TSUKUBA J. MATH.
Vol. 18 No. 2 (1994), 371—410

ON THE NEUMANN PROBLEM OF LINEAR HYPERBOLIC
PARABOLIC COUPLED SYSTEMS

By

Wakako DAN

Abstract. We prove the unique existence of solutions to some
mixed problem of hyperbolic parabolic coupled systems with Neu-
mann boundary condition, and we investigate how the constant in
the first energy estimate depends on the coefficients of the opertors.

§1. Introduction.

Let 2 be a domain in an n-dimensional Euclidean R*, its boundary I being

a C> and compact hypersurface. Let x=(x;, ---, x,) and ¢ denote a point of
R"™ and a time, respectively; 0,=d,=d/0¢t and 0,=d/dx; (=1, ---, n). In this
paper, we consider the following mixed problem;
AgO[A]=00n— A}, x, 0)in—Ak(t, x, 0)0,in

— AYp(t, x, O)ip=] u(t, x) in [0, TIXQ,
Ap)[U]=ARE, x)0.up— AR, x, NUp—Abu(t, x, iy

—Apnlt, x, 0diyg=Fet, x)  in [0, TIXQ,

(N) Br[A]=By(t, x, Nilu+Bupt, x)ip+By(t, x)0.in
=Zu(t, x) on [0, T1xT,
Bp[U]=BA, x, O)ip+Bpult, x, O)du+Bpu(t, x)0,inu
=gpt, x) on [0, TIx T,

in(0, x)=Ugo(x), 0.4n0, x)=um(x), #p0, x)=7p(x) in 2,

where
A%I(t; X, a)ﬁH:ai(A%(ty x)ajﬁl-l)) A}{(t; X, a)ﬁH: }-?(t’ x)atﬁll’

Ay p(t, x, Aop=Akp(t, x)00p, Aput, x, )og=AF u(t, x)0:0,0u,
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Bt, x, 0)0p=0,AF(t, x)0,0p)+Ab(t, x)d:0p,

Abu(t, x, Oog=AR4(t, x)0: 0,
L(t, x, 0 a=v(x)AYE, x)0u, Bpult, x, oy=DBhult, x)0x,
b, x, Dop=vi(x)AF(t, x)3;0p+ Bp(t, x)ip,

T is a positive constant; iy, ip, ¥n and ¥p are real valued functions: ii=

(p, Up), Ug="um, =, Unny), Up="Up, "+, Upmp) ("M means the transpose of
M). The y(x) (=1, ---, n) are real valued functions in C3(R™) such that »(x)
=(vy(x), -+, va(x)) represents the unit outer normal to I" at x</. The sum-

mation convention is understood such as the sub and superscripts 7, j take all
values 1 to n. Let us introduce assumptions (A.1)-(A.4) which coefficients of
the operators satisfy.

(A.l) AY are myXmpy matrices, Ayp are myXmp matrices, A%, AF and Aj
are mpXmp matrices, A¥, and A¥,; are mpXmy matrices, and the ele-
ments of these matrices are in 8*([0, T]X Q). A are myXmy matrices
whose elements of these are in 8*([—«k, T+x]X D). Bpyp is an myXmp
matrix, Bp is an mpXmp matrix, By and Bjy are mpXmy matrices
whose elements of these are in @<([0, TIx ). % is an myXmy
matrix whose elements of this are in 8°([—«, T+£]X ). And all ele-
ments of these matrices are real-valued.

3=(G) denotes the set of functions in C*(G) whose derivatives of any order
are all bounded in G. For any function space S, we denote a product space
SX -+ XS by also S.

(A.2) CAY=A} (E=H, P), 'Ap=Ap, 'A¥=AY, 'By=BY.
(A.3) There exist positive constants c,, d, and &, such that
2, ©)=colmp;
(A¥(t, )3;tip, 0:1p)=0,|Tr|3—d0|r|®
for any dzsHY(Q), te[0, T], x€2 (E=H, P).

H*(G) denotes the usual Sobolev space on G of order s with norm ||-], ¢ for
seR. Put [|-|s.e=]-]s and |-}oo=]-ll. We denote the usual inner product of
L¥D=H(Q) by (,). I, is an mXm identity matrix.

(A.4) 0, x)~%ui(x)/l§?(t, D=0 for any (¢, x)e[—k, T+e]xT"

The purpose of this paper is to prove the unique existence of solutions of (N)
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and to investigate how the constant in the first energy inequality depends on
the coefficients of the operators. Our proof of the existence theorem is almost
parallel to Shibata [6]. In §2, we state the basic notation and main results.
In §3, we refer to the result on some elliptic boundary value problem. In §4,
assuming that

(A1) n(, X)"%VL(X)A}'?(L x)ze  for any (f, x)€[0, TIXT[, ¢>0,

instead of (A.4), we prove the existence theorem. In §§5 and 6, reducing the
problem to the case where £ is a half space, and using the former result and
the estimate of Kreis-Sakamoto type, we derive an a priori estimate of original
problem, and then the existence theorem is obtained. The argument of §5 is
not needed when n=1, so that we mention the case that n=1 in §7.

§2. Notation and main results.

First of all, we explain our notation. We always assume that functions
are real-valued except for §5. For any integers L, M =0, we put

Dri=(3%0%4, k+|a|=L),  Dru=(82i, k+|a|<L),
otu=(0%d, |a|=L), oru=(0%u, |la|<L).
If J is an interval of R and G is a domain, we put

XL G)= 1\ CHJ 5 HE G s

L~
2] ; ©)=CHJ 3 HXHON N C(J 3 HEHHE)).
=0
Let G’ be a set in R* (k=1) and X, Y represent points of BR*. For any integer
[=0 and c=(0, 1)

[1]w,1,60= 2 sup [(0"u)X)] a=(a,, -+, a;);

la1sl XeG!

1@ u)X) =@ u)¥)i

‘u!m.Ha,G':'uiw,l.G'_‘—l 2

d=1 X, YEC | X-Y|°
XY
Put
BUG)={ucCHGC)| | U|w 16 <o} ;
B(GCN={ucCHG)| | U] w, 110.6' <0}
We write |« lw 40 1=l 120, 1x0 80d Do 120, 1=|"lw, 140, 1xr. Let us define the

space of solutions EX(J; Q) by
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ENJ; D= {aaeX"(] ; Q)IoF ' D'ans L] ; HVI))
XAupeZt V(] ; D)o Mupe LX) ; HW(D)}.

H(I") is a Hilbert space equipped with the norm {-),=|-|ls,; for s&R, and
put {-Y=¢ Y. <,> denotes the usual inner product of L*I")=H°I"). When
n=1, {-)s stands for the absolute value |-| for any s=R. As the norm of
EX(J: 2), we put

o= 1D+ 26001
+{ (DN ads+ | Nanslds ;
IEOUE= 1D* )+ 108 O+ D2 (0
+{@F D a2 ds+ [ N0 unts)lids  for Lz2.
For the space of right members, for L=2 we put
RUJ ; Q=7 DX 5 DIaE£¢, M L0, T1; LX) ;
RUJ 5 D)=1glt, YEX+1(] 5 1)Iakg(t, )€ LX0, T1; H(I).

Let g be a small positive number (0, 1). For [=[0, T] and J=[—«, T+k],
put

3

M= ) l/l}zj|m.1,1+1A?7‘w,z,1‘|’ 2 IAyl”w.z,I
E 1 i, j=1

~H.P i.j

+ é([A}‘?lw,I‘J_!"A%P‘w,l,1+|A£|w.l,I+‘A};OII‘oo.L.I)
1=1

+{Bupre 1. 1+{BY o, 1,5+ {BPes, 1.1+ ;E, {Bhulw 1,141

HA+= 3 (A ot 1H LAY Lo 1+ | Al D)+ | ABLe
i.)=
+ é(!A}flm,l+,l‘J+1A;',p>m..,,+|A;;0,,|m.1.1+|A;;|m,1,1>
A< BupYe,1, 1+ {BY e, 1,0 +{Bpde, 1,1+ é<Bf>H>w.1,I ;

ﬂi(Z):E VAE |01+ [ ABlor, 1

n
=H.P i,j=1

+é(lA}?]oo,l+[l,J+‘A;IPIOO.X.I—F |Ablw 1+ 1A w1, 1)

+(Bupos. 1+ <Ble st Bedes 1+ B Bhuors
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Second of all, we shall explain the compatibility condition, which %z, %1, Zeo,
fg and gr (E=H, P) should satisfy in order that solutions to (N) exist. For a
moment, we assume that solutions #=(#y, #p) to (N) exist and that

(2.1) U=y, dp)esEL[0, T]; Q) for L=2.
Put
(2.2) Ugp=0iig(0) (0ZRZL), ip,=05iip(0) (0Zk<L-1),

which are represented in terms of initial data, right members fy, fp and their
derivatives. For example
me=A%0, %, Dl no+A}(0, x, im+Akp0, x, iipy+T 10, x);
il = A0, x)" AR, x, )i py+ A (0, x, ) o+ Apu(0, %, )i i+ F 50, %)},
and so on. It follows from (2.1) that
(2.3) UprsH " *) 0<kLZL,
UppreHE Q) 0<k<L-—2, Upr =LY D).

In view of the trace theorem to the boundary, the boundary condition in N)
requires that

(2.4)  0KBu(t, x, Diin+Bup(t, x)ip+BYE, x)0ciin)|==08x(0) on I';
0i B, x, 0)ilp+Bpu(t, x, D)iin+Bpa@t, x)0:ix)| =y=0:8s(0) on I,

for 0<k<L—2. Such conditions are also represented in terms of initial data,
right members fE, gr (E=H, P) and their derivatives. When (2.4) holds, we
say that @z, g, ¥p, fg and gz (E=H, P) satisfy the compatibility conditions
of order L—2.

Now, we shall state our main results.

THEOREM 2.1. Let T>0. Assume that (A.1)-(A.4) are valid.

) If dmeHAQ), ineHYRD), ipeHYQ), fzeR¥[0, T1; Q) and ZrE
RX[0, T];I"), and if (2.3) and (2.4) are satisfied for L=2, then there exists a
unique solution u=(liy, up)EX[0, T]; Q) to (N).

(2) Assume that n=2 and let p be a small positive number (0, 1). Then,
there exists a constant C=C(M(1+y), T)>0 such that for any t<[0, T] and i
(g, uppesX®"XZVY[0, T]; 2) the following estimates hold :

(2.5) llami< C{HE‘ﬁH(O)H“r l17p(0)]*

+, 3 LA TP+ Bss) A DT}

E=H.,P
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(2.6) 18e2 a(IP+ 1% 2@ 5 oy + 1O o

ée”[llazﬁy(ﬁ)llz—l-llﬁH(O)ll§<o>+MﬁP(O)Hfr(o)
+C0 13 (AsoTUNIN+(SLADE)
AP T ()i s,
where
2.7 1% 2% oy =(AY($)8siLp(t), 0:% n(®))+0oll&n(®)]|*;
() 5 ey =(AR(s)Ep(D), Up(t))-
(3) When n=1, the estimate (2.5) and (2.6) are valid with p=0.

THEOREM 2.2. Let T>0 and L be an integer =3. Assume that (A.1)~(A.4)
are valid. If g, csH*Q), imecH Y Q), dp,csHL (D), freRX[0, T1: Q) and
Gz=RY[0, T]; ), and if (2.3) and (2.4) are satisfied, then there exists a unique
solution ui=(iiy, Up)eEL([0, T]; Q) to (N).

REMARK. (1) We do not need the estimate (2.6) in this paper. But to
prove the existence theorem of nonlinear problem, (2.6) is needed. (cf. [4], [5]).

(2) By a suitable extension of the coefficients of the operators with respect
to ¢, we know that the assumptions (A.1)-(A.4) are equivalent to the following
assumptions (a.l1)-(a.5).

(a.1) AY and AY are mpyXmpy matrices, Ahp are myXmp matrices, AY, AY
and Ap are mpXmp matrices, A¥y and AY, are mpXmy matrices, and
the elements of these matrices in 8*(RX 2). Byr and BY are myXmy
matrices, Bp is an mpXmp matrix, By and Biy are mpXmy matrices,
and the elements of these matrices are in 8*(RX1[");

(a.2) 'A=A} (E=H, P), 'AR=A}, ‘'Ap=Ap, ‘By=BYy;

(a.3) there exist ¢, d, and J, such that

?’(ty x)zcl)[mp;
(Ag(t, )0, 0:1)=0,||Hix]i—0) Uz
for any #izcHY Q) and teR, x=Q, (E=H, P);
1
(a.4) %, x)——gyi(x)qu“(t, x)=0 for any (¢, x)eRXI';

(a.5) if we write AY=(AY?), then there exists T,>0 such that A¥=0,;04s
(E=H, P) and other functions vanish for [¢|>T,.
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§3. On an elliptic boundary value problem.

Our purpose in this section is to solve the following elliptic boundary value
problem in £ with parameter t<[0, T]1:

(3.1a) — A%, -, Diin—Alp(t, -, DiptAntig=]u) in 2,
(3.1b) — AR, -, Diip—Apalt, -, Dlig+Aptip=Fp(t)  in 2,
3.1¢) Lt -, Ohn+Buplt, ip=Fn(t) on I,
(3.1d) BAG, -, DiiptBhutt, -, Oin=2xt) on I

where Ay and Ap are constants determined below, and fH, fre CY[0, TJ; L¥*$))
and g, 8p=C%[0, T]; HY*(I")). First we consider the following problem:

— A%, -, Dig+Anin=F in 2,
(3.2)
w@, -, Nin=g on [
Let us define the bilinear form Dy(t, -, -) associated with (3.2) by
(3.3) Dult, W, On)=(AY0;0n, 00m)+Au(ivy, Or) for wu, ipcHYRQ).
By Schwarz’s inequality and (A.3), we have
(3.4) | Dult, Wa, 9m)| =C(Au, HON @ all: 192l ;

(3.5) Du(t, Wn, 05)=0:]|@n|? as Ap=0, .

By the Lax and Milgram theorem, we know that for any fe L¥2) and ge
HY¥I), there exists a unique solution wx=H (L) of variational equation:

(3.6) Dult, Wu, 9m)=(f, 9m)+<g, vu>  for any sy,cHY(Q).

To prove @wypsH*Q), straightening the boundary locally, we study the case
that Q=R?, where Ri={x=R"|x,>0} (cf. [6], §3). For any h=+0 such that
|h] is small, put

¥y
3.7 [Waln=AwWu(y+hep)—wualy)}/h where ¢,=(0, -, }L/, e, 0)
for p=I1, ---, n—1. By (3.5),
(3.8 Du(t, Libuln, )= A F 14481+ C(HUAI @ 1} 100 a2 .

Here, we have used that |[[@n]sllx2<[0"W x| kr. Putting 9z=[wx]» in (3.8), by
(3.5) we have

(3.9) 16" L ]l < CCHUNU I +(EDare+ 10 E ),

which implies that 0,nsHY(RE), p=1, ---, n—1. Noting that A} is non-
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singular and @y satisfies (3.2) in the distribution sense, we see 0iiwx< L¥(R?)
and we have

(3.10) 10°@ x| < C(HMQ), ) FI+(@D et m).
From (3.5) and (3.6), it follows that
(3.11) 13 21l < CCHONN F I 4+4&D 170

By (3.10) and (3.11), we have
146 51l < CCHDYN F I 448 D112) -

Moreover, by integration by parts we see that @y is a strong solution to (3.2).

(3.12)

In particular, if we substitute fH(t) for f and gx(t) for g, there exists a uni-
que solution #%H¥ Q) to (3.2) satisfying the estimate:

(3.13) 183710 = CCHNN T )| +4E n(t)ire) -

And if we substitute ALp(t, -, 0)iip for f and —Bygp(t, )ip for g, there exists
a unique solution #y(ip)s=H¥2) to (3.2) satisfying the estimate:

(3.14) 2 r(@p)e< C(HUINEp],

which implies that #g(iip) is a bounded !linear operator of #pcH(RQ) to #u(iip)
€H*). Put dp=aYy+au(lp). iy is a solution to (3.1a) and (3.1c) for given
upeHY(2). Noting the above facts, we consider the following problem :

—ABj(t, -, O)ip—Apult, -, Oip(llp)+Apitp

(3.15) =F o)+ Apn(t, -, it in Q,

b, -, O)ip+Bhiut, -, Din(lp)=gp(t)—Bin@, -, O)aty; on I
The associated bilinear form is
(3-16) DP(t: 17?, ﬁP):(AgajﬁP; aiﬁP>'—(AinIIatajﬁH(ﬁP): ﬁP)

—(Ap0;ilp, Dp)+<{Bpu0:tn(lip), Dpy+<{Bplp, ipy.

From Schwartz’s inequality and (3.14) it follows that
(3.17) I Dp(t, tp, 9p)| SC(HD)|Uplilldp]l,  for any iip, pH(2);

(318 Dilt, ip, TZ sl for any HpeHYQ),

provided that Ap is sufficiently large.

The Lax-Milgram theorem yields that there exists a unique #peHY(£2) such
that
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(3.19) Dp(t, Tip, 5p)=(F p(t), Up)+(AFu(1)0:0,0Y, op)
+<gpt), Dpy—<Bhu(t)0:4%, Up) .

Furthermore, employing the same argument as above, we see #psH*{2) and
obtain

(3.20) 1Lplla = CCH F OGN0+ 1% 1) -
Combining (3.13), (3.14) and (3.20), we have
(3.12) (% alfeti 7P| géc(ﬂi(l))E:EH P(HfE(t)H HLEe(E1/2) -

U=(dy, Up) is a unique solution to (3.1a)-(3.1d). Moreover, i=(iiy, ip) depends
on time ¢, so that we write # =1, x)=iu(t). By (3.21), we have

1 () — ()4 Ml 2 p(6) — B p(E)] 2

SCHRN S (IF ) F oI+ (@)~ Est W)

+ =t [(a a2+ 1202}
Therefore, we see that iy and upsC%[0, T7; H¥(2)). In the similar manner,

we can get the higher regularity of the solutions. Namely, we have following
theorem:

THEOREM 3.1. Assume that (A.1)-(A.4) are valid

(1) For any fz=C*[0, T1; LX) and gr=CX[0, T1; H'*(I") (E=H, P),
there exist constants Ay and Ap depending only on M) such that (3.1) admits a
unique solution U=y, ip)C[0, T]; H¥Q)) satisfying (3.21).

@2) Let L and K be integers =0. If fEECK([O, TY; H«(D) and gr=
CE(0, T); HEY(I)) (E=H, P), then i=(lyg, ipycCX([0, T]; HE*¥4)).

§4. An existence theorem under the assumption (A.4").

In this section, assuming that
(A4 By, x)~%pi(x)A§?(t, xX)=e¢ for any (¢, x)e[0, T]X I, >0,

in stead of (A.4), we shall prove the existence theorem of (N). At first, we
calculate the energy estimate.

LEMMA 4.1. Assume that (A.1)-(A.4) hold. For any insX?%[0, T1; )
and upsZ [0, T ; Q), the identity
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L
2

| e

4.1 0.8 x @O+ 1 a5 o + 17O G102}

QU

t
(B~ 5 e AHO)oun(t), 30+ AFOD 500, i)

+<{Bup(t)ip(t), 0.4 u(t)>+<{Bpu(t)0,t u(t)+ Bbu(t)d:in(t), Up(t)>
=(Aa@OLA@)], 0.8 u(@)+(AsBLEE)], #p(t)
+<Ba®OLUD)], 0.2 n(t)>+<Bp(B)[UQ)], #pt))
holds for t[0, T, where A=B means that
(4.2) | A—B| <C(O)I D' u@®2+ [ #2176 6% (0]
+ID @B 8 Ep0)]) -

PrOOF. If we calculate (Ax@)[#)] 460t y, 0,4x@)) and (ApE[U@)], 4p{))
and combine the resulting formulas, we have (4.1). @

LEMMA 4.2. Assume that (A.1)-(A.2) hold. Let B(t, x)=B(t) is an mpXmpy
matrix of functions in B[00, TIXI). Let #uxcsX**[0, T]; Q) and ipc
ZVY[0, T]; Q). Then the following estimates are valid :

(4.3) [<Bt)0:in(t), #pt)>]
=C(MO), o)l @ u®Ii+8p0)]*+ (B a(OLUE@)IN21/2)
+ollipM)i+0¢0. 4 x> for any ¢>0;
4.4) (0:t a()) - 1/o= CAHMOIE @)1+ (B n(OLEE) ) -1s2
(@) 172+ (0l 5(E)) 1s2) -
PROOF. Put gu()= B x(t)[#(t)]. Using the local coordinates, we can straigh-

ten the bouundary locally, so that it is sufficient to prove the lemma in the
case that @=R?. Since A} is invertible, we write on /':

45)  Gndinlt, ¥, V=AW &', 0 {—Bult, ', 0)+Bust, x)isl, x', 0)
L BY(t, £, 0nlt, &, 0)— S AM (G, 17, 08,4 nl, x', O)}.

J=1

By (4.5) we can prove (4.3) and (4.4) easily. =

LEMMA 4.3. Assume that (A.1)-(A.4’) are valid. For any T>0, the follow-
ing estimates hold: (E.1) there exist C;=C (M), &) i=1, 2 such that

Na@E= C el {| D' (024 | iL2(0) *
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+,3 @I+ B Dm)ds)
=H,PJ0

for any ipeX>*([0, T\]; Q); ips Z4Y[0, T,1; ) and for any T,&(0, T].
(E.2) there exist C;=C (M), €) i=3, 4 such that

10:8 I+ 1T a5 e+ 11 EpOI 2
<0 {)10,2 m( )2 1 E a5 g+ 1 EpED Sy
+C0, 3 | (st la1 1+ (St E) D s}
E<H.PJt,
for any tE[ty, t,], GueX>([t;, t,1; 2), peZV ([t t2]; 2) and t,, t,, L,E[O, T']
ProOOF. By Lemmas 4.1 and 4.2 and (A.4"), we have

d N >

4.6) ds {1957 w2+ T m( G o+ 1R Feor}

+e(@sin(s))*+o | ur(s)lE
=C(HD), 0, ) 2 P(HJE(S)[ﬁ(S)]|12+<(_‘BE(S)[17(S)]>>¥/2)

E

PO EMOESEROTY
(4.7) 18+ 1) S 1) )

=C(D), e :%1P(IIJE(to)[ﬁ(S)]ll2+<<.@y(to)[ﬂ(8)]>>f/z)

OIS S PRIOT MRS 4 POl TR

Combining (4.4) and (4.6) and integrating the resulting formula on [0, t], we
obtain (E.1) by Gronwall’s inequality. And also (E.2) can be obtained from
4.7. =

Now, we shall prove
Anlt)[ilt, X)1=Fult, ¥), Aplo)[ilt, X)]=Fp(t, x) in [t t,1X 8,
4.8)  sut)lu¢, x)]=0, Bp(t)[Ht, x)]1=0 on [t;, t,1X T,
Uy(ty, x)=Uue(x), 0:Unult:, x)=1m(x), Up(ty, x)=Hp(x) in Q.

Here and hereafter, ¢, t, and ¢, are always any fixed times on [0, 7] such that
1 <t,., Let H(Q)X LA2)x L) be Hilbert space with norm

(4.9) MU=l o134+ 112 2>+ [ 2 p*



382 Wakako DaN

for U=(llno, i, p)cH(Q)X LAD)XLYD). Put
(4.10a) (U, V)swary=(AF)05 110, 00 110)+00(T 110, ¥110)

+ (i, Dm)+H(AB)ip, Up);
(4.10b) 1V o, =(U, U)oy =l moll 5o, + 1o |>+ o5 iy

where U=(tu,, tu, Up), V=0m, Vm, Ip)EH(Q)X LX(Q)X LYQ). By (A.2) and
(A.3), we know that (, ), is a bilinear form and

(4.11) min (1, 9, ¢)IVIP=IUN o, < CIHO)) U

for any UeH Q)X L)X L¥(Q), t<[0, T]. Let J4(t) denote the Hilbert space
HY Q)X LX(2)x L¥2) equipped with inner product (,)g«,. Put

iy
(4.122) A@)U= Ay(t, -, i+ AR, -, Viim+Akslt, -, d)iip 1
(AR)HARGE, -, O)ip+Abn(t, -, Nimt+Abult, -, Db} |
b, -, Dinet+Buplt, Jip+ByE, i
B, -, )ilp+Bhat, -, 0)ilus+ BRu(t, ~>ﬁm]
for U=H*Q)XH Q)X H(2);

(4.12b) fB(t)‘U:{

(4.12¢) IO={VeHQXH(QXH(D) 83t)U=0 on ['}.

LEMMA 4.4. Assume that (A.1)-(A.4") are valid. Then there exists a C=
C(M()) such that

(4.13) [AI=AOU ) 5, 24— Ol U,

for any A>C and U<D({t). Here, I is the identity operator.

PrOOF. Since

IAT— AN U5ty =22 U cor I ADU N o) — 2HABU, U),
if we have

(14.4) 2ADU, DMy <Cl Ul for any Ue9(),

where C=C((1)), we can get (4.13) immediately. Since B{)U=0 on [, by
integration by parts we have

(HOU, Doy S —((BYO— 3 AR m, T~ (AYOBs, 3iir)

+C(o, HINUlls, +ollipli+ofin)
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for any ¢>0. Here we have used the same idea as in Lemma 4.2 to estimate
the boundary terms. Therefore, by (A.3) and (A.4’), we have (4.14), which
completes the proof. &

LEMMA 4.5. Assume that (A.1)-(A.4") are valid. Then, there exists a C=
C(M(), ) such that for any A>C, AI—A(t) is a bijective map of D) onto I (t).
If we denote its inverse by (AI—A{))™", then
(4.15) [AT=AO) " Ullw ey =@A—=C) Ul wecos

for any A>C, UsD({).

PrRoOOF. In view of Lemma 4.4, it is sufficient to prove the bijectiveness.
Namely, for given V=00, Vi, Up)E 4 (t) we shall prove the unique existence
of U=C(iiy,, i, p)ED(t) such that AI—AW)U=<V. If we use the relation
of the first components: A#y,— iz, =¥, We rewrite the relation of the second,
the third components and the condition that U< d(t) as follows:

(4.16) —AK(t, -, Nigo—AAR(E, -, Nikuy—Akp(l, -, 0)ilp+22Tmo=1 u(t) in Q,
— AR, -, Dip+AARL, )ip—Apu(t, -, iy —AAbH(, -, a)ﬁIIOZfP(t> in 2,

By(t, +, Oue+Bapt, )ip+AByE, )iu=8 () on [,
B, -, Oip+Bpu(t, -, Diine+ABpu(t, )line=8p(t) on [,

where
Fult)y=—A4(t, -, o uo+AVuo+im s LHD),

FAy=Apt)p—Abu(t, -, Nines LHD),
Gu)=ByOnsH'(2), Go)=Beut)on,cH(2).

If we prove that there exists a constant C such that for any 4>C the problem
(4.16) admits a unique solution (&, ép)EH*(Q)X H*(2), then U=(lu,, Aligo—
D, Hp) is a required vector. At first, for given u#ps=H'({) we consider the
following problem:

— A%, -, Diipy—AAY(E, «, o+ A,
(4.17a) =F u)+Ayslt, -, Dilp in Q,
By(t, -, )il umo+ABY(t, )iuy=8u(t)—Bupt, )ip on [
The associated bilinear form is
(4.18)  Dylt, n, 0u)=(A¥®0in, 0:0 ) —AAY)I:iin, Or)

+ ATy, Ou)F 2By, 9y for Uy, dpasHY(D).



384 Wakako DAN

By Schwaltz’s inequality, (A.3) and (A.4’), we have
(4.19) | Du(t, tim, 9a)| < CQA, MONNZallFxl,;
(4.20) D@, iy, dm)Z0, 10 glli—08 %+ Al g)*+ 22l g2 — AC(HD))| % u ]|

z0lualli+ % N3 |*+ A6t m)* 2 0ull e m |1}

for any large A. Therefore, employing the same arguments as in the proof of
Theorem 3.1, we see that there exist a unique solution #%H¥{2) and a unique
solution #x(iip)s HY ) such that

(4.17a.1) { — A%, -, DAY —AAY(, -, DAY+ RAY=Fp(t) in Q,

Biu(t, -, )il +AByE1)dy =8 u(l) on [,
4.172.2) { —AY(t, -, i y(ilp)—AAY (L, -, D)l gl p)+ 20 (i p)=AYs(t, -, Diip in 2,
u(t, -, Diy(ilp)+ABy )i n(iip)=—Bupt)ip on /.

In particular, %y(iip) is a bounded linear operator of ipeH(Q) to Uyxliip)e
HYQ), and ty=u%+1iy(iip) satisfies (4.17a). By (4.20) and (4.17a.2) we see
that there exists Ax(#(1)) such that

(4.21) O+ L RN+ G

C, . C .
Zl—z\lupll?-FE((up»z for any A>2x(H(1)),

where C=C(H(0)). Now, we consider the following :

— AR, -, Qup+AAN)dp— ABu(t, -, D)ia(lip)

(4.17b) —AAu(t, -, Dl a(ilp)=1 pt)+Apu(t, -, iy +AAbu(t, -, )iy in L,
B, -, Diip+Bpult, «, 0)iu(ip)+ABEu(t, )i u(ip)
=§p(t)—23}$y(t, ')1_2?1*"311711@, ‘y 8)17'}1 on /.

The associated bilinear form is

(4.22)  Dplt, iLp, 0p)=(AFt)0;ilp, 0:0p)—(AKL)3:tip, Up)+A(ARW)ir, Vp)
+(A¥p ()04 n(iip), 0:0p)+((0:AFu(1))05% u(lip), Up)
— (A ()0:t u(tip), Dp)—vi ABu(t)0;i u(ilp), Op)+{Bpt)ilp, p)
+{BEn(t)0:2 u(iip)0py+ A BEu)i uliip), Vp) .

In the same way as in Lemma 4.2, we have,



Linear Hyperbolic Parabolic Coupled System 385

(4.23) | Bhu(®)—vi AP(0)051 n(iip), vp)|
S C(4, IO D)+ a(ip))Op)+ 1 (el [0pl ) -
From (4.22) and (4.23), it follows that
(4.24) | Dp(t, itp, D) =C(4, MO), &) ipl.lopl
for any iip, speH ). Furthermore, we see that there exist a constant C and
Ap=Ap(HM(1)) such that
(4.25) Dp(t, Up, Up)=Cllipll}  for any A>2p, dpeHY Q).

Employing the same argument as before, we see that there exists a unique
solution #peH*Q) to (4.17b). Therefore, (% +ux(iip), #p) is a unique solution
to (4.16), which completes the lemma. &

LEMMA 4.6. Assume that (A.1)-(A.4) are valid. Then, D) is dense in
().

PROOF. Since H=(Q) is dense in H(2) and C{(2) is dense in LX), for
any U=(i o, %m, ip)SIH(), there exist of,cH(Q), il =CT(2) and e C3(2)
such that

(00— ol 1k — | +0p—itlpl —> 0  as [—oo.

#4, and #5 will be modified so that the boundary condition can be satisfied.
Let @Y, be a vector of function satisfying the following:

(4.26a) By(t, x, 0)ho=—DBy(, x, Nk,  wie=0 on I,
ol =1/1.

The existence of wk,=H=(2) is guaranted by Lemma 3.8 of [6]. And let @}
be a vector of functions satisfying the following:

(4.26b) At x, Dwb=—BE, x, )vp—Bpult, x, ) kot wir) on [,
wh=0 on I, |lwp|=1/l.

The existence of wheH=(Q) is also guaranteed by Lemma 4.8 of [6]. If we
put U'=C(ill, D4, iib) where Uk, =0ko+ Wk, and Up=0vp+ih, U' satisfies that
@U'=0 on [" and |U'—Ull4u—0 as [—oo, which completes the proof of the

lemma. &

In view of Lemmas 4.5 and 4.6, an application of the Hille-Yoshida theorem
vields the following theorem ;
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THEOREM 4.7. Assume that (A.1)-(A.4") are valid. Let t,, t, and t,=[0, T]
such that t,<t,. Then, for any U, D(t,) and F()=CO)[t,, t,]; H(t,)) there exists
a unique U@)=CH([ty, t]; HANNCU[L,, t]; D(t) such that

(4.27) g—tcl](t):J(to)CU(t)—i— @), UHHeD(,) for any tElty, t,],

Ut)=1,.

If we put Uo=(tn, %m, ip) and F()=(0, f u(t), fp(t)), then the first and
the third components of U(t) of Theorem 4.7 are solutions to (4.8). Summing
up, we have proved the following theorem.

THEOREM 4.8. Assume that (A.1)-(A.4") arevalid. Let t,, t, and t,=[0, T]
such that t,<t,. If dgec HXR), imeHQ), ipecHXQ), [ u, [re CUL, t.];
L¥8)) and

(4.28) uto, +, lno+Bup(ts, )ipe+By(ty, )ig=0 on I;

Bito, -, O)tipy+Bpulte, -, Dipy+Bhuty, )im=0 on I,
then there exists a unique solution U=y, Up)=X? ([t to]; LYXZVY [t t2]; )
to (4.8). m

Next, we shall get the estimate of the second energy.

LEMMA 4.9. Assume that (A.1)-(A.4") are valid. For #= iy, ip)c
EX[0, T1; 2), we put fr(t, \)=As(O)[ut, x)] and Zu(t, x)=Be)[A(, x)] (E=
H P). If ]?EERZ([O, T1;8) and ge=R¥[0, T]); I') (E=H, P), then there exists
a constant C>0 independent of # such that

4.29)  {la®liE=C {7 #(0)]3+] 0.4 #(0)F+1122(0)]3
+ 2 (7O (Z 6003 re)
E=H,P

+, 3, 2 | (Tl -+ @gsMieds)  for 0=t=T.

LEMMA 4.10. Assume that (A.1)-(A.4’) are valid. Let t,, t, and t€[0, T]
such that 1, <t,. For i =(ug, dp)eX>°([t, t.]; Q)XZ [t t.]; 2), we put
Falt, x) = Ast)(aC, 0] and Exlt, x) = Bp)a, )] (E=H, P). If fze
R¥[t,, t,]; £2) and ge=R¥[t,, t,]; ") (E=H, P), then



Linear Hyperbolic Parabolic Coupled System 387

(4.30) 1082 n()°+ 1022 (D] 7 ey + 10 (DN 30

< e OO a(EDIP 108 m(t)N| G ey + 1862 )] 3y

o)

+Co 2 | 1075 +@.8x(Wdst  for any 1Tt 1],

PROOFS OF LEMMA 4.9 AND 4.10. In the case that #=(iiy, #p) is Smooth
in t, differentiating the equations once with respect to ¢, applying (E.1) to the
resulting equations and using Theorem 3.1 to estimate the second derivatives
with respect to x, we have (4.29). To remove the smoothness assumption with
respect to ¢, we use the mollifier with respect to #. (4.30) can be obtained by
use of (E.2) instead of (E.1) in the same manner. For details, see Lemmas 4.1
and 4.2 of [6]. =

By Theorem 4.8 and Lemma 4.10, we can prove an existence theorem for
Ar(ty) and Bg(t,) (F=H, P) with the inhomogeneous boundary condition.

LEMMA 4.11. Assume that (A.1)-(A.4") are vaiid. t,, t, and t,[0, T] such
that t,<t,. If g, sH D), iyycHYQ), ip,cs HYQ), ]?EeRZ([tl, t.]; Q) and gre=
R¥[ty, t,]; ') (E=H, P), and they satisfy the compatibility condition of order 0
in the following sense:

(4.31) ulte, -, Do+ Buplte, lpot+BY(ty, Nim=gut:, x) on I';
Ba(t,, -, O)tipy+Bhult,, -, 0Vl 110+ BR u(to, Dim=gplt:, x) on I,

then there exists a unique solution U=(lg, ip)cX® ([t t,]; QDX ZVY([t,, t.]; Q)
to the equations:

(4.32) Al ¥)]=Frt, x) in [t, L1XQ (E=H, P),
Br(t)lu(t, x)]=8st, x)  on [t, t,1xXI" (E=H, P),
Up(t, x)=Unx), azﬁy(h, x)=um(x), upt,, xX)=Hp(x) in L.

PROOF. Since we know that (E.2) holds from Lemma 4.3, employing the
same argument as in Lemma 4.3 of [6], we can prove the lemma. &

LEMMA 4.12. Assume that (A.1)-(A.4") arevalid. If fEeR%[O, T7; Q) and
Zr=RY[0, T1; I") (E=H, P) satisfy
(4.33) fE(O, x)=0 in 2, g0, x)=0 on I' (E=H, P),

then there exists a unique solution Ui—=(iiy, Up)SEX[0, T]; 2) to (N) with zero
initial data and right members [z and Gz (E=H, P).



388 Wakako DAN

PROOF. Since we see that (E.1) and (E.2) are valid by Lemma 4.3, using
Lemma 4.11 and the method of Cauchy’s polygonal line, we can prove the
lemma in the same manner as in Lemma 4.4 of [6]. ®

Using Lemmas 4.9 and 4.12, we can complete the existence theorem under
the additional condition (A.4").

THEOREM 4.13. Assume that (A 1)-(A.4") are valid. If dwgesHYQ), ime<
HY (D), lp,cHYQ), feeR¥[0, T1; ) and z=RX[0, T1; Q), and if they satisfy
compatibility condition of order 0, i.e.

(4.34) 40, -, N wo+Bup0, )iip+BHO, )i m=5#x(0) on I';
50, -, iipo+Biu0, -, Dige+Biu(0, im=gp0) on I,

then (N) admits a unique solution U=y, Up)=EX[0, T]; Q).

PrOOF. Since the uniqueness follows from (E.1), we have only to prove
the existence. First, assuming that

(%) lno, i, ipe€H™R),  fu, FreC0, T]; HY(Q)).

Put @g="ugy, -, Umny for 0ZI<kg (E=H, P), where ky=2and kp=1. By
uh. We denote the extension of ugz, from 2 to R*. We put

R 3 — .
Opalt, )= 31 (expv/=lan(L+ 1§10 )bmitiral @)L+ €177,

where a,, and b,, are chosen in such a way that 3JeE, (v/—1a,)"bmi=0n for
0<h, I<kgy. Obviously, 9}Ur.0, x)=ugs.(x) for 0=<h < kg, and Ug,E
C=(R; H<(R) (E=H, P). Put U=(Uy, Up), Un="Um, -, Unny), Up=
YUpy, -+, Upmp). Let 0=(bg, 9p)€E*[0, T]; £) be a solution to the following
problem :
435)  Au®O01=Fu—AuOLT], AsOBI=Fp—ApOLU]  in [0, TIXQ,
BaO)[0]=8u— Bu®)[U), Bpt)[0]=Ep—Bpt)[U] on [0, TIXT,
I)H(O, X)Zaﬂjﬂ(o, X)-:O, ﬁp(O, ?C)ZO in 2.
By the definitions of ¥y, Up,, U and (4.34), fE—LAE(-)[U']EC“([O, T, L¥YQ)),
0 fe— AT € L0, T1; L*D)), gsz— Bx(-)[U] € C([0, T]; H'*(I") and
08— Be(-)[UDe LX[0, T]; L*(I") (E=H, P) and (4.33) is satisfied. There-
fore the existence of the solution # is guaranteed by Lemma 4.12. If we put

#=0+U, then @ is in E¥[0, T7; £2) and a solution to (N) with initial data # s,
Uy, Upy and right members fE and gr (E=H, P). Employing the same argu-



Linear Hyperbolic Parabolic Coupled System 389

ment as in Theorem 4.5 of [6], and using Theorem 3.1 and Lemma 4.9, we
can remove the additional assumption (*), which completes the proof of the
theorem. @

THEOREM 4.14. Let L be an integer L=>3. Assume that (A.1)-(A.4") are
valid. If GposHMQ), g, cHE (D), lip,c HY D), fEERL([O, T]: Q) and gre
RE[O, T]; ), and if (2.3) and (2.4) are satisfied, then the problem (N) admits
a unique solution U=y, ip)cEX[0, T]; Q).

PROOF. We can prove this theorem in the same manner as in Ikawa [[2],
p. 364-367] or [[1], p. 604-607], so that we may omit the proof. =

§5. A priori estimate in half-space.

From now to §6, we assume that n=2. Our purpose in this section is to
derive some a priori estimate for the following problem:

6.1) eali]=lu, @Ldl=fr in RXRY,
Quli]=&n, Qpli]l=gr  on RXRE,
where Ri={xeR"|x,>0} ; Ri={xeR"|x,=0} ;
Pul#)=—Dtin+DyP¥({t, x)Dilu)+PR(E, x)D;D il y—iPhr(t, x)Djiip;
Pp[i]=iP3(¢, x)D,dip+D(P¥E, x)Dilp)—iPy(t, x)Djilp
+Py(t, x)D;Dy g+ PPy (t, x)D;Dy iy ;
Qulil=—iP¥¢, ©)Driin+Qup(t, x)ip+iQy(t, x")Diilx ;
Qpli#]=—iPp*(t, X)Dpilp+iQpu(t, x")D il u+iQpu(t, x")Djiln ;
i=+~—1, D,=—id/0t, D;j=—1d/0x;, x'=(x\, -, Xn_1).

From now, the functions in general are assumed to be complex-valued and
Du=(Dwu, D\u, ---, Du). Let y be an any real number =1, and ¢ and r be
integers [1, n—1]. For any integer L>=0, s=R, scalar functions, #, ¢ and

>

vector valued functions #, #, put
IeE= A=, -, Ty |10, E Ho(RXRY), wilt, YSHERY) for all teR,

|| z,,=

e | Qkasu(t, x) | dtdx << oo} ;

= A
E+tla|sL RxR+
‘4[;»1:{17:!(”], e ump)]uiecu(R; HZ(R’IJ,))’ 3zui€L%oc(R><R3ﬁ),

[0*015 7+ 10,2 |5 ;< oo} ;

>
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DO=Ry ] e e
where & =(&;, -+, &,.,) and @ denotes the Fourier transform of u(x’). Put
(DY A(x)y= LD Y uy(x’), -, LD Y un(x’));

=] e, w0 e

RN

(u,zOT::SR Rne‘”‘u(t xw(t, x)dtdx, <u, v>7=:SRne"””u(L xNt, x")dtdx’,
X i
. N m i . m
@, 0= 2 e, vy Ty By= 3 e, VD1,
=], lalrdx, uGey=u@, 0, B=tCu e s
+
n o n )
b= X _2 ]szklm,r,n«k?"‘\Pio)lm,z.mk”+ 2 PP le 1, rer®
E=H.P j k=1 + k=1 +
+ 2 (I P e 1. Rxr?+ | Phplos. 1. rern+ |Pf=fw,L.RxR"+|P§>°H|m,z,1exRE>
= + + + ;

+|QHP|M.Z,R7L+!QOFIIM,l.Rn+ji20 1Q%n e, 1. rn for /=0, 1;

n
2
E=H.P j. k=

B(+p)=

I.I o, 1+, RXR P 0,1, RxR l.’H 0,1, RxR
(PH] B PE s mentot | P o1, mew?)

n . . ) .
+ Zl(lpjfﬂm.ny,mk?ﬁ‘*‘)P%{P|w.1.RxRZ}_+|Pf>loo,1.nxk1+\P§’0H‘oo,1,kaﬁ)
i=

n N
+|P%Im,l.mkﬁr‘{‘1Q11P|oo,1,Rn+)Qoll‘co.l,kn‘}‘ .20 ‘QJPH]w,l.Rﬁ
j=

for O0<u<l.
Throughout this section, we assume that:

(A5.1) Pt and P are mpygXmy matrices, Pyp are myXmp matrices, P, P¥
and P} are mpXmp matrices, Pify and P§y are mpXmy matrices and
the elements of these matrices are real valued functions in @*(RXR?).
Qup is an mpXmp matrix, By is an myXmy matrix, Qp; and Qfy
are mpXmy matrices, and the elements of these matrices are real-
valued functions in @=(R");

(A52)  PY=PY (E=H, P), ‘P§=Plj, 'Pi=Ph ‘Qu=Qk;

(A.5.3) there exist positive constants d,, d, and d, such that
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P,t, x)=d,I;
| o P2 0D, i) DT dx 2 d |85 ]
7
for any ipeH'(RY), teR, x&R? (E=H, P);
(A.5.4) Qu(t, x’)+ P ¢, x’, 0)=0 for any (¢, x)eR";

(A.5.5) PJUt, x)=0;10,, (E=H, P), P}, x) is a positive constant matrix and
other matrices vanish for |¢|>T, with some T,>0.

At first, we get the following Green’s formula.

LEMMA 5.1. Assume that (A.5.1)~(A.5.4) are valid. For any U=(liy, ipec
JEX I, the following identities ave valid ;

(6.2) —i{(@ulit], Dalim)y—(Daliny, Puli])}
=Dk )3+ PY Do, ‘Dyilnyy— ‘P Dyiig’, ‘Dofin’ )y
—PRDyf, ‘Diiigyy
+27{(Dibn, Dohm)y+(Dailn, Ditin)y—(PEDgiiy, Dolig)y) ;
5.3 —i{(Lull], Dilim)y— D, liy, Pulil))
=2r{| Dot |8+ (PYDstin, D)y} +<QQY+ PY¥)Diily’, ‘Diiin’d,
—i{'Ditky’, ‘Quli]Dr—<‘Qul]", ‘Diling*d;
+Quptlip’, ‘Diihy >y —<Diln’, Qup'lip’ >} ;
6.4 (@plu], Up)+(ip, Pp[U]);
=2y(Ppilp, ip);+2(P¥ Djiip, D, iip),
e, QpLE]Dr—<0p[R], ‘Up,
+i{Qpu Diikn’, ‘UpDr+<"Up', Qpr‘Diiln),
+<Qbu'Djiln’, ‘Upyr+<‘Tp', Qpu'Dilin*dy
+CPRR Dyl “Up'Dr+<"Up’, ‘PR Drlin‘);
+EPBY Deln!, ‘Up D+ Up’, ‘PRyDiiin'>,
where in (5.2) and (5.3), A=B means that
| A=B|<CBUN{|dnlt + a0 plor)
and in (5.4), A=B means that
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| A—B| <CB){|upld + 13" Uplor tplor+ a0 el ).

PrOOF. By the integration by parts, we get

(5.5a) (Deu, v)y=—241(u, v)y+, Dw);
(5.5b) (Dau, v)r=iu, vor+, Dav);;
(5.5¢) (Dqu, v)y=(u, D); .

Using (5.5) and (A.5.2), we can obtain (5.2), (5.3) and (5.4). ®

LEMMA 5.2. Assume that (A.5.1)-(A.5.4) are valid. Then, the following
estimates are valid.
(1) There exists a 1o=1 depending only on d,, d., d. and B(1) such that

(5.6) 7G|} +18p18 )+ 10'Epl5
=C{r 1 @al]d +r7t | Lp[@]15 QPR D212y
+1<‘Qal]’, ‘Diliu;| +1<Qup'tip’, ‘Delin'>;l
+1<Qexr‘Diiln’, ‘Up ;| +1<Qbu‘Djlin’, ‘Up'>y|
+ [ PRED i w’, ‘Upr |+ | PEyDiiin’, “Uporl}
for any r=7, and WS HEX I}, where C=C(B(Q)).
(2) For any y=1 and i€ HiX I},

6.7 Diitg' 8, +PE Daily’, ‘Dalin®y
=CBW){r*eald]lf +r o' el +rlinlt )
+CBON L Dait o, < Dith Do,y +< Dl gD3.7} -

ProoF. (1) Combining (5.3) and (5.4) implies that
(5.8) 2 min(dy, Dylinli,+2rdeltdpld+2d:10%p|5
<21@y[8] 0| Ditinlo,r+21Lpl#]] 0.7 Uplo,r+2{'QpL#]* D 1/2,7|0'Tp 0.7

+CBW), d){in!t 4 Up|8 4 8u 110" Eplo, s+ Hplo, 10" Up]o, st
+2rda|tn |}, 21 QulE], ‘Dillu>r | +2KQup'lp’, ‘Diiin’;|
+2[<Qpu‘ Dy, ‘Up>| +21<Qbu‘Djlln’, ‘Uip)y!
+2{ PR Dtly’, ‘Up Dy | 21 PRy Dy, “Up'Drl.

Noting that e ?*=—27) Y (d/dt)e %", by integration by parts we have

(5.9 |Zalor =77 | Diiglo,y .
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Applying (5.9) to (5.8), we have (5.6).

(@) Noting that |(‘PY¥D,iiy’, ‘Deiin‘dy| < C(BO)Dyin®si, and that
[KPED ', ‘Ditig e | SCBON Dy gD, Dilin* 0,7, We can obtain (5.7) from
(5.2). @

THEOREM 5.3. Assume that (A.5.1)-(A.5.4) are valid. Let y,=1 be the same
constant as in Lemma 5.2, and p=(0,1). Then, there exists a constant C=
Cly, BQA+p)>0 such that

(G.10)  p(dnl},+1Tpl5 )+ 10 p| 5 < D gD
SC{r | @uludlf +77 @[  H<CulEI DY ey CPLET D210}
for any =7, and GE KX Ip
PrROOF. Regarding x, as a parameter, we use weighted pseudo- differential
operators. Let x£ be a small number determined later, and choose ¢,(o, 7, &)

and ¢,(a, 7, &)esC=E"*'— {0, 0, 0}) (we will consider the case of y=7,=1) so
that 0=<¢,, 0151, @y+¢,=1 and

(6.1 supp @oC {(0, 1, &)1 26%(e*+1)2 1§ 1% ;
supp o1 {(0, 1, E)1eH o+ < 16717

Let @, and @, be weighted pseudo-differential operators with symbols ¢, and
¢, respectively. Namely

¢;u:(271')_713”558“1"71')é'+i<t—s)”§01(0, r, El)e—rsu<s’ y/’ xn)dy’dsdé’da

=@m)y et sy a, 3, alo—ir, &, xddods  1=0, 1.

Let A; be weighted pseudo-differential operator with symbol (g?+72+4|&"|%)%/2,
Put @,#=4®@#,, -, @ilin), {=0, 1. We shall estimate ‘D'#y“)_,;s,,. At first,
we shall consider <{D'@,iig,,. Since PJ* is non-singular as follows from
(A.5.3), we have

(6.12) Pul @i ]=PFO(PF)Py[u]+F, in RXR},

where
Fy=P}*[D,, (PH) 1Dt g— P [ Do, (PE) PH+P3)]1DaDliy

—PR[@o, (PF)'PH 1D D,k u— PR Do, (P PRIDjiln
—PH [, (PE)'PYID;D il y+iPH [ Do, (PY)*Pp]Djiip,
and [A, B] means a commutator of A and B, i.e. [A4, Bli=A(Bui)— B(Ai).
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For (=0, 1, ---, n—1,
[[Do, BID:ii |0,y = |@o(Di Bt |o,;+1[DoD1, Blitlo.r,

where D,=D, and Be 3*(BXR?»). Since the order of @, is zero, by Theorem
Ap.5 of [6] we have

(5.13) {[DoD,, Blit| 0= c(ﬂ)] B ‘w.1+p,RxR1’ﬁ Lo.7-
Therefore,
(5.14) [Folor<Cly, BA+p){ltuls+10"plor).

Applying (5.7) to (5.12) and noting that there exists a d>>0 such that P}*¢-9
>d|9|® for any s=R™H#, we have

(56.15) DDl g v +d D@t 8
=Cu, BA+p) iyt 1eald]|i,+r7 0" Lp)d 7l tnli )
+CBON L De@oth 0,1 De@oil 1t y0, 7+ De@othrrD.11 .
From (5.11) it follows that
(5.16) D@k i)}, r Cx¥ DUty  for ¢g=1, -+, n—1.
Substituting (5.16) into (5.15) and choosing £>0 so small, we have
G17)  (DOmhr=Cly, B+ | @alt] 1817|8018 7 1 T 1)

Next, we shall estimate <D'@,%ig>_,/»,,. Considering (5.11), we have

(5.18) (D@l

=(52) fa+igmnat g0, 1.8 i nto—ir, &, OPdods

§C(fc)(27r)"”g(l+!f’IZ)”Zlf’tH(G—ir, &, 0)*dadé’
ZC(K)<1711>?/2.7§ C)|inl %.r .

And

(5.19) (DDl gy 10y P U112, ZC Ty |1y

From the fact that (J&|24+1)2<(1+1/£)V%(a* 472418 15)71% on supp ¢, it
follows that

(5.20)  Da@uiin )21,y SCW AT DD B n D%

= C(K)S;oan<A;”2Dn¢1ﬁH(', Xn»(z),)‘dxn
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<200 |77 DA0 i, 32, A7 DRO a2 x|

SCWIDptinlor| A7 Diten oy«

We have

(6.21) [ A7 D2y |0, SC{y P ult] o+ tdalr+77 10 Up 0},
where C=C(B®1)).

Since

D2l g=(PH) @ u[i]+ Dt g — PY DD,k — (PR +PH) DDl n
—(D;P)D i y—PYD;D Gy +iPlypDjiip} ;
| A7*ADyu oy S 1 A7 D(Aw) Lo+ | A7 (D Au Lo,
SClAlwrxrr|ulo;  for any A€ B*(RXRY);
[Ayulo,y ZCr~tulo.y for any weighted p. d. 0. A; of order —1,
we can get (5.21) immediately. Applying (5.21) to (5.20), we have
(5.22)  Da@iiig 210, <Ck, BAD{|ia !t +r7? 1 @ul#]|E,+772 10 e lE1
From (5.18), (5.19) and (5.22) it follows that
(5.23)  D'@uilg i, =Cle, BAN {1 Eu |t 477 @al#] 18 47700 e it -
By (5.17) and (5.23) we have
(5.24) DYy ey SCHY |2y @ a8 1877 0 p1R )
which together with (5.6) implies (5.10). ®
By using Theorem 5.3, we shall get the energy estimate of the same type
as (E.1). Note that we can rewrite the operators as follows:
P[] =0%i g —0 (P01l ;1) — P330,;0,4i y— Pl p0,iip ;
—Q)P[ﬁ]:PlgatﬁP'—aj(P{’kakﬁP>_P{’ajizP—Pl];I}-IajakﬁH—PgHajacﬁH;
Qnld])=—P¥o,in+Qupir+Qfin;
Qp(#l]=—P3*d,1ip+Qpr0:t n+ Qbudsti s -
Let e<[0, 1] and put
Put)[U]—260,0:iy if E=H,
SP%(t)[ﬁ]:{ . .
@pO)] if E=P,

P?Ios(t)zp?lo(t)_*_zelm.”) P‘;})E(Z):P‘J{?(t), q:L ey, 7'l'—l .
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Hereafter, we assume that all functions are real-valued, and we use the nota-
tion D'u=(0,u, 0,u, -, 0,u) again.

LEMMA 5.4. Let T>0. Assume that (A.5.1)-(A.5.5) are valid and that 0<
e<l. Then, for any u=C=([0, T]; H¥(RY) such that oi#(0, x)=0 in R* for
any k=0, there exists a constant C=C(B(+p))>0 such that

625 (DT Ens) Dds+ ] D T2 nds

<Cet| (@I +I@pls) a1

+Qu(s)LUu(s) 1N 1s+LQp()[U(s)]N21 12t ds  for any 0<t<T,
where C is a constant independent of e.

PrROOF. Let t, be any time in [0, T] and fixed. Put

5 Pr(s)li(s, x)]  for 0=s<t,,
I x(s, x)Z{
for s<0,
Qr(s)[U(s, x)] for 0<s<ty,
(s, x):{
for s<0 (E=H, P).

We known that fze CH{(—oo, t,]; LARY) and gpeCY{(—oo, t,]; HYYRY) (E=
H, P). Choose a,, a;, b, and b, such that by(—ay)*+b(—a)*=1 for k=0, 1.
(i.e. a(]:l, (11:2, b0:3, b1:‘_‘2). If we put

Fet, %) for t<t,,
(5.26&) FE(t, x): N

D=0 Oif glto— a1t —ty), x) for t>1t,,
gr(t, x) for t<t,,

(5.26b) Gx(t, x):{
Do 0i8sto—at—1,), x) for t<t, (E=H, P),

we know that

(5.27a) FeeCYR; LXRL), Gz=CYR;HY¥RY) (E=H, P);

(5.27b) Fgt, x)=@OLUE, x)],  Get, x)=0e®O[4¢, )] for 0=t<t,;
(5.27¢c) Fg(t, x)=0, Get, x)=0 (E=H, P) for t<0, or t=2t,.

Let 9=0g, 9p)eX>([0, o0); RY)X ZV ([0, «); R?) be a solution to the following
problem :

(6.28a) PuWo]=Fn,  @p®)[#]=Fr in [0, o)X R},
(5.28b) QuOl9]=Gxn,  0pO[9]=Gr, on [0, =)XRY,
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(5.28¢) 910, X)=8,510, x)=0, 950, x)=0  in R

In view of (5.27¢), (5.28) satisfies the compatibility condition of order 0. If ¢>0,
then the assumptions of §4 (A.1)-(A.4")) are satisfied. Therefore, the existence
of & is guaranteed by Theorem 4.13. Put 9°¢t, x)=v(t, x) for t=0 and =0 t<0.
Since we know that 020, x)=0, 8,4p(0, x)=0 from (5.27¢) and (5.28c), iy &
X*(R:R" and spc=ZVY(R; R?). Put T,=max(T,, 2t,). By (A.5.5) we have

(5.292) %ag,—jé 3l —260,00%=0  in [T,, )XR?,
—0,0% =0 on [T,, )XR%,
(5.29b) atagwé F8=0 in [T, «)XRY,
—3,5=0 on [T\, )X RE.

Multiply (5.29a) and 4% by 0,6%, and (5.29b) by 9. Integrating the resulting
formula, by Gronwall’s inequality we have

(5.30a) 1Dy l*<exp ¢—TOIDWH(TYI*  for t>T;
(5.30b) lop®)|*<exp ¢—TIop(THI*  for t>T,.
Differentiating (5.29) with respect to f, we have
(5.31a) 1 D@34 <exp ¢—T | D0 0% (THI*?  for i1>T,;
(5.31b) oo 2 <Lexp ¢—Tlaop(To)*  for t>T,.
From the properties of Laplacian, we have
(5.32) 0% )= C {10705 Ol + 1005 Ol +9E DI}

lopD .= C {0 0p®I+Iop@N}  for t>T,.
Combining (5.30)-(5.32), we have
(5.33) D20 ()| 24 10:580) 12+ 550 -

< Clexp(t—T N AID (T IR+ 10.52(T >+ 93T )%}

for any t>T,. Therefore, for any y>1, we see that S’ HHARXRY) X K} (RXEY).
From (5.27¢) and (5.28a), it follows that ®4[9°]=Fg in RXR}, Qg[#°]=Gg on
RXR» (E=H, P). By Theorem 5.3, we obtain

(5.34) 7Y 13410812 )+ 189813, + DWWy D2 e,y
S Y Frl 7 Feld (Gl G et

for any y<7,. By the definition of Fy, Fp, Gy, Gp, we have
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ty to

|Faulsr<Cl I2u©LaE1Rds ; |Fplt,=Cl Iep@ e ds;
Ctnr=C| (@uTES s

(G2 =C| QAU Euads

By (5.27b) and the uniqueness of solutions, we see that #3(t, x)=1uz({t, x) for
0<t<t, (E=H, P). Therefore, the lemma follows from (5.34). &

To get the same estimate as in Lemma 5.4 for any # = (iy, iip)
X0, T1; RHX Z“([0, T]; RY) such that #4(0, x)=8,4 z(0, x)=0, #p(0, x)=0
in R}, we need the approximation of #:

LEMMA 5.5. Let i=(iy, ip)eX>°([0, T1; RY)XZ"Y[0, T]; RY) be a pair
such that #y0, x)=0,4 x(0, x)=0, #p0, x)=0 in R*. Then, there exist #*=
(i, #p)eC=([0, T1; HXRY) k=1, 2, --- satisfying the following properties:

(a) 0ii*(0, x)=0  for any k=1 and 1=0;
(b) ID' @y (t)—tn(t)|—> 0  as k—co, for any t<[0, T];

6% (@s ) — il p(t))| —> 0 as k—co, for any te[0, T7;

(© S:”Dz(a}l(t)_ﬁll(t))ﬂzdt ) as koo

[, 1050~ )+ |70~ LAt —>0 a5 koo,

PROOF. In the same manner as in Lemma 6.7 of [6], we can construct #*,
so that we may omit the proof. =

THEOREM 5.6. Assume that (A.5.1)-(A.5.5) are valid and that 0<e<1. Then
for any U=(iy, ipeX?>°([0, T1; RHXZ“Y[0, T1; RY such that un(0, x)=
0.4 u(0, x)=0, #p(0, x)=0 in R? and for any T>0, there exists a C=CBAA+w)
>0 such that

t —
(5.35) IHi’t(t)IlIHSOIIDliia(S)llzds
t
éCeC‘SO{]l-‘l’iz(S)[ii(S)]II“rHQHv(S)[?’i(S)JII2
FLOu()[U(s)IN} 2+ 4Qp(SH[E(s)I)2 /2t ds
for 0Zt<T.
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PrOOF. For ¢<(0, 1], by Lemmas 5.4 and 5.5, we have

(5.36) g; (1D ()24 N p($)IF+ (D () 2112} ds

<coe| enla( I +I@pLis)1)?
HOATHE D @A D2 b ds 0SET

for any pair i=(ly, ip)eX**([0, T]; RHXZ"Y([0, T]; R}) satisfying i ;(0, x)
=0, x(0, x)=0, #p(0, x)=0 in R?. Since the constant C in (5.36) is independent
of e, letting ¢]0, we have that (5.36) is also valid for e=0. Calculating
(@U@ ]+ daii g(t), 0,1 xg@)) and (Pp[U@?)], #p(t)) and combining the resulting
formulas, we have

6.37) 0 a®*+da®i+12p0]?

t
[

§CS {leu a1+ Iepl@ ()P40 nuli(s) e+ {Qp[U#(s)I) 12} ds

+C | D R+l (D Tl 21 ds
where C=C(H()) (0<e<1). Combining (5.36) and (5.37), we obtain (5.35). &

Considering the adjoint problem, we can get the estimate in the case of
non-zero initial data. At first, the following Green’s formula is got.

LEMMA 5.7. Assume that (A.5.1)~(A.5.4) are valid. For any pair i="(iyg, ip)
and V=g, vp)X>°([0, T]; R?), we have the following identity:

638 [(@norae), dansnds+ | (@), vals)ds

= (0.4 #(t), 0.9u(t)— (0.1 #(0), 6:01(0))
(PO (1), 3,8 10— (PHO)5.1(0), 8,95(0)
HPHOLRD), 02(0)—(PRO)LSO), 5(0)
@t erOLseDds+| als), #BS (s Dds
[l @ints), o s+ | ns), OB Dds
~{outorruen, aontsnds—{ o)), vals)>ds

for 0Zt<T, where
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PF OO ]=030 1) — 0, PHDOD u(1) — PR (0,001 (2) ;
LEOIO]=—Pr1)3.0p(t)— 05 PEX)0:05(1))
+PE@)0,0p(t)+ Pl p(1)0,0:0u(t) ;
OFOL0®)]=—PH )00 u(t)—(QY+ PE)0:0 1(t)+ Q% p(D)3(0) ;
EMO[0N)]=— P 0)3;5p(t) — Q¥u(1):iix ;
QFp(t, =[Py —"(Qpu(PF) Q) — (PFPEF) Q)] x);
Qut, x)=[—"Phpr—"'Qurlt, x)

and where A=B means

1/2 2 1/2

a1 =CBO([ 1D anids) ([ 1asias) ([ @oras)

() eutaduds) " {([ 1D waias) " ([ Iositas) "}

PROOF. Noting that P}nfkakﬁyzQH[ﬂ]—Qypﬁp—Q%atﬁu and —P{‘:kakﬂpz
QplU]—Qpr0. 2 y—Q}ndsiiy on I', we can obtain (5.38) by integration by parts.
B

THEOREM 5.8. Assume that (A.5.1)-(A.5.5) are valid and T>0. Then, for
any i=(lg, ip)eX>°([0, T]; RXZ"*0, T]; R}) there exists a C=C(B(1+p), T)
such that

5:39) O C (1D O+ [22(0)]*
+ | Generaer+lesme:
HQHOHS D QAT [ 2 ds)
for t<[0, T] and 0<e<]1.

12
ProoF. To estimate S<atﬁ11(s)>31/gd3, we solve the problem for @¥, <%,
0

Q¥ and QF from t=t, to 0. Namely for any gux(H)eC([0, t,JXR?), t,=[0, T]
and 0<e<1, we solve

(5.40) PEGLE)]=0, FEOLoH]=0  in [0, t,]XRT,
OF WM ]=8u®), QEBO®]=0  on [0, t,LI1XRY,
Vu(te)=0:0u(t,) =0, Up(te) =0 in R?.

Since gu(t,)=0 on R}, the compatibility condition of order O is satisfied at t=f,,
i.e.
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OF OO =, =8 nt)=0,  QEO[#®]]1=p)=0  on [

Therefore, if we put w(t)=0v(,—t), we can rewrite (5.40a) as follows:

(5.40b) PELw®)]=0, PEOLw@®]1=0 [0, t,I1XRE,
OFOLwH]1=8nto—t), OFOLw®I=0  on [0, {,IXRE,
0 1(0)=0,10 17(0)=0, wWp(=0 in R,

where

FHOLw (O] =0%0 n(t) =0 PHte—1)0410 u(t) — PR (te—1)0,000 u(t) ;

FPEOLw ()] =—Ppts—1)0:i0 p(1) —0;( PE(to—1)0, W p(t))
+CPE(ta—1)016 p(t) -+ Py plty—1)0,0:0 1(t) ;

MW ]=—PE ts—10;w u(t)— Q¥+ PH*)t,—1)0:10 n(t)
+ Q% et —0wpl) ;

QW) [w ()] =— P (to—1)0,0 p(t) — Q¥u(le—1)0:W 1 -

(5.40) satisfies the compatibility condition order 0 at ¢=0, i.e.
OFOLw®)]1=e=8at)=0, OOLw®)]l:==0 on [

From the fact that
, 1 R
(54.1) (Q9J+P?;°E)(trt)+E(-'_P?z"g(to—t))és ,

and so on, (A.5.1)-(A.5.5) are valid for (5.40b). Assume that ¢>0, then (A.l)-
(A.4") are valid. Therefore, by Theorem 4.13 there exists a solution @w=
(Wy, wpeXr°XZVY[0, t,]; RY) to (5.40b) for any gpsCH([0, t,JXR*™") and
¢>0. Moreover, by Theorem 5.6 there exists a constant C=C(B(1+4pu))>0
independent of ¢ such that

5.4 @i+ 1D @ () *ds = Ce| (@ults—5)iinds.
Since w(H)=0v(t,—1), if we put t=t,, we have
G.44) |, D au(s)2+ 155(5) g+(D (s 2110 ds

FID DO+ [5p(0) o= Ce| *(@u(s) s

Since ¢, is arbitrary, we can replace t, with ¢ in (5.44). Substituting the solu-
tion 9®)=iw(t,—t) of (5.40) into (5.38), and combining the resulting formula
(5.44), we have
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645 || <@itu(s), guls)ds|

<Ce (D) +)r0) | +(| I en o racsids) "
1/2

+(| e e neds ) +({ s tae Dads)

0

1/2

+(\ s nzieds) ([ 1D axlds) "

1/2

13 1/2 t 1/2 t
() 1zeor1as) (| @ponras) b ([ agutstads)
for 0<¢<T and £>0, where the constant C is independent of . Since

C3([0, t]XR™™") is dense in L*([0, t]; HY*R"™Y), since L*[0, t]1; H'*(R"")
and L*[0, t]; H™Y*(R"')) are dual, and since

[ (Vu(o)2,ds < CBON| tQu(sI () s

(@0 s+ Gartsntids+ | N uto)ttds)

we have

(5.46) [ (D)2 ds = Com (1 D)+ 1225(0)
+{ e TR+ 1o+ @aL )+ (0pLE 2 )

+ [ D R o+ o) P+ ats)ds) for 60,

On the other hand, calculating (@O Z#) ]+ dodl g, 0,3 4(t) and (LpO[HE)], #p@)
and combining, for 0<¢<1 we have

GAD g IR (PHOAE (505 (5 + delit ()

+H(Pp()Up(s), Up(s)} + % 7 p(s)t

=CBONIeulall*+] @p[ @1 +(QulaIN 2 +(Qp[E1) 21,

DY ()24 p()I|* (D' () 2170) -
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Integrating (5.47) from 0 to ¢, and combining the resulting formula and (5.46),
by Gronwall’s inequality we have (5.39) for 0<t<7T and 0<e<l. When t=0,
obviously (5.39) is valid. Since the constant C is independent of ¢, letting ¢ | 0,
(5.39) is also valid, which completes the proof of the theorem.

§6. A proof of Theorem 2.1 and 2.2.

In this section, we consider the case that n=2, too. Let us introduce the
following notation:

5 (O0E]= A 4+2¢ X vi(x)0dkn

AR =AR® —2ev:i(X) 0y, 3@, x, 00 p=AR ()00t n .

When we replace Agx(t) with Ay(t) in problem (N), we call the problem (N)..
Using the local coordinate system, we can reduce the problem (N). to the case
that 2=R", so that applying Theorem 5.8, we have the following theorem.

THEOREM 6.1. Assume that (A.1)-(A.4) arevalid. Then, there exists a con-
stant C=C(M(1+p), I', T) such that

6.1) IZOIS C 1D O+ |70
+{ a1

+{B u()[A(S) T2+ B () U() N 12)d s}
for any d=(ly, ipeX>([0, T1; X Z X0, T1; 2) and 0=e=<1.

Next theorem is concerning the higher order estimate.

THEOREM 6.2. Assume that (A.1)-(A.4) are valid. Let L be an integer =2.
For U=y, pcEX{0, T]; 2), we put fE(t, =A%, x)] and gz, x)=
B¢, 0] (E=H, P). If fzeRX[0, T1; Q) and §x=RH[0, T1; 1) (E=
H, P), then we have

=

6.2) @Iz = C[IID‘ﬁH(O) 12| D225 p(0) 13+ 19F 2 p(0) *

+ .2 P{H D2 f s(O)|*+(D 22 5(0))3 e

+2 TG NG - YA

+ [ wor Fa @ zae Nt ds) |
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Jor 0=i<T,

PROOF. In the case that L=2, employing the same argument of the proof
of Lemma 4.9, we have (6.2) by use of (6.1) instead of (E.1). In the case that
L=3, we can prove (6.2) by induction on L.

Now, we shall prove the existence of solutions ts (N) by using the existence
theorem for (N). with ¢>0 which was obtained in §4 and the high order esti-
mate of Theorem 6.2. To this end, at first we give an approximation for
nitial data and right members of (N). Such approximation was given by
lkawa [3].

LEMMA 6.3. Assume that @p,cHXRQ), iy,cH(R), ipcHYQ) and fre
RX[0, T]; 2), 2e=R¥[0, T]; 2) (E=H, P), and that they satisfy the compati-
bility condition of order 0 of (N), i.e.

(6.3) 170, x, &)U o+ BY(O, )i+ B (0, ipy=gn(0, x) on I';
B0, x, a)ﬁPo+le>11(0, X, a>i2H0+B?’II(O, x)iim:g’p((), X) on I

Then, there exist Wy, Wy cH™Q), dpcHRQ), f&, f5=C=(0, T]: HYQ)) and
84, 85 C=([0, T]; H=(I")) satisfying the compatibility condition of order 1 of
N), i.e.

(6.4 Bi(0, x, )i+ By (0, 0+ By p(0, x)ik,=g%(0, x) on I';
B, x, 0)iiho+Beu(0, )ik, +BEu(0, x, 0t ,=g0, x) on I';

6.4¢) By (0, x, )ith,+ By (0, x)@h,+ By p(0, x)ith,4-BYYO, x, 8)ik,
+ByV0, x)il+BYRO, x)ip=0.840, x)  on T,
#0, x, Db+ Bpu(0, x)i+BEa(0, x, 8)itly,+ BER(0, x)ik,
+BEV(0, x, d)iko+ByR 0, x, 0)iil,=0:8%0, x)  on I,

where BW(0, x, )i(x)=0 B, x, i (x)]|.-, and

P40, )+ A%(0, %, Ditkro+ AR, x, B)itl,

+ A0, x, Dby H'(2);

(6.5) Uiy

b= AR, 0)7HFEO, )+ AR, x, )b+ ARu(0, x, Ditks,
+Apn(0, x, Ot} €HY QD).

Movreover we have
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(6.6)

Whro— U ol 3+ 118%, — U |3 41850 — U poll

+,3 |, sup I750—7s01*+ sup (Z50—Ze®)in

E=H.,P

+,3 3| 10— )+ @HEHO —gs N dt}

E=H.P

—> 0 as k—oo .

PROOF. We can choose o, B, 0o € H2(2), Yy, hb e C=([0, T]; H(Q))
and @, g C=([0, T]: H=(I")) such that #,—iin, and dh—ip, in HXQD), 98—
il in HN(Q), hy—Ffg in R¥[0, T1; @) and g—gr in R¥[0, T1; ") (E=H, P)
as k—oo. Let %, and wh,c H=(£2) be solutions to the equations:

(6.7) —0;(A%(0)0;i0%0)+ Anit,=0 in £,
— 3 AY(0)8,50)+ pil =0 in Q,
B0, -, 0)% o+ Bup(0)ith,
=84(0)—(BY(O, -, Do+ BrpOh+ BR0)d%y) on T,
30, -, Divko+Brr(0, -, Dl
—g5(0)— (B0, x, Db+ Bbu(0, -, Dot Beu(O,) on I

Theorem 3.1 guarantees the existence of W%, and wh,cH=(£), and using the
estimate of Theorem 3.1 implies that

6.8) [@50lla-4l|iWholls —> 0 as k—co .

Put o=+ ik and fbo=bo+i0b,. Then @y, ik, th=HY(Q), R C>([0, T];
H=(Q)) and gt C=([0, T]; H>(I") (E=H, P) satisfying the compatibility con-
dition of order 0 of (N) such that #%,—%ge, Uby—iip, in HYQ), #%,—lm in
HY(Q), Fy—fr in R¥[0, T]; Q) and gh—gs in R¥[0, T]; ") (E=H, P) as
k—oo. Put

6.9 Uhra=h%(0, x)+ A%, x, Diilo+AL O, x, bm+ Ak p0, x, Dith,;
Foy= A0, 1) {AB0, x)+ AR, x, Db+ Apu(0, x, )iy,
+Apn(0, x, D},
Let @#%, and w%; be functions such that
(6.10) 10, x, wh,=0.8%)(0, x)—{BL(0, x, )i+ Bu(0, x)itk,
+Bup0, )%+ BK 0, x, 0)ik,
BYY(0, x)0%,+ Bie(0, x)ibo} on [,
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wWinlr=0,  lwhl,=1/k;
©.1D B0, x, 9)ioh =240, x)—{BAO, x, )b+ Bra(0, x)ilky,
+Bin(0, x, 0@ +wh)+BEVO, x, d)iih,
+BFY 0, )@+ wh)+BEZO, x, )ik} on I,
Wil r=0, ok ],=1/k.

The existence of &%, and ws cH=(Q) is assured by Lemma 3.8 of [6]. We
put @i =y, + @y, Up=0h+i0h,, Fh(t, Y)=h%(t, x)— A} (0, x, 8@}, and Fi(, x)
=hb(t, 1)~ Apu(0, x, 3l 4 A0, X)ih,. Since wh, | p=0, ik, Bk, b, /% and
g% satisfy (6.44,). By the definition of f% and 7%, we see that @, and b,
satisfy (6.5), and by (6.8) and (6.9) we know that (6.4.,) and (6.6) are valid.
Therefore, these ik, ik, ik, b, #b, f% and g (E=H, P) are required
approximations. @&

PrROOF OF THEOREM 2.1. First, we assume that il gz, cH>(Q), iy, csH(),
ipeEH™(Q), fr=C=([0, T1; H=(®)) and gz C=([0, T1; H=(I")) (E=H, P) satisfy
the compatibility condition of order 1 for problem (N). Put

Folt, =T ult, )+2¢ 3 vix)diim, .
i=1

Then @i, m, Gp,, f4, fr, &n and Fp satisfy the compatibility condition of
order 1 for problem (N). for 0<<e<1. Then, for ¢>0 by Theorems 4.13 and
4.14 we see that there exists a solution #°eX*%[0, T]; QX Z>Y[0, T]; 2) of
problem (N). with initial data #y,, #m, #p, and right members J?i; and gz (E=
H, P). Since

1D Fr 182 11 <1 D' n(®)l) 4+ 182 F n(®)] 4+ Ce it s,

by Theorem 6.2 we have

(6.12) 1D (@) )1°+ 103851 |+ 21]0 [l

< C{lam 1 m 3+ e+ PO

+ 3 (DO (D25 O)te)

-

1 =

+ 2 2 (0 s+ (08 e®)i-1)

E=H,P j=0

+,3 03751+ @gx0tds}

E=H,PJ0
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Since the constant C 1s independent of ¢, the right-hand sice of (6.12) is inde-
pendent of . Let us observe that #°—#* satisfies the following equations:

- -

613 O 1" 1=2 ) Sw@ddds+Fa—T5  in [0, TIxL,
Ap[Us—u"1=0 in [0, T]X 2,
Bt uc—u¢"1=0, Bpt)[uc—us']1=0 on [0, TIxTI,
(U5 —u5)(0)=0, (% —1%)(0)=0, (Ue—us)(0)=0 in L.

Since 3 — —Fy=2>c—e)22 _1 vi(x)0;% 51, applying Theorem 6.2 to (6.13) implies
that

(6.14) i@ =)< C(e" —e)* {1 mll*+ H&ﬁ(ﬁ?l%g losus(s)liids},

where C is independent of ¢ and ¢’. From (6.12), letting ¢ and ¢’ | 0 in (6.14),
we see that the right-hand-side of (6.14) tends to 0. Therefore {#} is a
Cauchy sequence in E*([0, T]; 2), so that there exists a #=(lig, #p)=EX0,T]; )
such that #°*—# as ¢ {0 in E*[0, T]; £). The limit # satisfies (N).

To remove the additional assumption, we use the approximation constructed
in Lemma 6.3: @ik, ik, dbeH"(Q), [zc C=([0, T]; H=(£)) and gt=C=([0,T];
H=(I")) (E=H, P), which satisfy (6.3)-(6.6). Then, we already know that there
exists a #*=(uf, up)<=EX[0, T]; 2) satisfying (N) with initial data #%,, %,
1%, and right members f’i and g% (E=H, P). Let us apply Theorem 6.2 with
L=2 to #*—u*, and then we have

— Uloll3 -1y — W |21 e — 50|13

6.15) I = U= C| s

+_3 {IFE—FHOI 5~ 250

E=H.P

P FHO 1+ (@b —2E)XONe
+ 2 Uor = FEXI+ (@528 )oMtds | .

From (6.6), it follows that the right-hand side of (6.15) tends to 0 as % and
k’—oco. Therefore {#%} is a Cauchy sequence in E*[0, T]; 2) so that there
exists a Imit #=(ly, #ip)=EX[0, T]; ) satisfying (N) with initial data #g,<
H¥ D), dgeHYRD), ipp=HYQ) and right members fEERZ’([O, T7]; 2) and gre
R¥[0, T]; ) (E=H, P). The uniqueness follows from (6.1). Hence the asser-
tion (1) in Theorem 2.1 has proved. (2.5) in Theorem 2.1 was already proved
as Theorem 6.1, and (2.6) in Theorem 2.1 can be obtained from (4.1) immediately,
which completes the proof of Theorem 2.1 with n>2.
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Theorem 2.2 can be proved by Theorem 2.1 in the same manner as in [[2],
p. 364-p. 367] or [[1], p. 604-p. 607]. m=

§7. Energy estimate for n=1.

When n=1, we may assume that 2=(0, 1) or =R, (={x=R|[x>0}). The case
that 2=(0, 1) can be reduced the case that 2=R,, so that we consider the
case that 2=R,, below. We can write the problem (N) as follows.

An®[4]=0% 5(t)—0-(AR®)0: 4 n(t))— AR()0:0:1 u(?)

— Al (087 p(t)=7 n(t) in [0, TIXR,,
Ap)[#]=Ap(1)0: % p(t) — (AP ()01 p(t)) + Ap()0 1 1 p(t)

— APy (0028 5(t) — AP (1)0,0: 4 n(t)=f p(t) in [0, TIXR,,
Bp)[#]=—AR®)0: L u(t)+ B upt)il p(t)+ By 0: U u(t)

=Zult) on [0, T],
B p)[#]=— AP )05 p(t)+ Bpil p(t)+ B u(t)0: 4 u(t)

+ B2 u(t)0:% n(t)=2p(t) on [0, T,
Ung0=tn,  0da(O)=tm, U0)=1p in R,.

Theorem 6.1 is a key to prove Theorem 2.1 for n=2. But, when n=1, we
replace Theorem 6.1 by the following theorem.

THEOREM 7.1. Assume that (A.1)-(A.4) are valid. Then, there exists a con-
stant C=C(MQ), T) such that

(7.1) ||17(2‘)H"1’§C~{I]17‘1711(0)1i2+HI’ZP(O)HZ

+ (A O+ IAOI+] B 2O ool | B O] 20 )}

for any =y, ipeX>*([0, T1; &)X ZVY[0, T]; 2). Here, AyM®)[d]=Au(®)[i]
—260,0:%, 0<eZ1.

By Theorem 7.1 we get Theorem 2.1 (3). Replacing Theorem 6.1 by Theo-
rem 7.1, we can prove Theorem 2.1 with n=1 by the same argument as in §6.

PrOOF OF THEOREM 7.1. Calculate (Ax()[Z] 480l x, 0.4 x) and (Ap)[ %], %p)
by iteration by parts and combine the resulting formulas, then we have



Linear Hyperbolic Parabolic Coupled System 409
1d . S . " " o
(7.2) 7B}{”acuﬁ(f)H2+(A}t}(t)axuy(t), 0 U()+0,[| & u@®)>+ (AU (), 1 p())

+%llaxﬁp(t)f!2+(391(i, 0)+~;~A}?(t, 00)8:3i 1 (t, 0)-0eil u(t, 0)

= 2 |As@®a]l*+C(md), 6.){10:8 n®I*+ & #3102

+C(AHD)(pE, O DY in(t, 0)]+ 4t 0)]2)
+1Ba®)[2]] 2|08 nt, 0)] + | BpB[U] | 2=ollte s, 0)].

Calculating (Ax(®)[#%], 0. x) by integration by parts, we have

73 S @nt), )~ ARG, D:in)}

oy AR, O00aiat, 0)-0utnlt, 0+ 19,intt, 0)1
< 1A+ CCHW) {12 O+ 100 1322 D))

Multiplying (7.3) by ¢>0 and combining the resulting formula and (7.2), we
have

7.4 C%{HatﬁnllZ+(A}}(t)axﬁa(t), 0= p(1)) 0o/ a2+ (ARO (), hp(D))

0@l nt), 31 n(0)+ 5 (AROO:T(t), 200}

a8,
4

= 3 P(HJE(t)[ﬁ]l|2+ | Be®)[i]]z=01")FollAn@OLE]]?

0aitntt, 01+ 136kntt, 01+ 2 a0

+C(M(D), 81, ) {l10:tt @) >+ 7 a3+ 172017}
Here we have used that
(7.5) la, O Clla-uz@®Ia@| .

Applying Gronwall’s inequality to (7.4) and taking ¢>0 sufficiently small, we
have (7.1) in the case that e=0. When 0<e<1, by the same argument we can
prove the theorem.

Theorem 2.2 with n=1 can be proved by Theorem 2.1 in the same manner
as in [[2], p. 364-p. 367] or [[1], p. 604-p. 6077, too.
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