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COKINGS AND INVERTIBLE BIMODULES

By

Akira Masuoka

Introduction.

Let SdR be a faithfully fiat extension of commutative rings (with 1).

Grothendieck's faithfully flatdescent theory tells that the relative Picard group

Pic (R/S) is isomorphic to H＼R/S, U), the Amitsur 1-cohomology group for the

units-functor U. We consider the non-commutative version of this fact in this

paper.

Let SdR be (non-commutative) rings and denote by lnvs(R) the group of

invertible S-subbimodules of R. Sweedler defined the natural i?-coring struc-

ture on R(g)sR. We define the natural group map F: lnvs(R)-*A＼itR-C0I(,R(&sR＼

where AutR-cox(R<S)sR) denotes the group of /^-coring automorphisms of R(g)sR.

When is F an isomorphism ? The answer presented here is as follows (2.10):

// either

(a) R is faithfully flat as d right or left S-module

or (b) S is a direct summand of R as a right (resp. left) S-module and the

functor ―<S)sR (resp. R(g)s―) reflectsisomorphisms,

then F is an isomorphism. Indeed we consider some monoid map I^(/?)->

EndR-COT(R(g)sR), which is an extension of F. We have two applications (3.2)

and (3.4), both of which are concerned with the Galois theory.

§0. Conventions.

Let T, Q be arbitrary rings with 1. We write

U(T)=the group of units in T.

All modules are assumed to be unital. A {T, Q)-bimoduIe means a left T-

module and right Q-module M satisfying(tm)q=t(mq) for feT, wigM and q^Q.

A T-bimodule means a (T, T)-bimodule. We denote by

T<31, <5Hr and t<3Hq

the category of left T-modules, of right T-modules and of (T, (Q)-bimodules,
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respectively. For M^T3LT,

MT={m^M＼tm=mt for all fGT}.

Throughout this paper, we fix a ring R with 1 and a subring 5 of R with

the same unit 1. For arbitrary S-subbimodules /, JdR, we define the product by

U={HiXiyi(finite s＼im)＼xt^I,yi^J}(C.R)

and denote by m the multiplication map:

m: 7(8)3/―>IJ, m(xRy)=xy.

With respect to this product, S-subbimodules of R form a monoid with unit S.

lls(R) (resp. lrs(R)) denotes the submonoid consisting of S-subbimodules IcR

such that

RRSI=R (resp. I(&SR^R) through m.

lnvs(R) denotes the group of invertible S-subbimodules of R.

§1. Preliminaries.

1.1. Proposition. We have the following exact sequence, the firstfive terms

of which can be found in [4, Proposition 1.6, p. 25]:

1 ―+ U(SS) ―^ U(RS) > lnvs(R)―>Pic(S) ―^ [RM
u >->Su=uS [-] RRs-

where Pic (S) denotes the Picard group of S and [B3ls~＼denotes the isomorphic

classes[Ml of M^R3ts with a distinguished class [Rl.

Exactness at Pic(S) means that, for any invertible S-bimodule /,i?(g)s/=i?

in
RJHS

iff / is isomorphic to some /elnvs(i?), which can be verified easily.

Needless to say, we can get another exact sequence from the above one by

replacing the last map with Pic (S) ―> Ls^rI, defining [s^r] similarly. In

particular,we have

(1.2) Ik(i?)nrs(i?)Z)Inv5(i?).

An R-coring is a triple(C, J, e), where C^RJMR, and j: C^>C(&RC and e:

C->R are maps in R3iR satisfying the usual co-associativityand co-unitarity.

Let C be an i?-coring. Denote the monoid of i?-coring endomorphisms (resp.

the group of i?-coring automorphisms) of C by

Endij-corCC)(resp. Autfl_cor(C)).

If an automorphism / of C in R3lR commutes with j, it commutes with e auto-
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matically, since e°f={eRs)°(idRf)°A=e°f-l°(idR&)'>(fRf)<>A=e°f-1°(idReyA<

f=e. Denote the set of group-likes [6, 1.7, Definition] in C by Gr(C):

Gr(C)={g(EC＼j(g)=gRRg, e(g)=l}.

R(g)sR has the following i?-coring structure [6, 1.2, p. 393]:

j: RRSR ―^ {RRsR)RR(R<g>sR)=RRsRRsR ,

A{xRy)=xRlRy ,

s: RRSR―>R, e(xRy)=xy.

The natural identification

(R<g)sR)s=EndRsiR<iRRsR)

makes the left-hand side into a ring with the following product:

(1.3) {HiXiRyi)-{HjZjRw])=Tii,jZjXiRyiwj

for St^itgJ^i, YjjZiRwj<=(R(g>sR)&＼ Then we have the identification

(1.4) (i?Rsi?)snGr (RRsR)=EndR.cov(RRsR),

U((RRsR)s)nGr{RRsR)=AutR-COI(RRsR)

as monoids and as groups, respectively.

Remark. The product (1.3)is related closely to Sweedler's Xs-product [7].

Indeed, the ring (R<g)sR)s equals RxsR in [7, Section 3].

§2. Main results.

We definethe monoid map

(2.1) r: VS(R) ―> Endfi_cor(i?(g)si?).

Let I(eVs(R). Define F(I) to be the composition

RRSR "~^ > RRsIRsR > RRsR
m^&iid id^im.

Explicitly,if S***R^^/?^/ goes to lei? through m,

r{I){aRb)=TiiaxiRyib

for aRb^RRsR. Clearly,s≫r(/)=e. We have

Hxi<g)l<8)yi='2xi<g)yiXj<g)yj in flRs/?(g)5/

sincethese go to J}txiRyieRRsR through RRsR(g)sI "",R<g)SR- Hence T(/)
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commutes with A. Thus /7(/)<EEndK..cor(Z?(g)si?).It is easy to see that F is a

monoid map.

2.2. Theorem. // either

(a) R is faithfully flatas a right S-module

or (b) S is a direct summand of R as an S-bimodule,

then F: Ils(R)-^EndR-COT(R<S>sR) is an isomorphism.

Let

(2.3) J(g)={x<=R＼g(xRl)=lRx}

for g<^EndR-C0T(R(g)sR). In case (a) or (b) holds, we show the map g'-^J(g)

gives the inverse of F.

Define the maps d1} d2: i?zji?0si? by

d1(x)=l<g>x, d2(x)=x(g)l for xei?.

2.4. Lemma. Fix g<=EndR-COT(R(&sR) and write

conclusion: J{g) ―> R, 8=d1―g°d2: R ―> RRsR

(1) The following is an exact sequence:

c 8
0―>J(*)―>!?―≫ fl<g>s/?.

(2) The following is an exact sequence:

g°d2 id<S>5
0 ―> R ―> RRSR > RRSRRSR .

Moreover, we have

m°(g°d2)=idR, (g°dz)°m+(mRidR)°(idRRd)=idR0SR.

(3) // R is flat as a right S-module, then J(g)(Ells(R).

Proof. (1) is a restatement of (2.3).

(2) is verified directly.

(3). This follows from the following commutative diagram with exact rows:

0 ≫J?<g)sJ(s) ldRC
> RRSR

ldR
> RRsRRsR

(2.4.1)

0 * R

II
idR3

II

Q.E.Dwhere the upper row is exact, since Rs is flat
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2.5. Lemma. Let g, t,8 be as in (2.4). Assume S is a direct summand of

R as an S-bimodule. Then we have:

(1) There existit: R->J{g) and <p: R(g)sR->R in s^s satisfying

(2.5.1) K°c=id3(g-), c°7Z+(/>°5=idR.

(2) J(ff)eH(/?).

Proof. (1). Let p: R->S be a projection in s<%ts and take it,(p as follows:

d2 g pRid p(g>id

7t:R―>RRSR―>RRSR >R, <p: RRSR >R-

We show 7c(R)aJ(g). Assume SfXf(g)jieGr(i?(g)si?) corresponds to g in (1.4).

Then, for a^R,

7i(a)=^p(axi)yi

and

g(7r(a)Rl)= 2 P(aXi)yjXjRyj

=T>P(axi)Ryi (since 2*<<S>:y<*>R30=2*<Rl<8>:yi)

=lRff(a).

Thus 7r(a)eJ(ff). The remainder is verified easily.

sSs

This follows, since by (1) the sequence (2.4.1) is

Rs, too.

exact in case

Q. E. D.

2.6. Definition. The functor R<g>s― (resp. ―Rs R) reflectsisomorphisms,

if a map / in SM (resp. in c5Ks) is an isomorphism whenever idR<g)sf (resp.

f<S>sidR) is such.

If this is the case, Icj for /, J^VS(R) (resp. elfc(/?))implies /=/.

2.7. Lemma. Let g, /ieEndfl-cor(i?(g)si?),I<=VS{R).

(1) Kg)Kh)cJ{gh).

(2) // Kg)<=Vs(R), then r>J(g)=g.

(3) /cJ°r(7). Hence, if J°r(/)els(i?) ancf i?05― reflectsisomorphisms,

then I=J°r(I).

PROOF. (1). This holds, since, if xgJ(^), y^J(h),

d1(xy)=d1(x)y=g°d2(x)y=g(d2(x)y)=

g(xd1(y))=g(xhod2(y))=g°h(xd2(y))=g-hodz(xy)

(2). This follows from the following commutative diagram:
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r°t(g)
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$SR ^^

RRsJ(g)<2)sR ―^7-r* RR8R

id(g)m I

RRSR

(3). Assume Si^iC^Ji^^C^s-f goes to lei? through m. Then, for og/,

'2iaxi(g)yi=16?)a in i?R*/, since both sides go to a through m. This implies

7cJ°r(I). Q.E.D.

Proof of (2.2). Under (a) or (b), R<g)s― reflectsisomorphisms. Hence, by

(2.7) we have only to show J(g)eVs(R) for any g(EEndR-C0T(R(g)sR). This is

shown in (2.4)-(2.5). Q. E. D.

Symmetrically we have the anti-monoid map

(2.8) r: lrs{R)―> EndR-cor(RRsR),

defining /"(/), I^lr$(R), to be the composition

RRSR " > RRsIRsR > RRsR ･

/d^m"1 m(g>id

Let S°(zR°denote the opposite rings of SdR. By the natural idetification

lrs(R)=llSo(R°), RRsR=R°RsoR° {xRy~y°Rx°),

we can identify the T'-map (2.8) with the T-map for S°(ZR°. Hence (2.2)

yields the following:

2.9. Theorem. // either

(a) R is faithfully flat as a left S-module

or (b) S is a direct summand of R as an S-bimodule,

then F': Irs(R)->EndR-cor(R(S)sR) is an anti-isomorphism.

The inverse J' is given by

J'(g)={xSER＼xRl=gaRx)} (£eEnd*_cor(i?(g>si?)).

The T-map (2.1)is restrictedto the group map lnvs(R)->AutR-cor(R0sR)

which is calledF, too.

2.10. Theorem. // either

(a) R is faithfully flat as a right or left S-modnle

or (b) S is a direct summand of R as a right (resp. left) S-module and the
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functor ―RsR (resp. R§§s―)reflectsisomorphisms,

then F: Invs(R)-*AutR-C0I(R(g)sR) is an isomorphism and

Vs(R)r＼UR)=lnvs(R).

Proof. If I&Vs{R)nlrs(R), ni)EEAutR-C0T(RRsR). Hence, by (2.7) we

have only to show J(J§r)eInvs(i?)for any g^AutR-COT(R0sR). In case (a) this

holds by (2.2) or (2.9). Concerning case (b), considering S0ClR0, we have only

to show the following:

2.11. Lemma. Assume S is a direct summand of R as a right S-module.

Let geAutfi_cor(i?(g)Jsi?).Then we have:

(1) J(/<W)=s.

(2) J(£)eF5(i?).

(3) // ―(g)sR reflectsisomorphisms, J(g)elnv5(i?).

Proof. (1). Easy.

(2). This follows from the following commutative diagram with exact rows,

the notation being the same as in (2.4).

0 > 3(g)RsR >RRSR >RRSR<8)SR
■ '<8>id I &g>id I
jm ＼＼g flid<g>*

0 * R -. > RRSR ―,―r* RRsRRsR

Commutativity is verified easily. The lower row is exact by (1). Modifying

the proof of (2.5) (1), we have that there exist re,<J>in JAS satisfying (2.5.1),

so the upper row is exact.

(3). If ―<g)5J?reflectsisomorphisms, by (2) and (2.7)(1)we have 3(g)J(h)

=J(gh) for any g, h^AutR.COT(R<S>sR)' This, together with (1), implies (3).

Q. E. D.

§3. Applications.

Put Z=RR, the center of R. The Miyashita action (see [3, p. 100] or [9

pp. 137-8])

lnys(R)―+ Autz.alg(Rs)

decomposes as follows:

(3.1) InvS(R) -^ AutR.COI(RRsR) ―* Autz.alg(Rs)
r k

where k is the anti-group map induced from the "clipping"
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{RRsR)s ―> End^iR5), Sx^i h―> (a -> S^W,).

By using (2.10) we can prove directly Corollary (6.24) in Doi and Takeuchi [1]

3.2. Corollary [1, (6.24)]. Assume that R is an Azumaya algebra over a

commutative ring Z and that S is a subalgebra of R such that R is a progenerator

as a left or right S-module. Then, the Miyashita action Inv5(i?)^-Aut^_alg(i?s)

is an anti-isomorphism of groups.

Proof. By symmetry we may assume that 5i? is a progenerator. Condi-

tion (a) in (2.10) being satisfied,F in (3.1) is bijective,and so is k, as will be

shown soon. It is easy to see that RsRzR=EndS3i(R). Applying JMR(―, R) to

this isomorphism, we have R(g)sR=<3ttz(Rs, R), so

RRsRRsR=<%lz(Rs, R)RsR=<3lz(Rs, RRSR)

= MZ{RS, MZ(RS, R))=3lz{RsRzRs, R).

Taking ( )s, we have

(i?05i?)s^End^(i?s), {RRSRRSR)S=MZ{RSRZRS, RS)

and consequently EndK_Cor(i?(S)-s-^)=End^-aig(i?jS)

through the "clipping" maps. Therefore k is bijective. This completes the

proof. Q. E. D.

From now on, we assume that Scthe center of R. Hence 5 is commuta-

tive,and R and R(g)sR are 5-aIgebras.

3.3. Lemma. Any g^Gr(R(g)sR) is invertible in RRSR.

Proof. Let g~ be the image of g under the twist map x<g>y<-+y<gix,R<SisR

->R(g)sR. Then g~ is the inverse of g in RRSR, since

gg-=d2^m(g)=l^l=d1om(g)=g-g. Q. E. D.

Lemma does not assert Endfi_Cor(-^0s^)=Autii:_cor(i?(g)si?),since the usual

product in Gr (RRSR) comes from that in R°RSR (1.3). By (3.3) or (2.2), it

holds that

EndR-cor(R<8>sR)=A＼itR-eor(R<g>sR),

if one of the following holds:

(1) there exists an S-algebra anti-automorphism of R,

(2) R is finitelygenerated projective as an 5-module,

(3) S=k is a field and (#) Rn^Rm in R3i (or in 3LR) for any n, meN
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implies n=m,

where Rn denotes the direct sum of n copies of R. In particular, if (3) holds,

then by Proposition (1.1)

Gr(/?R*/?)={≪-^g)ue=J?R4/?|ue£/(/?)}.

If R is left (or, respectively, right) Artinian, it satisfiescondition (#) (cf. [8,

p. 460]).

Here we can prove the following theorem announced in [2] without proof.

A bialgebra H over a field k is called a Galois bialgebra of an algebra R, if

(R, p) is a right //-comodule algebra and if the jS-map

j8: RRkR ―> RRkH, P(x<g>y)=(xRl)p(y)

is bijective.

3.4. Theorem. Assume that a cocommutative bialgebra {H, A, e) over a field

k is a Galois bialgebra of such an algebra R that satisfiescondition (#). Then

H is necessarily a Hopf algebra, i.e., it has the antipode.

PROOF. The cocommutative bialgebra H has the antipode iff the monoid

GrL(L0kH) of group-likes in L<g)kH is a group for any finite extension L/k of

fields. Since L(g)kH is Galois bialgebra of L<g)kR which satisfies condition (#)r

it is sufficient to see that Gr(H) is a group.

View RRkH^RJAR via x -(aR h) -y={x aR h)p(y) for x, y^R, aRh^R^kH.

As is verified easily, R<S)kH is an i?-coring with the structure

idRd id<g>e

RRkH > RRkHRkH=(RRkH)RR(RRkH), RRkH > R

and the /3-map is an isomorphism of i?-corings.

Let g^Gr(H). Since l<g>g<^R(g)kH is a group-like, there exists u^U(R)

such that jS(m"1(S)m)=105" by assumption on R, so p(u)=u§§g. Hence g should

be invertible and p{u~1)=u~1Rg~1. This completes the proof. Q. E. D.
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