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ON A MEAN-VALUE THEOREM CONCERNING

DIFFERENCES OF TWO K-TH POWERS

By

Wolfgang Muller and Werner Georg Nowak

1. Introduction. For positive integers k, r,let tk(r)denote the number of

pairs (m, n)^NxZ with mk―＼n＼k=r. To study the average order of tk(r),

one considers the summatory function Tk(x)―'^i£rsx tk(r)(x a large real vari-

able). It has been proved by E. Kratzel [3] that, for k~^Z and some small

£o>O,

Tk(x)=c1(k)x2/k+c2(k)x1≪k-1>+c3(k)Fk(x)xllk-1>k*+0(x2≪3k>-£o), (1)

where

Cl(£)=r2(]- X2MfMf)r. *<*>=<^i V-i/a-i^

Uk)= ,-..,,.(|y-V(j)
f

FtW= 2 n-.-^sin(2irM,,+
-)

hence Fk(x)=O(l) and Fk(x)―Q±(l) as x-≫co. For &=2, the problem is

essentiallyequivalent to the Dirichlet divisor problem, since (cf. e.g. [4])

Tt(x)=D(x)-2D(£)+2D(j), D(x):= S 0

O-Cmnix

2. Statement of result. In this note, we apply the modern technique for

the estimation of exponential sums (the "discrete Hardy-Littlewood method",

due to Bombieri, Iwaniec, Mozzochi, Huxley and Watt), together with a refined

analysis of the special functions involved, in order to improve the error term

Theorem. For any real number k^2, letTfe(x) denote the number of lattice

points (m, n)<=NxZ with 0<mk-＼n＼k£x. If 6^38/13, we have the asymptotic

Tk(x)=c1(k)x2>k + c2(k)x1<<k-≫+c;t(k)Fk(x)x1<k-1<k2+Ak(x)

with

Aft(x)=O(x25/(3s*)+£) for any s>0.

Conseauently, for ^>38/13,

Received October 26, 1987



24 Wolfgang Muller and Werner Georg Nowak

Tk(x)=c1(k)x*'k+c2(k)x^k-≫+(ci(k)Fk(x)+o(l))x1>k-llkZ

3. Proof of the theorem. We start from KratzePs formula ([3], p. 112)

A*(%)=2 S ^((m*-*)1'*)^ 53 0M(m,x)) + O(l).
(2)

Here a={21/k ―1)*, <p(y)=y―[y]―1/2, meiV throughout and the function

v―Nk{u, x) is implicitly defined (for positive real m and x) by the equation

(v+u)k-vk=x (i/>0) . (3)

(In the firstsum of Kratzel's formula, <pis corrected to <pu where <pi(y)=l/2

for integer y and <pi(y)=4>{y)otherwise (cf.the evaluation of S3 in [3], p. 116).

Furthermore we note, that the proof of (2) does not require the supposition

that k is an integer.)

Our firststep is to reduce the length of the second sum in (2),in order to

make it accessible to the method of exponent pairs. Throughout the sequel

the abbreviation X:=x1/k is used.

Lemma 1. For 0<d<a1/k defineX(d)by Ak-(X-5)k=l, X>d, (hence *->oo

for 5-≫0),then

(4)

Proof. Consider the planar domains

£>i={(u, v)(=Rz＼dX<u^XX, 0£v^u-dX},

Dz={(u, v)tERz＼2llkX<u^XX, Q^v<(uk-Xky<k},

Ds={(u, v)sER*＼alikX<u^2l'kX, 0£v^u-al'kX},

Di=D1＼(D2＼jD3)

and let M} denote the number of lattice points in Djt counting points at the

w-axis with weight 1/2; denote by A} the area of Dj (j=l, ･･･,4). Applying

the Euler summation formula and estimating the remainder integrals to 0(1)

by the second mean-value theorem, we obtain after straightforward computations

M1=A1-(X-d)<p(XX)X-(A-5)<p(-8X)X+Oa),

M2=A2-a-d)<p(kX)X+<p(2llkX)X 2 (p1((uk-Xk)1/k)+O(l),
Zilk<u<XX

M3

M4

=Aa-<K-a1'*X)X-M21/kX)X+0Q.),

-al/*X<ms-5X
Nk{-m, x)- S <p(Nk(m, x))
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= Ai+4>(-a1<kX)X-(X-d)4>(-dX)X- 2 4>(Nk(m, x))+ O(l).

Since M1=M,+Mt+Mi, this yields (4).

Thus (2) may be rewritten as

A*(x)=2 S ^((m*-**)1'*)-^ 2 4<iV,(m, *))+ O(l),

where 8 is some sufficientlysmall positive constant and X=X(8) as before.
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(5)

To estimate the second sum we need a close analysis of the function

Nt(u. x) for j/x"1" small.

Lemma 2. For some Si>0, we have a series representation

Nk(u, x)x~1/k= (6)

(with Yo=k~1Kk~i:>)valid for 0<ux~1/k^£i, permitting iterated termwise differ-

entiation with respect to u in this range.

Proof. Let us define new positive real variables t, w by the substitution

u -xxiktx-x<k,v=Nk(u, x)=x1/kr1/kw. Entering this into (3), we get

(t+w)k-wk=t. (7)

We put H(t, w)=r＼(t+w)k-wk)-l for w>0, t±Q, t+w>0, and H(0, w)=

kwk~l―l for w>0. Then H is analytic for w>0, t+w>0, and satisfies

1/(0,fo)=O, /fw(0,7o)^0. Hence, by the implicit function theorem for analytic

functions, (7) can be solved (in some small interval to the right of t=0) to

Inverting the above substitution, we complete the proof of lemma 2. ///

Applying the inequalities of Koksma and Erdos/Turan (cf. [1], p. 104 and

p. 107) to the function <b and the sequence f(m):=Nk(m, x), m^dX, we obtain

S <p{Nk(m, x))<XH'1 +

m&dX

where i/^1 is a free integer parameter and

Si(/O = 2 e{-hNk(m, x))=

midX

2-
Zj

i
ft=i /l

|Si(/OI (8)

S1 S e{-hNk{m,x)) + O{l). (9)
j=l m,<msm, +1

Here the summation interval [1, 8X~]is divided into / subintervals of the form

(m.,-,nij+i] with m,j＼=2i for j=l, ■･■,J― 1, mji=8X (m,/-1<5X^2m/_i). To

estimate the partial sums we use the method of exponent pairs (cf.[6]). From

(6) we obtain for every r^O and ux~1/k^8, d->0+,
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-hNk(u, x))={-iyh

where Cr=Hrf=l{k/(k-l)+j).

with

Hence for r^O

dr+1

dyr+1

with c'r=nTjzi((k-i)/k+]＼

reads

Cr;t1/(*-1)ir*"*-1>-r(l+0(l))

SJhXh'XP

(12)

To

k-l

Therefore ―hNk(u, x) satisfiescondition (3) of

[6], p. 214 with s=k/(k ―l), if d is sufficientlysmall. From this we infer for

every exponent pair (a, B):

2 e(-hNk{m, x)) (hX*/c*-D)≪m^-≪*/c*-D

and with the choiceif:=[^(1-^/<1+a)]in (8)

S 4>(Nk{m,x))<X<a+^ia+a＼ (10)

Recently Huxley and Watt [2] have proved, that for any e'>0, (9/56+e',

37/56+s') is an exponent pair. Applying the "A-step" two times followed by

a "B-step",we get the exponent pair (51/139+e, 74/139+s), s>0. Inserting

into (10) yieldsthe desiredbound x25/c38ft)+£.

To estimate the firstsum in (5) we splitit two parts:

2 0i(/(m))= S ≪W(m))+ S ≪M/(m))=:S2+S,. (11)

Here p is a sufficientlysmall constant and f(y)=(yk―Xk)llk. Again the method

of exponent pairs can be used to deal with S2. Like in (8) and (9) we first

obtain

s2≪x#-i+ s
iis2(/z)i

ft=in

Si(h)= S e(/i/(m))≪y+ S1 2 e(hf(m)),

where V>1 is a suitable large constant, v,:―2jV, j=l, ■■･,J―l, (vj-i<pX<L

Ivj.r) and Vj:=pX. The behaviour of f(y)=X((y/X)k-iy>k for small

t:= y/X―l, (t<p) is described by its (absolut convergent) series representation

f(y)=X(Q.+t)k-l)llh=x(t fj ajAUk=X 2 ty'+1'*

f(y)=(-iy^Lx<k-1≫kC'r(y-X)-<k-1"k-ra+oa))
k

Introducing a new variable v―y ―[Z]>V this



dr+1

dvr+1
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/(y+[^])=(-i)r-^^a"lv*c;y-c*-1)/*-r(i+o(i)+o(
)
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Therefore hf(v+[X]) satisfiescondition (3) of [6], p. 214 with s=(k-l)/k, if

p is sufficientlysmall and V is sufficientlylarge. We thus conclude for any

exponent pair (a, B):

S e(hf(v+lX]))<(hX<k-1≫kvJ-<i-1>"')avjli and S2(h)<haX^

The choice (a, JS)=(51/139+e, 74/139+s) together with i7: = [Z13'38] and (12)

yields

52<x25/c38i)+E. (13)

It remains to estimate S3. We use the inequalities of Erdos/Turan and

Koksma once more to abtain

with #:=[X13/38] and

s3≪xh-i+
h h

|S,(A)|

S,(h)= S , e(hf(m))

(14)

Transforming S3(h) by the "Van der Corput step" (e.g. [7], p. 75, theorem 4.9),

we derive

S,=e(―l-Yk-iyth^X1'2 S 0(u)e(F(u))
＼ o / f<us≫ (15)

+O(h-1'2X1<2)+O(logx)+O(h2l5X2<5))

where q=k/{k-l), $=hf'(XX)>h, 7)=hff((l+p)X)<h,

^(M)=rM-C*-2)/2C*-l)(M3_/zg)-C* +l)/(2*)</l-g/2-l/2 and F(M) = -I(M!_/j2)V3_

The new exponential sum in (15) is now dealt with by the following lemma,

which is an easy consequence (derived in [5]) of Huxley's and Watt's deep

estimate in [21.

Lemma 3. Let c<=N, M^l and T^l real parameters,F a realfunctionsix

times continuouslydifferentiableon [M/2, 2CM], satisfyingin this interval

M-TT ＼Fw＼<M-rT, r=4, 5,6. Suppose that M<CTi/15. Then for any real

Afre[M, 2CM] anrfanj's>0,

S e(F(M))=O(M"116/139T9/278+6)+O(M1091/1668T32/417+e).

In our case the derivativesof F(u) are of the form

F<r＼u)=(q-l)Xh*u1-*-r(l-(h/u)9)1''l-rPMh/u)'1),
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i=0

and

Ko.4=(l+tf)(2+0) Ko.s=-(X+q)(2+g)R+q)

Kltt=-a+q)(7-4q) ifll5=(l+^(29-ll^)

K2,t=(2-g)(3-g) K2,5=-(l+q)(2-q)(23-llq)

K3,5=(2-q)(3-q)(4-q)

K0,6=a+q)(2+q)(3+q)(4+q)

Kh6=-a+q)(2+q)(73-7q-26q>)

K2,6=a+q)(329-129q-U6q2+66q3)

K3,e=-a+q)(2-q)(163-129q+26q2)

K<.e=(2-g)(3-g)(4-g)(5-g).

Note that 0<h/u^(l―X~k)llq<l. Therefore that assumptions of lemma 3 are

verified with M a constant multiple of h and T=hX, if the polynomials

Pr, r―4, 5, 6, have no zeros in [0, 1], for l<#5^38/25. (This can be checked

in the following way: For Kq<Lqr, where g4=5/3, q5=3/2 and q6=7/5, all

derivatives of Pr have constant sign, hence it suffices to consider Pr(0) and

Pr(l); in the remaining cases the polynomials Pr can be bounded from zero by

replacing each coefficientby its smallest or largest value.) We thus conclude

for any subinterval / of [£,rf＼that

23 e(F(u))<h1Hi1S9(hX)9l2 +s+h10n<U68(hXy2/i"+s.
we/

Applying summation by parts in (14) and inserting the resultinto (13) we obtain

S3(/i)</i51/139+£X74/139+£+/z385/1668+$X481/834+£and S3<X25/38+e.

Together with (5),(11) and (13), this completes the proof of our theorem.

Added In proof. By an application of a still more advanced version of

Huxley's method, the authors have meanwhile improved the error term in the

Theorem to

Jk(x)=O(xvnk(logxy5/22)

(which is valid for any real k^2). This is to be published in a subsequent

paper.
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