ON THE CATEGORICITY THEOREM IN La, w

By

Sakaé Fuchino

Let T be a countable theory in $L_{\omega_1\omega}$. For each infinite cardinal κ we denote by $I(\kappa, T)$ the number of pairwise non-isomorphic models of T in κ . In this paper we shall prove the following theorem:

THEOREM 1. If $I(\omega_1, T)=1$ and the models of T in ω_1 are $L_{\omega_1\omega}$ -homogeneous (for the definition see [1]) then $I(\kappa, T)=1$ for all $\kappa > \omega$.

At first sight it may seem that the theorem is just a special case of Corollary 1 to Theorem 32 in [1]. However the κ -categoricity of T is defined there not to be $I(\kappa, T)=1$ but $I(\kappa, T)\leq 1$. So the conclusion of our theorem is stronger than that of the corollary for elementary classes of $L_{\omega_1\omega}$. Unlike in $L_{\omega\omega}$ theories, the $L_{\omega_1\omega}$ -homogeneity of the models of T in ω_1 does not simply follow from the ω_1 -categoricity: as proved in [5], there is a countable theory in $L_{\omega_1\omega}$ which is ω_1 -categorical but whose models in ω_1 are not $L_{\omega_1\omega}$ -homogeneous. Nevertheless, as far as I know, it seems to be still an open question, whether Theorem 1 holds without the assumption of homogeneity of the models. With a similar proof to that of Theorem 1 we can also get the following stronger version:

THEOREM 2. Let (K, <) be an $(\omega, L_{\omega_1 \omega})$ -good class of structures (for the definition see [2] or [3]). If $I(\omega_1, K)=1$ and the models of T in ω_1 are $L_{\omega_1 \omega}$ -homogeneous, then $I(\kappa, K)=1$ for all $\kappa > \omega$.

Without homogeneity of the models in ω_1 Theorem 2 does not hold: as S. Shelah showed, under MA+ \exists CH there is an $(\omega, L_{\omega_1\omega})$ -good class of structures, which is κ categorical for all $\kappa < 2^{\omega}$ but contains no structure with cardinality $>2^{\omega}$ (see [4]). Clearly " $(\omega, L_{\omega_1\omega})$ -good class" in Theorem 2 can not be replaced by "PC class in $L_{\omega_1\omega}$ ": simply consider and $L_{\omega_1\omega}$ -theory T' with $I(\omega_1, T') \neq 0$ and $I(\omega_2, T')=0$ and let $K=\{M \upharpoonright L_0 | M \models T'\}$ for the empty language L_0 . The notations we use here is standard and/or to be found e.g. in [1], [2] or [3].

Let T be as in Theorem 1. As in [6] we may assume that $I(\omega, T)=1$ and Received September 2, 1985.

Sakaé Fuchino

there is a countable fragment L* of $L_{\omega_1\omega}$ containing T such that for every $M, N \models T$ and for every $\bar{a} \in |M|, \bar{b} \in |N|, (M, \bar{a}) \equiv_{L\omega_1\omega} (N, \bar{b})$ if and only if $(M, \bar{a}) \equiv_{L\omega_1\omega} (N, \bar{b})$. In particular the models of T in ω_1 are L*-homogeneous. By Theorem 32 in [1] and its corollary it follows that $I(\kappa, T) \leq 1$ for all $\kappa > \omega$ and that all uncountable models of T are L*-homogeneous. A model M is said to be L*-locally-universal, if for every N, N' with $N <_L * M, N <_L * N', ||N|| < ||M||$ and $||N'|| \leq ||M||$ there is an L*-elementary embedding of N' in M over N.

LEMMA 3. Every uncountable model of T is L*-locally-universal.

PROOF. Let M an uncountable model of T. Let N and N' be as in the definition of L*-locally-universality. Since $I(\kappa, T) \leq 1$ for all $\kappa \geq \omega$, we may assume ||N'|| = ||M|| and $N' \cong M$. So by L*-homogeneity of M we can extend the L*-elementary mapping id_N to an isomorphism from N' to M by a back-and-forth construction.

Let (*) be the following property on M:

(*) For every $N \prec_{L} * M$ such that ||N|| < ||M|| and for every $a \in |M| \setminus |N|$, there are ||M||-many elements of $|M| \setminus |N|$, which satisfy the L*-type of a over |N|.

LEMMA 4. Every model of T in ω_1 satisfies (*).

PROOF. Let M be a model of T in ω_1 and let N be a countable L*-elementary submodel of M with $a \in |M| \setminus |N|$. Since the models of T in ω_1 are L*-homogeneous, the theory

$$T' = \{\varphi(a_1, \cdots, a_n) | \varphi \in \mathcal{L}^*, n \in \omega, a_1, \cdots, a_n \in |N|, M \models \varphi[a_1, \cdots, a_n] \}$$

is ω_1 -categorical. So by Theorem 45 in [1] there are only countably many L*types over |N| realized in M. Let N' be a countable model such that $N <_{\mathbf{L}} * N' <_{\mathbf{L}} *$ M and for every $c \in |M| \setminus |N'|$, there are ω_1 -many elements of $|M| \setminus |N|$, which satisfy the L*-type of c over |N|. By Satz 9.8 in 2 (which is a slight modification of Lemma 3. 2.8 in [4]) there is a countable $N_1 \models T$ such that $N <_{\mathbf{L}} * N_1$ and for every $c \in |N_1| \setminus |N|$ there are N_2 , $N_3 \models T$ with $N <_{\mathbf{L}} * N_2 <_{\mathbf{L}} * N_3 <_{\mathbf{L}} * N_1$, $c \notin |N_8|$ and $(N_3, |N_2|) \cong (N', |N|)$. Since M is L^* -locally-universal, we can assume $N_1 <_{\mathbf{L}} * M$. It follows that there are N'', $N''' \models T$ such that $N <_{\mathbf{L}} * N'' <_{\mathbf{L}} * N''' <_{\mathbf{L}} * M$, $a \notin |N'''|$ and $(N''', |N''|) \cong (N', |N|)$. Again by the L*-locally-universality of M, (M, |N'''|, $|N''|) \cong (M, |N'|, |N|)$. So by the definition of N', there are ω_1 -many elements of $|M| \setminus |N''|$, which satisfy the L*-type of a over $|N''| \supseteq |N|$. LEMMA 5. If an uncountable model M of T is L*-homogeneous and satisfies (*), then it satisfies:

(**) For every $N, N' \models T$ with $N \prec_L * N' \prec_L * M$ and ||N'|| < ||M|| and for every $a \in |M| \setminus |N|$, there is $b \in |M| \setminus |N'|$ and an automorphism $f: M \to M$ over N such that f(b) = a.

PROOF. By (*) and ||N'|| < ||M||, there exists $b \in |M| \setminus |N'|$ which satisfies the L^* -type of a over N. By L*-homogeneity of M, the L*-elementary mapping $\{(c, c) | c \in |N|\} \cup \{(b, a)\}$ can be extended to an automorphism of M by a back-and-forth construction. \Box

LEMMA 6. If an nucountable model M of T satisfies (**), then there is $N \models T$ such that $M \prec_L N$, $M \neq N$ and $M \cong N$.

PROOF. Let $\kappa = |M|$. Since $I(\kappa, T) = 1$ by Corollary 1 to Theorem 32 in [1], we only need to show that there is $M' <_{L} * M$ such that $M' \neq M$ and $||M'|| = \kappa$. Let $M'_0 <_{L} * M$ be such that $||M'_0|| < \kappa$ and $a \in |M| \setminus |M'|$. By (**) we can construct an L^* elementary chain of L*-elementary submodels M'_{α} , $\alpha < \kappa$ of M such that $M'_{\alpha} \subseteq M'_{\beta}$ for $\alpha < \beta < \kappa$ with $|M'_{\alpha}| < \kappa$ and $a \notin |M'_{\alpha}|$ for $\alpha < \kappa$. Let $M' = \bigcup M'_{\alpha}$. \Box

LEMMA 7. Every uncountable model of T satisfies (*).

PROOF. Assume, by way of contradiction, that there are uncountable models of T, which don't satisfy (*). Let M be such a model with the smallest $\kappa = ||M||$. Clearly κ is then a successor cardinal. Let $N <_{L}*M$ and $a \in |M| \setminus |N|$ such that ||N||<||M|| and there are only less than κ -many elements of $|M| \setminus |N|$, which satisfy the L*-type of a over |N|. Let $<^{M^*}$ be a well-ordering on |M| of type κ such that |N| is an initial segment with respect to it. Let $M^* = (M, I^{M^*}, a^{M^*}, <^{M^*})$, where $I^{M*} = |N|$ and $a^{M^*} = a$. Let T^* be the countable $L_{\omega_1\omega}$ -theory in $S^* = L(M^*)$ consisting of:

```
(a) \varphi, for \varphi \in T
```

- (b) "< is a linear ordering"
- (c) "I is an initial segment with respect to < "
- (d) $\forall x_i \cdots \forall x_n (I(x_i) \land \cdots \land I(x_n) \to (\varphi(x_i, \cdots, x_n) \longleftrightarrow \varphi^I(x_i, \cdots, x_n))))$, for $\varphi \in L^*$
- (e) *****I*(*a*)
- $(f) \quad \exists x \forall y ([\bigwedge_{n \in \omega \ \varphi(y, x_0, \cdots, x_n) \in L^*} \forall x_0 \cdots \forall x_n I(x_0) \land \cdots \land I(x_n) \\ \rightarrow (\varphi(y, x_0, \cdots, x_n) \longleftrightarrow \varphi(a, x_0, \cdots,)))] \rightarrow y < x)$

Clearly $M^* \models T^*$. Since κ is a regular cardinal, by Theorem 28 in [1] there is a

model N^* of T^* , which is ω_1 -like ordered with respect to $\langle N^*$. Let $N=N^*\upharpoonright L(T)$ and $N'=N^*\upharpoonright L(T)$. Then $||N||=\omega_1$, $N\vDash T$, $||N'||=\omega$, $N'\prec_L*N$, $a^{N^*}\in |N|\setminus |N'|$ and there are only countaly many elements of N', which satisfy the L*-type of a^{N^*} over N'. This contradicts Lemma 4. \square

Now let us prove Theorem 1. By Corollary 1 to Theorem 32 in [1] we only need to check the existence of models of T in each uncountable κ . Assuming that there are models of T in μ for all $\omega_1 \leq \mu < \kappa$, we will show that there are also models of T in κ . If κ is a limit cardinal, we can easily construct a strictly increasing L*-elementary chain $(M_{\alpha})_{\alpha < \kappa}$ of models of T with $\sup\{||M|||\alpha < \kappa\} = \kappa$. The union of these models is then a model of T in κ . Suppose κ is a successor cardinal, say $\kappa = \lambda^+$. Let M be a model of T in λ . By Lemmas 3, 5 and 7 there is a proper L*-elementary chain of M. So we can again construct a strictly increasing L*-elementary chain of models of T, whose union is model of T in κ .

References

- [1] Keisler, J., Model theory for infinitary logic, North-Holland, Amstrdam (1971).
- [2] Fuchino, S., Klassifikationstheorie nicht-elementarer Klassen, Diplomarbeit, Berlin (1983).
- [3] Fuchino, S., A simple proof of a theorem of Shelah in classification theory for nonelementary classes, to appear.
- [4] Makowsky, J. A. Abstract embedding relations, in Model-Theoretic Logics, edited by I. Barwise and S. Feferman, Springer Berlin-Heidelberg- New York (1982).
- [5] Marcus, L., A prime minimal model with an infinite set of indiscernibles, Israel J. of Math. 11 (1972).
- [6] Shelah, S., Categoricity in \mathfrak{K}_1 of sentences of $L_{\omega_1\omega}$ (Q), Israel J. of Math. 20 (1975).

Institut für Mathematik II Freie Universität Berlin West Germany