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ON A MEAN-VALUE THEOREM CONCERNING
DIFFERENCES OF TWO K-TH POWERS

By

Wolfgang MULLER and Werner Georg NOWAK

1. Introduction. For positive integers £, r, let ¢,(#) denote the number of
pairs (m, n)eNXZ with m*—|n|*=r. To study the average order of ¢,(),
one considers the summatory function T ,(x)=31<,<. £:(r) (x a large real vari-
able). It has been proved by E. Kritzel [3] that, for #>>3 and some small

e0>0;
Tr)=ci(R)x™ *+ca(k)x M F=D 4oy (R)F 4 ()1 *HH 4O (52 G- %), @)

where

cl(k)=F2(%>(2k cos(%)]"(%)) cz(k)=2c(k_i_l_ gk

: k\1/E-1 1 co T
e R VA1 il — —-1-1}k a3 kg,
c(B)=m (2> F(k), F.(x)= nzgl n sm(27rnx + 55 >,
hence F,(x)=0() and F.(x)=£2.1) as x—o. For k=2, the problem is
essentially equivalent to the Dirichlet divisor problem, since (cf. e.g. [4])

Tz(x)-——D(x)——ZD(%)+2D(—z—), Dx):= 3

o<maszs

2. Statement of result. In this note, we apply the modern technique for
the estimation of exponential sums (the “discrete Hardy-Littlewood method”,
due to Bombieri, Iwaniec, Mozzochi, Huxley and Watt), together with a refined
analysis of the special functions involved, in order to improve the error term
in the above estimate.

THEOREM. For any real number k=2, letT . (x) denote the number of lattice
points (m, Y ENXZ with 0<m*—|n|*<x. If k=38/13, we have the asymptotic

Tr(x)=ci(R) x> F+co(R)x M *D A c(B)F 4 (x)x ¥~V * LA, (x)
with
Ap(x)=0(x138k+e) for any &>0.

Consequently, for k>38/13,
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T ()= (R)x? F4co(B)x M ¥ =D -(cy( ) F o (x)+0(1)) 21/ #1142,

3. Proof of the theorem. We start from Krétzel’s formula ([3], p. 112)
A(x)=2 X \ ((m*—x)"*)—2 E O(Ne(m, x))+0Q). @)

r<mks

Here a=QY*—-1)*, ¢(y)=y—[y]—1/2, meN throughout and the function
v=N,(u, x) is implicitly defined (for positive real u and x) by the equation

w+u)t—vt=x (@>0). 3)

(In the first sum of Kratzel’s formula, ¢ is corrected to ¢,, where ¢.(y)=1/2
for integer y and ¢,(y)=¢(y) otherwise (cf. the evaluation of S, in [3], p. 116).
Furthermore we note, that the proof of (2) does not require the supposition
that % is an integer.)

Our first step is to reduce the length of the second sum in (2), in order to
make it accessible to the method of exponent pairs. Throughout the sequel
the abbreviation X:=x'* is used.

LEMMA 1. For 0<d<a''* define A(6) by A*—(A—3d)*=1, A>3, (hence A—
for 6—0), then

GN(m, x)=— X du(m*—x)"*)+0(1). @
2z<mksikz

dkz<mksax

Proor. Consider the planar domains
D,={(u, v)ieR?*|6X<uzLiX, 0svsu—0X},
Dy={(u, v)ER*|2V*X<uZiX, 0v<(u*—XF*)!*}
Dy={(u, v)ER?| a'*X<uL2Y*X, 0<v<u—a'*X},
D=D:\(D.\UDy)
and let M; denote the number of lattice points in D;, counting points at the
u-axis with weight 1/2; denote by A; the area of D; (=1, -+, 4). Applying

the Euler summation formula and estimating the remainder integrals to O(1)
by the second mean-value theorem, we obtain after straightforward computations

M= A,—(—8)g(AX)X— (A~ ) —3X)X+0(),
My=A,—(QA-0pQRX)X+¢2'V XN X 3 , ¢1((uk—X”)”k)+0(1),
X

21/ kgus
M3=A3—¢(—a”"X)Xﬂgb(Z”kX)X-}-O(l),
M,= pY Ni(—m, X)—a 3 P(Ne(m, x))

~al/kX<ms~-0X Xsm<allkx
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=A+P—a P X)X—QA—0P—0X)X~ 2 /kxgb(Nk(m, x)+0D).

dX<msal
Since M,=M,+M;+M,, this yields (4). ///
Thus (2) may be rewritten as
Ay(x)=2 3 P(m*—=XF)E) -2 37 H(Ne(m, x))+0Q1), ®)
X<msaX msoX

where 0 is some sufficiently small positive constant and 2=2(3) as before.
To estimate the second sum we need a close analysis of the function

N(u, x) for ux-"* small.
LEMMA 2. For some &,>0, we have a series representation
Nilat, 20/ =o(ux=/4) 7404 S m)h-ich=D ®)
j=1

(with y,=Fk™*=9) valid for 0<ux ''*<e,, permitting iterated termwise differ-

entiation with respect to u in this range.

PrOOF. Let us define new positive real variables ¢, w by the substitution
u=x'"* MR y=N,(u, x)=x"*t""*yw. Entering this into (3), we get

t+w)r—wkt=t. )

We put H({, w)=t*((+w)*—w*)—1 for w>0, t+0, t+w>0, and H(, w)=
kw*'—1 for w>0. Then H is analytic for w>0, t+w>0, and satisfies
HQO, 7)=0, H,(, 7,)+0. Hence, by the implicit function theorem for analytic
functions, (7) can be solved (in some small interval to the right of ¢=0) to

w=7,+ 121 Tﬂj-

Inverting the above substitution, we complete the proof of lemma 2. ///
Applying the inequalities of Koksma and Erdés/Turan (cf. [1], p. 104 and
p. 107) to the function ¢ and the sequence f(m):=N,(m, x), m<dX, we obtain

5 ¢Nilm, D)CXH A+ 5 IS, ®

where H=1 is a free integer parameter and
J-1

Sx(h)::mszb}xe(—hl\fk(m, x)= 2 2 e(—hNy(m, x))+0(). ®

J=1 mj<mEm;iyy
Here the summation interval [1, X7 is divided into J subintervals of the form
(mj, mjs] with m;:=27 for j=1, .-, J—1, m;:=0X (m;.,<6XZ2m,;.,). To
estimate the partial sums we use the method of exponent pairs (cf. [6]). From
(6) we obtain for every »=0 and ux~V*<4, 6—0-+,
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drl

r+1

(= hNe(u, )=(=17h

l CTxl/(k—l)u—k/(k-l)—T(l_{_o(l))

where C,=TIjzi(k/(F—1)+j). Therefore —hN,(u, x) satisfies condition (3) of
[6], p. 214 with s=k£/(k—1), if & is sufficiently small. From this we infer for
every exponent pair (a, f8):

S o(—hNum, ) (RX HO-D) e DS () <R XE,

MGKMEM 41
and with the choice H:=[X¢-#/a+a7] jp (8)
¢(Nk(m, x))<<X(a+ﬂ>/(1+a) 10)

msﬂ

Recently Huxley and Watt [2] have proved, that for any & >0, (9/56+¢’,
37/56-+¢’) is an exponent pair. Applying the “A-step” two times followed by
a “B-step”, we get the exponent pair (51/139+e, 74/139+4-¢), ¢>0. Inserting
into (10) yields the desired bound x?28/¢8&>+e

To estimate the first sum in (5) we split it two parts:

xS )= Pulfm)+ | B m)=1:5:+5:. 1D

X<m s(1+ X +0) 1’(

Here p is a sufficiently small constant and f(y)=(y*—X#)"/*. Again the method
of exponent pairs can be used to deal with S,. Like in (8) and (9) we first
obtain

S,«XH'+ é —Il{ISz(h)l, (12)
with
Sb=___ 3 ehfm)<V+ R B elhfim),
X<ms(1+0)X =1 vj<m-[X1s0j+1

where V>1 is a suitable large constant, v;:=27V, j=1, .-, J—1, (v;1<pXZ
2v,.,) and v,:=pX. The behaviour of f(y»)=X({(y/X)*—1)"’* for small
t:=y/X—1, (t<p) is described by its (absolut convergent) series representation
(ao="Fk, by=F'¥):

FOI=XA ==X (15 ap) =X b
j=0 =0
Hence for »=0

mf(y) =(~ 1>’ 20X RDIECY(y— X )= R0 o(1))

with C.=IT;z}((k—1)/k+j). Introducing a new variable v=y—[X1>V this
reads
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T+1
A FH X D=1y 2 x o1 o) +0( ).

Therefore hf(v+[X]) satisfies condition (3) of [6], p. 214 with s=(k—1)/%, if
o is sufficiently small and V is sufficiently large. We thus conclude for any
exponent pair (a, f8):

> le(hf(v-}—[X]))<<(hXW'””?vj“"“””‘)"‘vjf8 and S,(h)<heX?.

'vj<v§vj+
The choice (a, B)=(51/139+-¢, 74/139+¢) together with H:=[X'/*] and (12)
yields
Sg<<x25/(38k)+5. (13)

It remains to estimate S,. We use the inequalities of Erdds/Turan and
Koksma once more to abtain

1
S\ XH"+ 3 S| (14

with H:=[X'*/**] and
Sy(h)= > e(hf(m).

(+p)X<ms X

Transforming S;(h) by the “Van der Corput step” (e.g. [7], p. 75, theorem 4.9),
we derive

Syme(— J(E—DAIX S D(we(Fw) -

+O(h~2 X ")+ 0O(log x)+O(h** X /%),
where g=£k/(k—1), §=hf'AX)>h, p=hf'(1+p)X)Kh,
B(u)y=u-F-DICE-D(ya_ pa)=-h+DICD ¢ p-a2-12  gnd  F(y)=—X(ul—hO)!4,
The new exponential sum in (15) is now dealt with by the following lemma,

which is an easy consequence (derived in [5]) of Huxley’s and Watt’s deep
estimate in [2].

LEMMA 3. Let ceN, M=1 and T=1 real parameters, F a real function six
times continuously differentiable on [M/2, 2°M7], satisfying in this interval
M"TLFO\KM"T, r=4,5,6. Suppose that MLT*'®. Then for any real
Me[M, 2°M7] and any £>0,

Z e(F(u))zO(M‘116/139T9/2‘78+E>+ O<M1091/1668T32/417+€) .
M

Msus

In our case the derivatives of F(u) are of the form

FOu)=(g—DXh%w! -7 1—(h/w)HV " Po((h/u)?),
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with
Pn)= 8 Ki,x',
and
Ko..=(1+9)(2+g) Ko s=—(1+9C2+9)3+9)
Kis=—14+9)(7—4q) K. :=[14+¢)29—11¢")
K, ,=2—9)3—9q) Ko s=—(1+9)2—¢)(23—11g)

Ky s=Q2—¢)3—q)4—¢)
Ko, e=1+9)2+9)3+¢)(4+9)
K o=—1+9)2+q)(73—79—26¢%)
K, =(1+¢)(329—1299—1464*+664")
Ky, o=—(1+¢)(2—q)(163—129¢+264%)
Ky, e=2—g)B—9)4—¢)5—7q).

Note that 0<h/u<(1—A"%)¥2<1. Therefore that assumptions of lemma 3 are
verified with M a constant multiple of A and T=hX, if the polynomials
P,., r=4,5, 6, have no zeros in [0, 1], for 1<¢<38/25. (This can be checked
in the following way: For 1<¢<gq,, where ¢,=5/3, ¢;=3/2 and ¢,=7/5, all
derivatives of P, have constant sign, hence it suffices to consider P,(0) and
P.(1); in the remaining cases the polynomials P, can be bounded from zero by
replacing each coefficient by its smallest or largest value.) We thus conclude
for any subinterval I of [§, ] that

Z e(F(u))<<hlle/xss(hX)9/278+s+hx091/1668(hX)32/417+s .
uel

Applying summation by parts in (14) and inserting the result into (13) we obtain
Ss(h)<<h51/139+sX74/139+s+h335/1sss+sX4sl/ea4+e and Ss<<X25/3s+e .

Together with (5), (11) and (13), this completes the proof of our theorem.

Added in proof. By an application of a still more advanced version of
Huxley’s method, the authors have meanwhile improved the error term in the
Theorem to

4(x)=0"log x)***%)

(which is valid for any real k£=2). This is to be published in a subsequent
paper.
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