v―2v-＼-Qp

satisfies

Mv-Xv^--^-, 0^v£c4, v£ctp, ＼Dv＼^ci in Q,

v=0, ~^dc2>0 on dQ.
ov

Now for L^X, define L* by

L*u=Lu + C0d(p)2＼Du＼2/u-Xu.

If p=h(v) for some AeC2[0, oo) with /z'^0, h'^0, and /i(0)=0, then

L*p^h'(v)L*v+h"aijDivDjV

£h'(v)-^-[-i +
^-d(p)＼Dv＼^

+ h''＼Dv＼2.

Hence, for />0=sup{p: ^(,o)^^/(2CoC4)} and do=CQ(s＼ipd)2/Opo, we obtain

(1.2a) L*p^-~h'(v)-^-Mdoh'-hh")＼Dv＼2^-c5^- in i2
2 P P

for /i(r)=l―exp(―50r) and c5=(l/2)<50exp(―^0c4). Moreover

(1.2b)
dp

dv

and Dp is parallel to v on dQ

^c2dQ6 on dQ
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The preceding construction works in bounded or unbounded domains. In

bounded domains, we can do better because X need not be positive. To see

this, we take v to be the solution of

Mv+i)v=-^- in Q, v=0 on dQ
P

for some positive ･/].If 7]is small enough, the barrier constructed by Michael

in [21] is a positive supersolution so the generalized maximum principle [27,

Theorem 2.10] implies a bound on y(and hence its existence). With v constructed

as before, p satisfies

hf7]v+Lp + C08(pf

＼Dp＼2

P

^0

and hence for ri a sufficientlysmall positive constant and L* given by

L*u=Lu + C05(p)2
＼Du＼2

u

-＼-fju

(1.2) holds.

When dQ^CuX for some X(e(0, 1) and Q is bounded, Petrushko [26] uses

as p the solution of

Ap ――＼ in Q, p―0 on dQ,

which can be seen to be in RD. In the next two sections we shall see the

advantages of having a large choice of regularized distances available.

If /ei/j, a useful variant of / can be defined via mollification.

Lemma 1. Let f^Hz for some C^MOC. Then there is F^C＼Q)r＼C＼Q)

such that

(1.3) ＼f-F＼^＼f＼'JL{d*),

(1.4) ＼DF＼£C(n)[fyzad*)/d*.

If Q is bounded, then

(1.3/ if-FUAtn'zCid),

(1.4)' ＼DF＼£C(Q)Zn&d)/d.

Moreover if f is a matrix satisfying theinequality fj^f^f2l for some constants

/i and f%, then F satisfiesthe same inequality.

Proof. Let p be any regularized bounded distance for Q with d*/2<,p^

2d*, let pGC0'1^") be nonnegative with support in the unit ball and ＼
n<p(y)dy

= 1. and set
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(1.6)
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F(x)=＼jRnf(x + p(x)y/2)(P(y)dy

To prove (1.3), we firstnote that

F(x)-f(x)^RnU(x + p(x)y/2)-f(x)-]<p(y)dy.

We estimate thisintegral by choosing z^dQ so that ＼z―x＼=d(x) and noting

that ＼x+ p(x)y/2-z＼£2d(x) if ＼y＼£l,so that

＼f(x+ p(x)y/2)-f(x)＼^f(x + p(x)y/2))-f(z)＼+ ＼ttx)-f(z)＼

< {C(2d(x))+C(rf(x))}[/]^2C(2rf(x))[/]^4C(rf(x))[/]^

since C is increasing and concave. Using this estimate in (1.6) easily gives (1.3)

when d*(x)=d(x) and (1.3)' when Q is bounded. When d*=l, we obtain (1.3)

by noting that ＼f―F＼<*2＼f＼0and recalling the definition of ＼f＼z.

To prove (1.4), we make the change of variable y'=x + p(x)y/2 in the

integral for F, differentiate with respect to x and then change back to the

original(y) variable of integration to find that

(1.7) DF(x)=^-＼JRnf(x + p(x)y/2)D(P(y)dy

Since ＼ D<p(y)dy=Q and

DF(x)=

f-Dp(x)＼
f(x + p(x)y/2)div(y<p(y))dy

＼X) JRn

＼ div(y<p(y))=O, it follows that
JRn

＼

BjLf(x
+ p(x)y/2)-ftx)]D<p(y)dy

U(x + p(x)y/2)-f(z)2 div(y<p(y))dy

-2

~Dp(x)

＼

0(x) r jRn

for the same z as before because we can take <p so that ＼D<p＼^C(n). These

integrals are estimated as before to infer (1.4) when d*―d and (1.4)' when Q

is bounded. When d*=l, we proceed from (1.7).

Finally the preservation of linear inequalitiesis clear from (1.6) because <p

is nonnegative. m

2. Traces of W1'2 functions.

By using the class RD, we can prove that solutions of certain ellipticequa-

tions in the class WltZ=W＼ilr＼Li have traces. The firststep in this program

is to establish the equivalence of two conditions on Wuz solutions.
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Lemma 2. Let d^DMOC, let dQ^Hl+A and let aij,c, f be functions defined

in Q such that

(2.1a) {aij)^I,

(2.1b) aijEiHA, cgL°°

(2.1c) ＼f＼＼d*Y/d{d*)cEL＼

Then for any p^RD, any Ci^Cx{p), and any solution u^W1-2 of

(2.2) -Di(aijDju)+cu=f in Q,

the following conditions are equivalent:

(I ) sup
f

0<<T<C1J (|0 = <7)
M2<oo

(II) ^＼Dll＼2d*<co

Proof. For r>0, set g(t)={t112―vll2)＼,and for r] a nonnegative C＼(Rn)

function with ＼-q＼-＼-＼Dr]＼<2,use v=ug(p)y]z as test function in the weak form

of (2.1):

f
ai}DiuDjurfg+[ aVDjuDipurfg'

+2^

QaiWjuDi7}7]ug+
I cu2rfg=[ jurfg

From Lemma 1 we obtain functions Aij such that

5(d*)
＼AtJ-aiJ＼£Cd(d*), ＼Dj(AiJ)＼^C^^

and therefore, after an integration by parts,

^DjuD.pufg'^ {ai3-Aii)DjuDipurjlg

tU

l£(A^)£rI,

{AiWijP+Dj{A^)Dlp)+g"A^DipDjp}rj2u2

-^AVDipDjwuig'-j^

^A^vjDipu^tg'iv)

Now we use the specialform of g and Cauchy's inequalityto infer that

( IfluIV*

Sc[f

^M^^'^'i+l^^+Mjv^

1
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Now, similarly to [6, (2.4)],we have

Hence

<[^-+r^Hf uY+＼2+＼Cl^dt] sup
f
v}rf

"L C, Jj(p>r> ' L JO t jT<t<c1J(p =£)

( icMiy^cUpj[,,/5'tj/(5'+i^r)+i/''|f]

Because of (2.3) and our choice of rj, the right hand side of this inequality is

bounded independently of rj and z. Therefore (I) implies (II).

For the reverse implication, we set g(t)=(t―r)+ and then v=ug(p)rf as

before to obtain

M
{AVvjDipWtf

L Jlp=T)

[ aijDiuDjurfg+2[aijDjuDifj-qug

+
＼
(atJ-Aii)DJuDipui)*g' +

＼
A^DipDjTju^g'

Jid JiJ

-jiiA^Dijp+DjiA^D^g'uY+^cu^g-ifu^g

Because p is proper there is a constant <70 such that AijVjDip>a0 for p<cx

Hence for r^Ci,

f
U27]2£C[

＼＼Du＼2d*
+ u2+f2

(d*)3

8(d*)

]

J(p>r) p

Just as in [6, Theorem 1] (see p. 632 there), we conclude from this estimate

that

sup ＼

0<<T<(T1J ip = o)

for some sufficiently small positive

completes the proof. B

a

M2<oo

A simple variant of [6, Lemma 1]

In this theorem, we did not need the specialized regularized distance p of

Section 1. It will appear in Section 3 when we prove an energy inequality.

We now examine the boundary condition u=<p on dQ for WliZ functions.

As in [7], etc., we interpret this boundary condition as saying that traces of

u on certain interior hypersurfaces should converge to <pas these hypersurfaces

approach the boundary in a reasonable way. When 8Q(eC2 the choice of hy-

persurfaces is made quite naturally because of a simple, smooth correspondence

between points on dQ and points on the hypersurface d=constant (when the
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constant is small enough); however, in our case there is no such simple cor-

respondence. Instead, motivated by the definition for C2 boundaries and by

the desire for a definition which is invariant under smooth changes of inde-

pendent variable, we present the following definition.

Let SfleC1, <p<=L＼dQ), u^WU2(Q). We say that u=<p on 8Q if, for every

xo(^dQ, there is a neighborhood N of xQ and an invertible C1 map G such that

(2.4a) G(xo)=O, G(Nr＼Q)=B+(0, 1), G(NndQ)=B＼0, 1)

(2.4b) limu(G-X-,d))=<p in L＼Nr＼dQ).
5-0

We now show that all choices of G and N in this definition are equivalent

and we find additional conditions which imply the existence of a trace.

Lemma 3. Let dQ<=C＼ u(EWu＼ and suppose ＼Du＼(d*)1/2(ELzIf there are

two function (px and (p2 in D(dQ) such that n=(px and u=<p2 on dQ, then ^i=^2

a.e. on dQ.

Proof. Clearly it sufficesto show that, if the hypotheses of the lemma

are satisfiedwith Q and dQ replaced by B+(0, 1) and B°(0,1), then <pi=<pza.e.

on B°(0,1/2).

To this end, let $=(<!>',<pn)be an invertible C1 map of B+(0, 1) into itself

which restricts to the identity on B°(0,1) and for 8>Q, consider the integral

JB°(O, 1/2)
u(x',d)-u(<Kx',d))＼*dx

^2f ＼u(x',8)-u(x',(pn(x',8))＼2dx
JB"(0,l/2)

+2f

JB°(0,l/2)
＼u(x',<bn{x', d))-u(<p'(x', d), <b＼x', 8))＼2dx

We now use Ix and I2 to denote the integrals on the right hand side of this

inequalityand observe that we only need to show thati＼and h tend to zero

as 3->0.

To estimate L, we write 2=£°(0,1/2),so that

/i=JJ^Dnu{x', td+a-t)<pn(xf, 8)){5-<pn(x', 8)}dt＼2dx

^f
[{Dniiix',

td+a-t)<pn)＼2＼<pn-8＼2dtdx'
J2,J0

by Jensen's inequality. Because (pn^{sd, d/e) for some se(0, 1), we can use

the change of variable xn=td-＼-(l―t)<bnin the inner integral to obtain
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C rmaxid.din}
/i^ ＼Dnu{x', xn)＼2＼(pn-8＼dxndx

set
x(s5,d/O

＼Dnu(x)＼2xndx

which goes to zero with 8 because Dnu(xn)ll2^L2.

To estimate I2, we set w = u°</>and we define new coordinates (yr, yn) by

the equations <p'(y',d)=x', yn=<pn(x', 8). For 8 small enough, the matrix d(p'/dy'

is invertible and hence these equations determine y as a function of {%', 8).

Similarly, d<pn/d8 does not vanish so (x', 8) is determined as a function of y.

It follows that

JS°(O, 1/2)

u(x', <pn(x', 5))-u(x', <pn(y', d))＼2dx

+ cf ＼u(y',d)-iL(<P',d)＼>d4>'

JBoco,i)

The first integral here is estimated as h was. The second integral goes to

zero by a standard argument: Fixs>0 and choose v uniformly continuous in

B°(0,2) so that ＼＼v―^2|U2(bo(o,o)^£/5,then rj so small that ＼v(x)―v(y)＼^s/5(on

if ＼x~y＼<7]. If d is so small that ||m(-, 5)―(D2||L2^s/5 and ＼y'―(p'＼<v, then

f
＼u(y', d)-H(<pf, 5)＼2d<pf£e

JB°(O,1)

Hence (m-m≫0)(-,5)->O in L＼B＼O, 1)). Since uo<p(-, d)-+<p2, it follows that

M(-> <5)―><z>2and hence coi=co2. ■

Note that the proof of Lemma 3 implies a stronger result, namely, that if

u―<p on dQ for a particular choice of G, then any choice of G gives a trace

and that trace must be <p. Moreover the hypotheses are weaker than those of

Lemma 2: we only need dQ^C1 and u^W1-2 satisfying condition (II)of that

lemma. To show that a trace exists, we assume the full hypotheses of Lemma

1. Because the hypotheses are invariant under Hl+A changes of variables for .

d<=DMOC, the arguments in [6, Section 3] and [2, Theorems 2 and 3] are

easily modified to give the following result. We don't go into detailhere since

the result will not be used in our existence results for the Dirichlet problem.

Lemma 4

condition (II),

on dQ.

Suppose all the hypotheses of Lemma 2, including condition(I) or

are satisfied. Then there is a unique ≪eL2(9i2) for which u―cp

In the next section we will use the easy observation that the definition of
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u=(p on dQ for <p^L2 agrees with the definition that <pis the trace of u when

,,r-TT/1.2

3. Applications to the Dirichlet Problem.

We are now ready to attack the problem

(3.1) -Di(aijDju)+cu=f in Q, u=<p on dQ

when <p^L2(dQ). The main tool not yet given is the following energy estimate.

Kemma 5. Let X, Xi,Xo,J be nonnegative constants with X^X^yO and f^l.

Let d^DMOC, let dQ<=H1+j, and suppose conditions(2.1a-c) are satisfied.If also

(3.2a) ＼a^＼£r, la^Sh,

(3.2b) c^X,

then for any p^RD and any d^C^p), thereis a constant C = C{f, 8, Xo>Xu p, cx)

such that anv solution u^W1-2 of (3.1) satisfiesthe estimate

(3.3)
＼＼Du＼*d*+

sup
f
uz+A u*d*<zc＼[ /24Sr+f <P*]

Proof : For p a proper regularized bounded distance function to be chosen,

use v=up as testfunction in the weak form of the differentialequation in (3.1).

T7nr AiJ fl<5hpfnrp wp

]Q{aijDiuDjup + cu2p}^Q(A^-a^)DipDjuu +
~^AiWipvj<p2

+
j
^A^Dijp^DjiA^D.p

+ Cdid*)2^^-}^

1 f
for any s>0. If we now subtract ― ＼n{＼Du＼z+X1u'i}p from both sides of this

inequality and set

we see that

)sqp^)qj 5(d*)p>

l

Q{＼Du＼>
+ cu>}p^Qu>(L*p + e^p) + C(e)0
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for some L* as In Section 1 (with X there replaced by Xx). By taking p to

satisfy(1.2) and then s small enough, we obtain

(3.4) [{＼Du＼2+cu2}pSC0.

Now the proof of (II)implies (I) in Theorem 1 gives

ip=d)

Moreover

(3.5)

^ca,

^c[i !|Z)u|2+ cM2}d* +

{p = a＼

u*<C@.

( u2d* + 0~＼

C＼,5)A1fS,Cc, so recalling (3.4), we infer
3(ci)

The estimate (3.3) follows immediately from (3.4) and (3.5). m

The considerations of Section 2 show that (3.3) is valid for any proper C1

regularized distance p.

For bounded domains, we can repeat the preceding argument with Xx a

negative constant sufficientlyclose to zero. In this way we deduce the follow-

ing analog of Lemma 4.

Lemma 4'. Let X, 1Q,j be nonnegative constants with y^l. Let d^DMOC,

let 8Q^H1+/1 and suppose Q is bounded. If conditions (2.1a-c) and (3.2) are

satisfied,then for any p^RD and any c^dip), there is a constant C = C(J, 8,

?,0,p, Ci) such that any W1-2 solution of (3.1) obeys the estimate

(3.3)' f |Cu|M+ sup ＼≪>+ *{l,K＼^c[＼j*i(vAA

These energy estimates lead to existence results via approximation and the

corresponding results for /gL2 and <p^H1/2(dQ). Verification that the limit

function takes on the orescribed boundary values is the same as on T26. d. 5731.

Theorem. Let d^DMOC, let 8Q(eH1+j, and suppose conditions(2.1a, b)

hold. If infc>0, then for any f satisfying (2.1c) and any (p^L2(dQ), there is a

unique solution weW1-2 of (3.1). // 1, A0)Au and J are nonnegative constantswith

A^!>0 and (3.2)holding, then for any p^RD and CieCi(jo),(3.3) is valid. For

bounded Q, (3.1) has a unique solutionif c>0, and then (3.3)' holds.

Proof. If /gL2 and <pei^1/2(3£?),the existence of a unique solution to

the Dirichlet problem is well-known (see, for example, [13, Theorem 8.3]) and

the solution satisfies(3.3). For the more general f and w considered here, we
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approximate by sequences (/m) in L2 and (<pm)in H1'2 such that

as m-*co, and denote by wm the solution of (3.1) corresponding to fm and ^m.

From (3.3) applied to Ui―Uj for any i, j, we see that the sequence (wm) is

Cauchy in IF1-2, and therefore it has a limit u, which satisfiesthe differential

equation. To show that u also has trace <p on dQ, we note that for any s>0,

there is an integer N such that i, j>N implies that

＼ ((p-(pif<£/3, SUP
JdQ 0<(7<C

Moreover there is re(0, Ci) such that

sup
f

0<<;<rJ lp=G)
(uN―(pNf<s/3

(Of course here, strictlyspeaking this last inequality can only be achieved when

dQ is a hyperplane, but using local coordinates, we can make sense of this,

inequality globally.) It then follows that

sup I

0<flr<rJ

(u-<p)2<£

which means, because s is arbitrary, that u =<p on dQ. B

Our results are easily extended In several ways. First, as in [6], we can

consider the general linear equation

-Di(aiWju+biu)+diDiu+(c+l.)u = -Digi+f

for the functions b,c,d, f, g in appropriate classes,which allow these coefficients

to be unbounded near the boundary and only locally in an Lp space. Note,

however, that the conditions on b, c, d for the existence of traces are different

from those for the energy inequality or the solvabilityof the Dirichlet problem

(cf. [5, Chapter 2]).

We can also consider quasilinear equations of the form

―Di(ai}(x, u)DjU)+2u-f(x, u, Du)

under the hypotheses detailed in [4] provided conditions (2.1a, b) hold uniformly

for the functions aij{-,z). In this case the fullstrength of the construction of

p in Section 1 is needed because now the coefficientsof L* depend on u in a

wav controlled through the operator M.
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4. Lp Boundary Values.

When

Lemma 2,

<pc-£Lp(dQ),our considerations need to be modified only slightly. In

the equivalent conditions are

( I ) SUP ＼ Up<co

0<<r<c1J{p = o)

(II)p
f
＼Du＼*＼u＼p-ld*<

provided (2.1c) is modified to

(2.1c)p I/1 p(d*)2p-1/8(d*)p-1<=V,

and u(E:Wuv―W＼oir＼Lpr＼Wlil. The proof is easily modified by using v~(u2+

ejp~2:"2ug(p)r]2as test function and then sending e to zero.

Similar modifications apply to Lemma 3 because condition (II)Pimplies that

u = up/2 sgn u satisfiesthe hypotheses of Lemma 3. Because (1―s)p^l ―ep for

p>l and 0<s<l, the definition of u―<p in Lp{dQ) is the same as u ―ip in

L＼dQ).

Existence of a trace in Lp follows from the L2 theory as in [7], [15], [16],

etc.

The energy inequality

(3.3)p f ＼Du＼2＼u＼p~1d*+ sup f up+A upd*

)Q 0<(7<c1Jip= o) }Q

is proved by similar considerations and that the Dirichlet problem (3.1) has a

unique W1jP solution,ifinf c>0, for any / satisfying (2.1c)p and any <p£ELp(dQ).

The restriction weW^I can be removed for Kp<2 by easy approximation

arguments. (Analogous statements for bounded domains are easily verified.)
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