# ON THE SOLVABILITY OF CONVOLUTION EQUATIONS IN $\mathcal{K}_{M}^{\prime}$ 

## By

D. H. Pahk and B. K. Sohn


#### Abstract

Let $\mathscr{K}_{M}^{\prime}$ be the space of distributions on $R^{n}$ which grow no faster than $e^{M(k x)}$ for some $k>0$ where $M$ is an increasing continuous function on $R^{n}$, and let $\mathcal{O}_{C}^{\prime}\left(\mathcal{K}_{M}^{\prime} ; \mathcal{K}_{M}^{\prime}\right)$ be the space of convolution operators in $\mathcal{K}_{M}^{\prime}$. We show that, for $S \in \mathcal{O}_{C}^{\prime}\left(\mathcal{K}_{M}^{\prime} ; \mathcal{K}_{M}^{\prime}\right)$, $S * \mathcal{K}_{M}^{\prime}=\mathcal{K}_{M}^{\prime}$ is equivalent to the following: Every distribution $u \in$ $\mathcal{O}_{C}^{\prime}\left(\mathcal{K}_{M}^{\prime} ; \mathcal{K}_{M}^{\prime}\right)$ with $S * u \in \mathcal{K}_{M}$ is in $\mathcal{K}_{M}$.


## 1. Introduction.

Let $\mathcal{K}_{M}^{\prime}$ be the space of distributions on $R^{n}$ which grow no faster than $e^{M(k x)}$ for some $k>0$, where $M$ is an increasing continuous functions on $R^{n} ; \mathcal{K}_{M}^{\prime}$ is the dual space of $\mathcal{K}_{M}$, which we describe later. We denote by $\mathcal{O}_{C}^{\prime}\left(\mathcal{K}_{M}^{\prime} ; \mathcal{K}_{M}^{\prime}\right)$ the space of convolution operators in $\mathcal{K}_{M}^{\prime}$.

In [1], S . Abdullah proved that, if $S$ is a distributions in $\mathscr{O}_{C}^{\prime}\left(\mathcal{K}_{M}^{\prime} ; \mathcal{K}_{M}^{\prime}\right)$ and $\hat{S}$ is its Fourier transform, the following conditions are equivalent:
(a) There exist positive constants $A, C$ and a positive integer $N$ such that

$$
\sup _{\substack{z \in C^{n} \\|z| \S A Q-1(\log (2+|\xi| 1))}}|\hat{S}(z+\hat{\xi})| \geqq \frac{C}{(1+|\xi|)^{N}}, \quad \hat{\xi} \in R^{n}
$$

where $\Omega^{-1}$ is the inverse of $\Omega$, which is the dual to $M$ in the sense of Young.
(b) $S * \mathcal{K}_{M}^{\prime}=\mathscr{K}_{M}^{\prime}$.

In this paper we prove that, for $S \in \mathcal{O}_{C}^{\prime}\left(\mathcal{K}_{M}^{\prime} ; \mathcal{K}_{M}^{\prime}\right)$, the statements (a) and (b) are equivalent to the following: Every distribution $u \in \mathcal{O}_{C}^{\prime}\left(\mathcal{K}_{M}^{\prime} ; \mathcal{K}_{M}^{\prime}\right)$ satisfying $S * u \in \mathcal{K}_{M}$ is in $\mathscr{K}_{M}$.

The motivation for this problem comes from the paper [5]. Here S. Sznaider and $Z$. Zielezny proved that, if $S$ is a distribution in $\mathcal{O}_{C}^{\prime}\left(\mathcal{K}_{1}^{\prime} ; \mathcal{K}_{1}^{\prime}\right)$ and $\hat{S}$ is its Fourier transform, the following statements are equivalent:

This research is partly supported by GARC, KOSEF and BRSI, Ministry of Education. Received December 10, 1993. Revised July 28, 1994.
(i) There exist positive constants $N, r, C$ such that

$$
\sup _{z \in C^{n, z \mid \leqq r}}|\hat{S}(\xi+z)| \geqq \frac{C}{(1+|\xi|)^{N}}, \quad \xi \in R^{n},
$$

(ii) $S * \mathcal{K}_{1}^{\prime}=\mathscr{K}_{1}^{\prime}$
(iii) If $u \in \mathcal{O}_{C}^{\prime}\left(\mathscr{K}_{1}^{\prime} ; \mathscr{K}_{1}^{\prime}\right)$ and $S * u \in \mathscr{K}_{1}$, then $u \in \mathscr{K}_{1}$.

In view of this result it is natural to think the property (iii) in the space $\mathcal{K}_{M}^{\prime}$ of distributions on $R^{n}$ which grow no faster than $\exp (M(k x))$ for some $k>0$. Before presenting our theorems we recall briefly the basic facts about the spaces $\mathcal{K}_{M}^{\prime}, \mathscr{O}_{C}^{\prime}\left(\mathcal{K}_{M}^{\prime} ; \mathcal{K}_{M}^{\prime}\right)$ and $K_{M}^{\prime}$, for further details, we refer to [3].

The space $\mathcal{K}_{M}^{\prime}$. Let $\mu(\xi)(0 \leqq \xi \leqq \infty)$ denote a continuous increasing function such that $\mu(0)=0, \mu(\infty)=\infty$. For $x \geqq 0$, we define

$$
M(x)=\int_{0}^{x} \mu(\xi) d \xi
$$

The functions $M(x)$ is an increasing, convex and continuous function with $M(0)=0, M(\infty)=\infty$. For $x<0$, we define $M(x)$ to be $M(-x)$ and for $x=$ $\left(x_{1}, \cdots, x_{n}\right) \in R^{n}, n \geqq 2$, we define $M(x)$ to be $M\left(x_{1}\right)+\cdots+M\left(x_{n}\right)$.

Now we list some properties of $M(x)$ which will be used later;
(i) $M(x)+M(y) \leqq M(x+y)$ for all $x, y \geqq 0$
(ii) $M(x+y) \leqq M(2 x)+M(2 y)$ for all $x, y \geqq 0$.

Let $\kappa_{M}$ be the space of all $C^{\infty}$-functions $\phi$ in $R^{n}$ such that

$$
\nu_{k}(\dot{\phi})=\sup _{\substack{x \in R^{n} \\|\alpha| \leq k}} e^{\mu(k x)}\left|D^{\alpha} \phi(x)\right|<\infty, \quad k=0,1,2, \cdots,
$$

where $D^{\alpha}=D_{1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{n}}$ and $D_{j}=i^{-1}\left(\partial / \partial x_{j}\right)$. Provided with the topology defined by the seminorms $\nu_{k}, \mathcal{K}_{M}$ is a Frechet space. The dual $\mathcal{K}_{M}^{\prime}$ of $\mathscr{K}_{M}$ is the space of all continuous linear functionals on $\mathcal{K}_{M}$. Then a distribution $u$ is in $\mathscr{K}_{M}^{\prime}$ if and only if there exist $m \in N^{n}, k \in N$ and a bounded continuous function $f(x)$ on $R^{n}$ such that

$$
u=D^{m}\left(e^{M(k x)} f(x)\right) .
$$

$\mathcal{K}_{M}^{\prime}$ is endowed with the topology of uniform convergence on all bounded sets in $\mathscr{K}_{M}$.

The space $\mathcal{O}_{C}^{\prime}\left(\mathscr{K}_{M}^{\prime} ; \mathscr{K}_{M}^{\prime}\right)$. If $u \in \mathscr{K}_{M}^{\prime}$ and $\phi \in \mathscr{K}_{M}$, then the convolution $u * \phi$ is a $C^{\infty}$-function defined by

$$
u * \phi(x)=\left\langle u_{y}, \phi(x-y)\right\rangle .
$$

where $\langle u, \phi\rangle=u(\phi)$.
The space $\mathcal{O}_{C}^{\prime}\left(\mathscr{K}_{M}^{\prime} ; \mathcal{K}_{M}^{\prime}\right)$ of convolution eperators in $\mathscr{K}_{M}^{\prime}$ consists of distributions $S \in \mathscr{K}_{M}^{\prime}$ such that $S * u \in \mathscr{K}_{M}^{\prime}$ for every $u \in \mathcal{K}_{M}^{\prime}$, where $\langle S * u, \phi\rangle=\left\langle u, \check{S}_{*} * \phi\right\rangle$ for every $\phi \in \mathcal{K}_{M}$. Then the space is the set of distributions $S$ which satisfy the following equivalent conditions [3]:
(i) The distributions $S_{k}=\gamma_{k} S, k=1,2, \cdots$ are in tempered distribution space, where $\gamma_{k}=e^{M(k x)}$.
(ii) For every integer $k \geqq 0$, there exists an integer $m \geqq 0$ such that

$$
S=\sum_{|\alpha| \leq m} D^{\alpha} f_{\alpha}
$$

where $f_{\alpha}$ are continuous functions in $R^{n}$ whose products with $e^{M(k, x)}$ are bounded.
(iii) For every $\phi \in \mathscr{K}_{M}$, the convolution $S * \phi$ is in $\varkappa_{M}$.

The space $K_{M}^{\prime}$. For $\phi \in \mathcal{K}_{M}$, the Fourier transform

$$
\hat{\phi}(\boldsymbol{\xi})=\int_{R^{n}} e^{-i\langle x, \xi\rangle} \phi(x) d x
$$

can be continued in $C^{n}$ as an entire function of $\zeta=\xi+i \eta$ such that

$$
\begin{equation*}
\omega_{k}(\hat{\phi})=\sup _{\zeta \in C^{n}}(1+|\xi|)^{k} e^{-\Omega(\eta / k)}|\hat{\phi}(\zeta)|<\infty, \quad k=1,2, \cdots \tag{1}
\end{equation*}
$$

where $\Omega(y)$ is the dual of $M(x)$ in the sense of Young. If $K_{M}$ is the space of all entire functions with the property (1) and the topology in $K_{M}$ is defined by the seminorms $\omega_{k}$, then the Fourier transform is an isomorphism of $\mathcal{K}_{M}$ onto $K_{M}$. The dual $K_{M}^{\prime}$ of $K_{M}$ is the space of the Fourier transforms of distributions in $\mathcal{K}_{M}^{\prime}$. The Fourier transform $\hat{u}$ of a distribution $u \in \mathcal{K}_{M}^{\prime}$ is defined by the Parseval formula

$$
\langle\hat{u}, \hat{\phi}\rangle=(2 \pi)^{n}\left\langle u_{x}, \phi(-x)\right\rangle .
$$

Also if $S \in \mathcal{O}_{C}^{\prime}\left(\mathcal{K}_{M}^{\prime} ; \mathcal{K}_{M}^{\prime}\right)$ and $u \in \mathcal{K}_{M}^{\prime}$, we have the formula

$$
\widehat{S * u}=\hat{S} \cdot \hat{u},
$$

where the product on the right-hand side is defined by

$$
\langle\hat{S} \hat{u}, \phi\rangle=\langle\hat{u}, \hat{S} \psi\rangle, \quad \phi \in K_{M} .
$$

The following lemma will be used in the next section. It's proof can be found in [3].

Lemma (Paley-Wiener type theorem). Let $\zeta \equiv \xi+i \eta \in C^{n}$. An entire function $F(\zeta)$ is the Fourier transform of a distribution $S$ in $\mathcal{O}_{C}^{\prime}\left(\mathcal{K}_{M}^{\prime} ; \mathcal{K}_{M}^{\prime}\right)$ if and only if for every $\varepsilon>0$, there exist constants $N$ and $C$ such that

$$
|F(\xi+i \eta)| \leqq C(1+|\xi|)^{N} e^{\Omega(\varepsilon \eta)}
$$

## 2. Main Theorem

Theorem. If $S$ is a distribution in $\mathcal{O}_{C}^{\prime}\left(\mathcal{K}_{M}^{\prime} ; \mathscr{K}_{M}^{\prime}\right)$ and $\hat{S}$ be its Fourier transform, then the following conditions are equivalent:
(a) There exist positive constants $A, C$ and a positive integer $N$ such that

$$
\sup _{\substack{z \in C^{n} \\|z| \leqq A Q^{-1}(\log (2+|\hat{\xi}| 1))}}|\hat{S}(z+\xi)| \geqq \frac{C}{(1+|\xi|)^{N}}, \quad \xi \in R^{n}
$$

(b) $S * \mathcal{K}_{M}^{\prime}=\mathcal{K}_{M}^{\prime}$
(c) If $u \in \mathcal{O}_{C}^{\prime}\left(\mathscr{K}_{M}^{\prime} ; \mathscr{K}_{M}^{\prime}\right)$ and $S * u \in \mathscr{K}_{M}$, then $u \in \mathcal{K}_{M}$.

Proof. It suffices to show that $(b) \Rightarrow(c) \Rightarrow(a)$.
(b) $\Rightarrow$ (c). The proof goes along exactly the same lines as proof of Theorem 1 in [5]. For the completeness we give the proof. If $S$ is a distribution in $\mathcal{O}_{C}^{\prime}\left(\mathscr{K}_{M}^{\prime} ; \mathcal{K}_{M}^{\prime}\right)$, then so is $T=S$ and, by (1), the mapping $S^{*}: u \rightarrow S * u$ of $\mathcal{K}_{M}^{\prime}$ into $\mathcal{K}_{M}^{\prime}$ is the transpose of the mapping $T^{*}: \phi \rightarrow T * \phi$ of $\mathcal{K}_{M}$ into $\mathcal{K}_{M}$. Condition (b) is satisfied if and only if $T^{*}$ an isomorphism of $\mathcal{K}_{M}$ onto $T * \mathcal{K}_{M}$ (see e.g., [2, Corollary on p. 92]). In particular the inverse $T * \phi \rightarrow \phi$ must be continuous.

Suppose now that $S * u=\phi$ where $u \in \mathcal{O}_{c}^{\prime}\left(\mathcal{K}_{M}^{\prime} ; \mathscr{K}_{M}^{\prime}\right)$ and $\phi \in \mathscr{K}_{M}$. Since $\langle S * u, \varphi\rangle=\langle T * \check{u}, \breve{\varphi}\rangle$ for $\varphi \in \mathscr{K}_{M}$, then

$$
\begin{equation*}
T * \check{u}=(-1)^{n} \check{\phi} \tag{2}
\end{equation*}
$$

and for the proof if suffices to show that $\check{u} \in \mathscr{K}_{M}$. If $\psi$ is a $C^{\infty}$-function with $\operatorname{supp} \phi \subset B(0,1)=\left\{x \in R^{n}:|x| \leqq 1\right\}$ and $\hat{\phi}(0)=1$, we define $\psi_{k}(x)=k^{n} \psi(k x), k=$ $1,2, \cdots$. From (2) it follows that

$$
T *\left(\check{u} * \psi_{k}\right)=(-1)^{n} \check{\phi} * \psi_{k}
$$

and the convolutions $\check{u} * \psi_{k}$ and $(-1)^{n} \check{\phi} * \psi_{k}$ are in $\mathcal{K}_{M}$. Moreover, the sequence $\left\{\psi_{k}\right\}$ converges in $\mathcal{O}_{C}^{\prime}\left(\mathcal{K}_{M}^{\prime} ; \mathcal{N}_{M}^{\prime}\right)$ to $\delta$, the Dirac measure as the origin. Hence $(-1)^{n} \check{\phi} * \psi \rightarrow(-1)^{n} \check{\phi}$ in $\mathcal{K}_{M}$ and $\check{u} * \psi_{k} \rightarrow \check{u}$ in $\mathcal{O}_{C}^{\prime}\left(\mathscr{K}_{M}^{\prime} ; \mathscr{K}_{M}^{\prime}\right)$. On the other hand, the sequence $\left\{\check{u} * \psi_{k}\right\}$ converges in $\mathcal{K}_{M}$, by the assumption that the inverse of $T^{*}$ is continuous. The limit must be again $\check{u}$, and so $\check{u}$ is a function in $\mathcal{K}_{M}$.
(c) $\Rightarrow(\mathrm{a})$. Let $\mathscr{F}$ be the space all functions $u \in C\left(R^{n}\right)$ such that

$$
\sup _{x \in R^{n}} e^{M(k x)}|u(x)|<\infty, \quad \text { for all } k
$$

and $S * u \in \mathscr{K}_{M}$. We provide $\mathscr{F}$ with the topology defined by the seminorms

$$
\|u\|_{k}=\sup _{x \in R^{n}} e^{M(k x)}|u(x)|+\nu_{k}(S * u), \quad k=0,1,2, \cdots
$$

Then $\mathscr{F}$ becomes a Frechet space. Further, let $\mathcal{G}$ be the space of all functions $u \in C^{1}\left(R^{n}\right)$ such that

$$
\|u\|=\sup _{x \in R^{n}} \operatorname{la}_{|\alpha| \leqq 1}\left|D^{\alpha} u(x)\right|<\infty
$$

with the norm $\|\|, G$ is a Banach space.
By the fact $\mathscr{F} \subset \mathcal{O}_{C}^{\prime}\left(\mathcal{K}_{M}^{\prime} ; \mathcal{K}_{M}^{\prime}\right)$ and the assumption (c), each function $u \in \mathscr{F}$ is in $\mathcal{G}$. Also, the natural mapping $\mathscr{F} \rightarrow G$ is closed and therefore continuous. Consequently there exist an integer $\mu>0$ and a constant $C$ such that

$$
\|u\| \leqq C\|u\|_{\mu}=C\left\{\sup _{x \in R^{n}} e^{M(\mu x)}|u(x)|+\nu_{\mu}(S * u)\right\}
$$

for all $u \in \mathscr{F}$. Since the Fourier transformation is an isomorphism from $\mathcal{K}_{M}$ onto $K_{M}$, there exist another integer $\nu>0$ and a constant $C_{0}$ such that

$$
\begin{equation*}
\|u\|-C \sup _{x \in R^{n}} e^{M(\mu x)}|u(x)| \leqq C_{0} \omega_{\nu}(\hat{S} \cdot \hat{u}), \quad \text { for all } u \in \mathcal{K}_{M} \tag{3}
\end{equation*}
$$

Suppose now that the condition (a) is not satisfied. Then there exists a sequence $\left\{\xi_{j}\right\}$ such that $\left|\xi_{i}\right| \rightarrow+\infty$ as $j \rightarrow \infty$ and

$$
\begin{equation*}
\sup _{\substack{\left.z \in C n \\\left|z-\xi_{j}\right| \leq j \Omega-1 \\-1 \log \left(2+\left|\xi_{j}\right|\right)\right)}}|\hat{S}(z)|<\frac{1}{\left(1+\left|\xi_{j}\right|\right)^{j}} \tag{4}
\end{equation*}
$$

For each $j$, we define $k_{j}$ to be the greatest integer equal or less than $\alpha_{j}=$ $\Omega^{-1}\left(\log \left(2+\left|\xi_{j}\right|\right)\right)$. Let $\phi \geqq 0$ in $C_{c}^{\infty}$, supp $\phi \subset B(0,1)$ and $\hat{\phi}(0)=1$. We also define

$$
\phi_{j}^{1}(x)=e^{i\left\langle\xi_{j}, x\right\rangle}\left(\phi_{j} * \cdots * \phi_{j}\right)(x),
$$

and

$$
\phi_{j}^{2}(x)=\left(\phi *\left(\phi_{j} * \cdots * \phi_{j}\right)\right)(x)
$$

where $\phi_{j}(x)=\alpha_{j}^{n} \phi\left(\alpha_{j} x\right)$ and the convolution product in the parenthesis is being taken $k_{j}$-times. Now we define

$$
\phi_{j}(x)=\left(\phi * \psi_{j}^{1}\right)(x)
$$

Since supp $\psi_{j} \subset B(0,2)$, clearly $\psi_{j} \in \mathcal{F}$.
Substituting $\psi_{j}$ 's into the inequality (3), we will show that the left side of (3) goes to $\infty$ and the right to 0 , as $j \rightarrow \infty$, which gives the desired contradiction.

To show this, we first estimate
(5)

$$
\begin{aligned}
\left\|\psi_{j}\right\| & =\sup _{x \in R^{n},|\alpha| s_{1}}\left|D^{\alpha} \psi_{j}(x)\right| \\
& \geqq \sup _{x \in R^{n}, \mid \alpha_{\downarrow}=1} \mid \phi_{*}\left\{e^{i\left\langle x, \xi_{j}\right\rangle} D^{\alpha}\left(\phi_{j^{*}} \cdots * \phi_{j}\right)\right. \\
& \left.+D^{\alpha}\left(i\left\langle x, \xi_{j}\right\rangle\right) e^{i\left\langle x, \hat{\xi}_{j}\right\rangle}\left(\phi_{j} * \cdots * \phi_{j}\right)\right\}(x) \mid \\
& \geqq \sup _{x \in R^{n}, \mid \alpha!=1} \mid D^{\alpha}\left(\left\langle x, \xi_{j}\right\rangle\left(\phi^{*} *\left(\phi_{j^{*}} \cdots * \phi_{j}\right)\right\}(x) \mid\right. \\
& \geqq \frac{\left|\xi_{j}\right|}{n} \sup _{x \in R^{n}}\left|\psi_{j}^{2}(x)\right|
\end{aligned}
$$

and since $\operatorname{supp} \phi_{j}, \operatorname{supp} \psi_{j}^{2} \subset B(0,2)$,

$$
\begin{equation*}
\sup _{x \in R^{n}} e^{M(\mu x)}\left|\psi_{j}(x)\right|=\sup _{|x| \leqq 2} e^{M(\mu x)}\left|\psi_{i}^{2}(x)\right| \leqq C^{\prime} \sup _{x \in R^{n}}\left|\psi_{j}^{2}(x)\right|, \tag{6}
\end{equation*}
$$

where $C^{\prime}=e^{n M(2 \mu)}$.
Viewing

$$
1=\int_{R^{n}} \psi_{j}^{2}(x) d x \leqq C^{\prime \prime} \sup _{x \in R^{n}}\left|\psi_{j}^{2}(x)\right|
$$

where $C^{\prime \prime}$ is the volume of $B(0,2)$, we have

$$
\begin{equation*}
\sup _{x \in R^{n}}\left|\psi_{j}^{2}(x)\right| \geqq \frac{1}{C^{\prime \prime}} \tag{7}
\end{equation*}
$$

Substituting (5), (6) and (7) into (3), the left hand side of (3) behaves, as $j \rightarrow \infty$,

$$
\begin{gathered}
\lim _{j \rightarrow \infty}\left\{\left\|\psi_{j}\right\|-C \sup _{x \in R^{n}} e^{M(\mu x)}\left|\psi_{j}(x)\right|\right\} \\
\geqq \lim _{j \rightarrow \infty}\left\{\frac{\left|\xi_{j}\right|}{n}-C C^{\prime}\right\} \frac{1}{C^{\prime \prime}}=\infty
\end{gathered}
$$

On the other hand,

$$
\begin{align*}
\omega_{\nu}\left(\hat{S} \cdot \hat{\psi}_{j}\right)= & \sup _{\zeta \in C^{n}}(1+|\zeta|)^{\nu} e^{-\Omega(\eta / \nu)}\left|\hat{S}(\zeta) \| \hat{\phi}_{j}(\zeta)\right|  \tag{8}\\
& \leqq \sup _{1 \zeta-\xi_{j} \leq j \alpha_{j}}(1+|\zeta|)^{\nu} e^{-\Omega(\eta / \nu)}|\hat{S}(\zeta)|\left|\hat{\psi}_{j}(\zeta)\right| \\
& +\sup _{\left|\zeta-\xi_{j}\right|>j \alpha_{j}}(1+|\zeta|)^{\nu} e^{-\Omega(\eta / \nu)}|\hat{S}(\zeta)|\left|\hat{\phi}_{j}(\zeta)\right|,
\end{align*}
$$

where $\zeta=\hat{\xi}+i \eta$.
It now sufficies to prove that both terms in the right side of (8) go to 0 , as $j \rightarrow \infty$. We first observe that, by the Paley-Wiener theorem for $\phi$ as element of $C_{c}^{\infty}$ with supp $\phi \subset B(0,1)$, there exist a $C_{m} \geqq 0, m=0,1,2, \cdots$, such that

$$
\begin{equation*}
|\hat{\phi}(\zeta)| \leqq C_{m}(1+|\zeta|)^{-m} e^{|\eta|} \tag{9}
\end{equation*}
$$

Also, we observe that

$$
\hat{\phi}_{j}^{1}(\zeta)=\left[\hat{\phi}_{j}\left(\zeta-\xi_{j}\right)\right]^{k_{j}}=\left[\hat{\phi}\left(\frac{\zeta-\xi_{j}}{\alpha_{j}}\right)\right]^{k_{j}}
$$

and, by (9),

$$
\begin{equation*}
\left|\hat{\psi}_{j}^{1}(\zeta)\right| \leqq\left[C_{1}\left(1+\left|\frac{\zeta-\xi_{j}}{\alpha_{j}}\right|\right)^{-1} e^{|\eta| / \alpha_{j}}\right]^{k_{j}} . \tag{10}
\end{equation*}
$$

Also we observe that $\Omega$ grows faster than any linear function of $|\eta|$ as $|\eta|$ goes large and $\hat{\psi}_{j}(\zeta)=\hat{\phi}(\zeta) \cdot \hat{\psi}_{j}^{1}(\zeta)$.

From these observations, the first term of the last estimate in (8) is bounded by

$$
\begin{aligned}
& \sup _{1 \zeta-\xi_{j} \mid \leq j \alpha_{j}}( +|\zeta|)^{\nu} e^{\Omega(\eta / \nu)}|\hat{S}(\zeta)|\left(C_{1}(1+|\zeta|)^{-1} e^{|\eta|}\right) \\
& \times\left(C_{1}\left(1+\left|\frac{\zeta-\xi_{j}}{\alpha_{j}}\right|\right)^{-1} e^{|\eta| / \alpha_{j}}\right)^{k_{j}} \\
& \leqq C_{2} \sup _{1 \zeta-\xi_{j} \mid \leq j \alpha_{j}}\left(1+\left|\zeta-\xi_{j}\right|\right)^{\nu-1}\left(1+\left|\xi_{j}\right|\right)^{\nu-1} C_{1}^{k j} \\
& \times\left(1+\left|\frac{\zeta-\xi_{j}}{\alpha_{j}}\right|\right)^{-k j}|\hat{S}(\zeta)| \\
& \leqq C_{2_{1 \zeta-\xi_{j}}^{\prime} \mid \leq j \alpha_{j}}\left(1+\left|\xi_{j}\right|\right)^{2 \nu-2+d}\left(1+\left|\frac{\zeta-\xi_{j}}{\alpha_{j}}\right|\right)^{\nu-1-k_{j}}|\hat{S}(\zeta)| \\
& \leqq C_{2}^{\prime}\left(1+\left|\xi_{j}\right|\right)^{2 \nu-2+d-j},
\end{aligned}
$$

where we used that $e^{-\Omega(\eta / \nu)+|\eta|+\left(k_{j} / \alpha_{j}\right)|\eta|}$ is bounded in $R^{n}$ and $d=\log C_{1}$.
Therefore the first term of the last part in (8) approaches to 0 as $j \rightarrow \infty$.
From the lemma for $S$ as element of $\mathcal{O}_{C}^{\prime}\left(\mathcal{K}_{M}^{\prime} ; \mathcal{K}_{M}^{\prime}\right)$ and (9), (10), the second term of the last estimate in (8) is bounded by

$$
\begin{aligned}
& \sup _{1 \zeta-\xi_{j \mid}>j \alpha_{\xi}} C_{S, 2 \nu+N}(1+|\zeta|)^{\nu} e^{-\Omega(\eta / \nu)}(1+|\zeta|)^{N} e^{Q(\eta / 2 \nu)} \\
& \times(1+|\zeta|)^{-(2 \nu+N)} e^{|\eta|}\left(C_{1}\left(1+\frac{\left|\zeta-\xi_{j}\right|}{\alpha_{j}}\right)^{-1} e^{|\eta| / \alpha_{j}}\right)^{k j} \\
& \leqq \sup _{\left|\zeta-\xi_{j}\right|>j \alpha_{j}} C_{S, 2 \nu+N}^{\prime}(1+|\zeta|)^{\nu+N-(2 \nu+N)} C_{1}^{k_{j}}\left(1+\frac{\left|\zeta-\xi_{j}\right|}{\alpha_{j}}\right)^{-k_{j}} \\
& \leqq \sup _{\mid \zeta-\xi_{j}>j \alpha_{j}} C_{S, 2 \nu+N}^{\prime} C_{1}^{k_{j}}\left(1+\frac{\left|\zeta-\xi_{j}\right|}{\alpha_{j}}\right)^{-k_{j}} \\
& \leqq C_{S, 2 \nu+N}^{\prime}\left(\frac{1+j}{C_{1}}\right)^{-k_{j}},
\end{aligned}
$$

where we used that $e^{-\Omega(\eta / \nu)+\Omega(\eta / 2 \nu)+|\eta|+\left(k_{j} / \alpha_{j}\right)|\eta|}$ is bounded in $R^{n}$. Here $C_{S, 2 \nu+N}$ and $C_{S, 2 \nu+N}^{\prime}$ are constants which depend on $S, \phi, \nu$ and $N$ only.

Hence the second term of the last part in (8) approaches to 0 as $j \rightarrow \infty$.

Combining both estimates we have

$$
\lim _{j \rightarrow \infty} \omega_{\nu}\left(\hat{S} \cdot \hat{\psi}_{j}\right)=0,
$$

which gives the desired contradiction.

## References

[1] Abdullah, S., Solvability of convolution equations in $\mathcal{K}_{M}^{\prime}$, Hokkaido Math. J. 17 (1988), 197-209.
[2] Dieudonné, J. et Schwartz, L., La dualité dans les espaces ( $\mathcal{I}$ ) et ( $\mathcal{L} \mathscr{I}$ ), Ann. Inst. Fourier Gremoble 1 (1949), 61-101.
[3] Pahk, D.H., Structure theorem and Fourier transform for destributions with restricted growth, Kyungpook Math. J. 23(2) (1983), 129-146.
[4] Pahk, D.H. and Sohn, B.K., Relation between solvability and a regularity of convolution operators in $\mathcal{K}_{p}^{\prime}, p>1$, J. Math. Anal. Appl. 185 (1944), 207-214.
[5] Sznajder, S. and Zielezny, Z., Solvability of convolution equations in $\mathcal{K}_{1}^{\prime}$, Proc. Amer. Math. Soc. 57 (1976), 103-106.
[6] -, On some properties of convolution operators in $\mathcal{K}_{1}^{\prime}$ and $\mathcal{S}^{\prime}$, J. Math. Anal. Appl. 65 (1978), 543-554.

Dae Hyeon Pahk<br>Department of Mathematics<br>Yonsei University<br>Seoul 120-749, Korea<br>Byung Keun Sohn<br>Department of Mathematics<br>Inje University<br>Kyungnam Kimhae 621-749, Korea

