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§0. Introduction.

Let CPn and CHn denote the complex projective n-space with constant

holomorphic sectional curvature 4, and the complex hyperbolic n-space with

constant holomorphic sectional curvature ―4, respectively. Let M be a real

hypersurface of CPn or CHn. M has an almost contact metric structure

(<fi,?, fj,g) induced from the complex structure / of CPn or CHn. Real hyper-

surfaces in CPn and CHn have been studied by many authors (cf. [1], [2], [3],

[11], [12], [13], [14], [15] and [17]). For real hypersurfaces in CPn, Takagi

([16]) showed that all homogeneous real hypersurfaces in CPn are realized as

the tubes of constant radius over compact Hermitian symmetric spaces of rank

1 or 2 (cf. [2] and [5]). He proved that all homogeneous real hypersurfaces

in CPn could be classifiedinto six types which are said to be of type Ax, A2,

B, C, D and E. Kimura ([5]) also proved that a real hypersurfaces M in CPn

is homogeneous if and only if M has constant principal curvatures and £is

principal. Other interesting resultsin real hypersurfaces of CPn are shown by

Kimura-Maeda ([8]) and Maeda-Udagawa ([10]):

Theorem A ([8]). Let M be a real hypersurface in CPn. Then the fol-

lowing inequality holds:

＼WSV^i/(n-l){2n(h-V(AZ)0+(<?>A%)h+trace(C7sA)A<t>)}＼

where S is the Ricci tensor of M and k = trace A. Moreover, the equality holds

if and only if M is locally congruent to a geodesic hypersphere of CPn.

Let TCP71 be the tangent bundle of CPn. For a real hypersurface M of

CPn, let TM be the tangent bundle of M. Then, T°M= {X^TM＼X±$} is a

subbundle of TM. Thus each of TM and T°M has a connectioninduced from
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TCP11. The orthogonal complement of T°M in TCP11 with respect to the

metric on TCP71 is denoted by N°M, which is also a subbundle of TCP71 with

the induced metric connection. Denote by 7° and V-1-the connections of T°M

and N°M, respectively. Let A be the second fundamental form of T°M in

TCP71. Then, A is a smooth section of Horn (TM, Horn (T°M, N°M)). Set

A°= A＼row. We say that A" is 77-parallelif V^4°=0 for any X^T°M.

Theorem B ([10]). Let M be a real hypersurface of CPn. Assume that

A° is rj-parallel. Then M is locally congruent to one of the following:

(i) a geodesic hypersphere,

(ii) a tube over a totallygeodesic CPk(l^k^n―2),

(iii) a tube over a complex quadric Qn-＼,

(iv) a real hypersurface in which T°M is integrable and its integral mani-

fold is a totally geodesic CP71'1 (that is, M is a ruled real hypersur-

face),

(v) a real hypersurface in which T°M is integrable and its integral mani-

fold is a complex quadric Qn-i-

Note that the cases (i),(ii) and (iii)in Theorem B are homogeneous but

(iv) and (v) are not homogeneous. Although as in ([16]), homogeneous real

hypersurfaces of CPn has been given a complete classification,it is stillopen

for the question of the classificationof that of CHn.

Montiel ([12]) constructed fiveexamples of homogeneous real hypersurfaces

in CHn using the techniques similar to Cecil and Ryan ([2]). Berndt ([1]) gives

a characterization of real hypersurface in CHn which corresponds to the result

in ([5]):

Theorem C([l]). Let M be a real hyper&urface in CHn. Then M has con-

stant principal curvatures and £is principal if and onlyif M is locally congruent

to one of the following:

(Ao) a horosphere in CHn,

(AO a geodesic hypersphere (that is, a tube over a point),

(AO a tube over a complex hyperplane CHn~＼

(A2) a tube over a totallygeodesic CHk (l^k^n―2),

(B) a tube over a totallyreal hyperbolic space RHn.

The purpose of this paper is to investigate the real hypersurfaces of CHn

corresponding to the resultsin Theorem A and Theorem B. Namely, we first

show the following:
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Theorem 1. Let M be a real hypersurface in CHn. Then the following

inequality hold.

(2.30) ＼＼!S＼＼^l/(n-l){2n{h-rj(A%))+(<j>A£)-h-irace{{liA)A<l))}＼

where S is the Ricci tensor of M and h~trace A. Moreover, equality of (2.30)

holds if and only if M is locally congruent to one of type (Ao), (Aj) or (A().

Similarly as in CPn, we may define the A° and notion of ^-parallelism of

A" for a real hypersurface in CHn. Corresponding to Theorem B, we obtained

the following result for CHn.

Theorem 2. Let M be a real hypersurface of CHn. Assume that A° is -q-

parallel. Then M is locally congruent to one of type(Ao),(A1)> (A(),(A2), (B) or

a ruled real hypersurface.

Finally the author would like to express his thanks to Professors M. Oku-

mura and M. Kimura for their valuable suggestions.

§1. Preliminaries

We begin with recalling fundamental formulas on real hypersurfaces of a

complex hyperbolic space CHn, endowed with the Bergman metric g of con-

stant holomorphic sectional curvature ―4, and/ the complex structure of CHn.

Now, let M be a real hypersurface of CHn and let A7'be a unit normal vector

on M. For any X tangent to M, we put

JX=<j>X+r](X)N

where <j)Xand y)(X)N are, respectively, the tangent and normal components of

JX. Then ^ is a (1, l)-tensor and -q is a 1-form. Moreover, y){X)=g{X, £)

with £= ―JN and {<j>,y, £,g) determines an almost contact metric structure

on M.

Then we have

(1.1) 0*X=-X+v(X)$, g($,$)=l, 0^=0,

(1.2) {lx<j>)Y= r){Y)AX-g{AX, Y%,

(1.3) lxe=0AX.

(1.2) and (1.3) follow from 1XY=1 XY+g{AX, Y)N and 1XN=-AX, where 7

and V are, respectively, the Levi-Civita connections of CHn and M, and yl is

the shape operator of M. Let R be the curvature tensor of M. Then the



472 Tadashi Taniguchi

Gauss and Codazzi equations are the following:

(1.4) R(X, Y)Z=-g(Y, Z)X+g(X, Z)Y-g(ij>Y, Z)<t>X+g(0X, Z)$Y

+2g(0X, Y)<f>Z+g{AY, Z)AX-g(AX, Z)AY ,

(1.5) {1 XA)Y-{lYA)X=―f]{X)4>Y + r]{Y)(}>X+2g{(}>X,Y)£.

From (1.1),(1.3),(1.4) and (1.5), we get

(1.6) SX=-(2n + l)X+3r](X)£+hAX-A2X,

(1.7) (VxS)Y=3{g(0AX, Y)^+r]{Y)<f>AX}+{X-h)AY

+(/i/-A)(7XA)Y-(7･XA)AY ,

where /i= trace ^4, vSis the Ricci tensor of type (1.1) on M and / is the identity-

map, respectively.

We here recall the notion of an ^-parallel Ricci tensor S of M, which is

defined by ^((7XS)F, Z)=0 for any X, Y and Z orthogonal to $. Also, we

consider similarly the ^-parallel shape operator A of M in CHn, which is de-

fined by g(Q7YA)Y, Z)=0 for any X, Y and Z orthogonal to £. Now we state

the following theorems without proof for later use.

Theorem D([15]). Let M be a real hypersurface of CHn. Then the Ricci

tensor of M is rj-paralleland $ is principal if and onlyif M is locally congruent

to one of homogeneous real hypersurfaces of type (Ao), (Ai), (A(), (A) and (B).

Theorem E([15]). Let M be a real hypersurface of CHn. Then the shape

operator A of M in CHn is rj-paralleland £is principal if and only if M is

locally congruent to one of homogeneous real hypersurf aces of type (Ao),(Aj), (Aj),

(A2) and (B).

It is easily seen that if the shape operator is ^-parallel,then so is the Ricci

tensor, under the condition such that $ is principal.

Theorem F([3]). Let M be a real hypersurface of CHn. Then the follow-

ing are equivalent: (i) M is locally congruent to one of homogeneous real hyper-

surfaces of type (Ao), (Ax), (AJ) and (A2).

(ii) {lxA)Y^r]{Y)(j>X+g{(l>X, Y)$ for any X, Y<=TM.

Proposition A([17]). Assume that £is a principal curvature vector and the

corresponding principal curvature is a. If AX―rX for X_＼_t~,then we have

A<hX={ar-2)/{2r-a)<hX.
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§2. Characterizations of real hypersurfaces of CHn

in terms of Ricci tensor.

We have the following

Proposition 1. Let M be a real hypersurface of CHn (wS>3). // the Ricci

tensor S of M satisfiesfor some X

(2.1) WxS)Y=X{g($X, Y)$+v(Y)0X} for any X, Y^TM,

then X is constant and $ is a principal vector.

Proof. Suppose that the condition (2.1) holds. First of all we shall show

that gradJL=3X$A£. Erom (2.1),(1.2) and (1.3), we have

(2.2) Ww&xS))Y-Q7vwxS)Y

=(W-X){g(0X, Y)$+v(Y)0X＼ +X{v(X)g(AW, Y)£-2V(Y)g(AW, X)$

+g($X, YtyAW+gtyAW, YtyX+v(X)v(Y)AW},

from which we get

(2.3) C7xWwS))Y-?7VxWS)Y

= (X-X){gtyW, Y)%+v(Y)0W}+X{V(W)g(AX, Y)S-2V(y)g(AX"W)$

+g{<j)W, Yy>AX+g(if>AX, Y)<f>W+V(W)V(Y)AX＼.

It follows from (2.2) and (2.3) that

(2.4) (R(W, X)S)Y

=(JV'X){g(#X, YK+v(Y)tX}-(X-X){gyW, Y)$+V(Y)<?>W}

+X {v(X)g(AW, Y)£-v(W)g(AX, Y)^+g{<j>X, YtyAW-gtyW, YtyAX

+g(0AW, Y)<f>X-g{<!>AX, Y)<j)W+r]{Y){r]{X)AW-r](W)AX)}>

where R is the curvature tensor of M.

Let eu e2,･■･,027i-ibe local fieldsof orthonormal vectors on M. From (2.4)

and (1.1),we find

(2.5) Sf^r1 g≪R(eu X)S)Y, et)

= (ei-X){g^X> Y)g($, ei)+r]{Y)g{<l>X,et)＼+X{v(X)g(AY, &-g(AX, Y)

+g(^Y, <pAX)-g(A0Y, <j>X)―rj{Y)g{AX,^)+(trace A)v(X)v(Y)}.

Exchanging X and Y in (2.5), we see
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(2.6) HVLT1g((R(et,Y)S)X,et)

= (erX){gtyY, X)g(l ei)+r1{X)g{(l>Y,et)}+X {v(Y)g(AX, $)-g(AY, X)

+g{$X, &AY)-g(A0X, <f>Y)-rI(X)g{AY, $)+(Xrace A)V(X)V(Y)}.

Here we see that

(the left hand side of (2.5))=2 £(/?(<?<,X)(SY), et)-Eg(R(et, X)Y, Set)

=g(SX, SY)-Eg(R(eit X)Y, Set)

and

-Eg(R(eit X)Y, Set)=Eg(R(X, Y)eu Se^+EgiRfY, et)X, Set)

=trace (S-R(X, Y))-E g(R(et, Y)X, Set)

= -Hg(R{ei,Y)X,Sei)

that is, the left hand side of (2.5)is symmetric with respect to X,.Y. And

hence equations (2.5) and (2.6) yield

(2.7) 0=W-X)gtyX, Y)+^X-k)V(Y)-^Y-X)V(X)+3X{rj(X)7](AY)-V(Y)r](AX)}.

Putting Y=$X in (2.7), we get

0=%5'X)gtyX, $X)- {-X-Z+V(X)$-1}V(X)+3XV(X)V(A$X).

Contracting with respect to X in the above equations, we have

4(n-m-X)=Q

thus

Putting Y―$ in (2.7), we have

$X-X+my(X)V(A$)―q(AX)}=0.

Putting X=$X in above equation, we have

X-X=3Xg(<j>AZ,X),

that is,

(2.8) grad X=3X$A£.

Using (2.8), we can write (2.4) in the following.

(2.9) (R(W, X)S)Y=3X {g(0A$, W)(g(<f>X,Y)£+V(Y)<f>X)-g(<f>A$,X)(g($W, Y)$

+ V(Y)<f>W)}+X{v(X)g(AW, Y)%-V(W)g(AX, Y%

+g(<f>X,Y)<f>AW-g(<f>W, Y)<f>AX+g{$AW, Y)<f>X

-g{<j>AX, Y)<j>W+rj{X)r1(Y)AW―r]{W)r]{Y)AX}.
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From (2.9),

(2.10) Hg((R(eu X)S)£,^ei)=3(2n-3)Ag(4>A^, X),

(2.11) Hg{{R{eu <f>ei)S)$,X)=-6XgtfA£, X).

On the other hand by Gauss equation (1.4), the left hand side of (2.10) is

(2.12) S g((R(et, X)S)$, $et)=2ngtySl X)-g{A<f>AS%, X)+g{AS<j>A%, X).

Similarly using Gauss equation (1.4), we see that the left hand side of (2.11) is

(2.13) Sg((/?(≪i,4>et)S)$,X)=4ngtySe, X)-2g{A(j>AS$, X)+2g{SA<j>A%, X)

From (2.10) and (2.12),we have

(2.14) -3(2n-3)tyA$=:2n0Se-A0AS$+AS0AZ

From (2.11) and (2.13), we have

(2.15) -3X$A$=2n$S$-A$AS$+SA#A£

From (2.14) and (2.15), we have

(2.16) 6X(2-ntyAe=AS$A$-SA$A£.

On the other hand, from (1.6), we have SX=-(2n+i)X+3r)(X)$+hAX-A2X

and ASX-SAX=37}(X)A£-37)(AX)$. Hence AS($A$)-SA($A£)=0, which,

together with (2.16),implies that (2―n)X$At;=0. Therefore if n^>3 we con-

clude that ifyM£=0. This, together with (2.8),implies A is constant. If X is

not non-zero, we have 0^4£=O, which is equivalent to that $ is a principal

vector. If ^=0, then VS=0, which is impossible by [4]. Q. E. D.

Using Proposition 1, we have the following

Proposition 2. Let M be a real hypersurface of CHn. Then the following

are equivalent:

(1) The Ricci tensor S of M satisfies

(2.1){ixs)Y=x{g{<i>x, YK+ytyytX)

for any X, Y^TM, where 2 is a function.

(2) M is locally congruent to one of type the following:

(Ao) a horosphere,

(Aj) a geodesic hypersphere in CHn,

(AO a tube over a complex hyperplane CHn~l.

Proof. From proposition 1, we know that the £is a principal vector satis-

fying (1). Moreover, equation (2.1) shows that the Ricci tensor of our real

hypersurfaces M is n-parallel. Therefore Theorem D asserts that M is one of
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the homogeneous real hypersurfaces of type (Ao), (A:), (AJ), (A2) and (B).

Next we shall check (2.1) for real hypersurfaces above one by one.

Let M be of type (Ao):

Principal curvatures and their multiplicitiesof type (Ao) are given by the

following table.

principal curvatures 1 2

multiplicities 2n―2 1.

The shape operator A is as

(2.17) AX=X+7}(X)£ for X(eTM.

Substituting the condition (ii) in Theorem F and (2.17) into (1.7), we can see

that our real hypersurface M satisfies(2.1), that is,

(2.18) {lxS)Y=2n {gtyX, Y)+rj{Y)(j>X}.

Let M be of type (Aj):

Setting f=coth (6). Then principal curvatures and their multiplicitiesof

type (Ax) are given by the following table.

principal curvatures t t+(l/t)

multiplicities 2n―2 1.

The shape operator A is as

(2.19) AX=tX+Q./t)t)(X)$ for X<eTM.

Substituting the condition (ii)in Theorem F and (2.19) into (1.7), we can see

that our real hypersurface M satisfies(2.1), that is,

(2.20) {lxS)Y = 2nt{g{<]>X,Y)£+V(Y)0X＼.

Let M be of type (AO:

Setting £=tanh (0). Then principal curvatures and their multiplicitiesof

type (A() are given by the following table.

principal curvatures t t+(1/0

multiplicities 2n―3 1.

By a similar computation we can see that our real hypersurface M satisfies

(2.1), that is,

(2.21) WxS)Y=2nt{g($X, Y)£+v(Y)0X}.

Let M be of type (A2):
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Setting t~tanh (6). Then principal curvatures and their multiplicitiesof

type (A2) are given by the following table.

principal curvatures t (1/0 t-＼-(l/t)

multiplicities 2k 2(n ―&―1) 1.

Now, we put k ―p, n ―k ―＼―qso, p+q=n ―l.

Let X be a principal curvature vector orthogonal to £ with principal cur-

vature t. Note that A^X―t^X (cf, proposition A). Substituting the condition

(ii)in Theorem F into (1.7), we find

(2.22) (VxS)0X= {(2p+2)t+2q(l/t)}$.

On the other hand, let I be a principal curvature vector orthogonal to £ with

principal curvature (1/0- By similar computations we see

(2.23) WXS)$X= {2pt+(2q+2)(l/t)}$.

From (2.22) and (2.20),we conclude that our manifold does not satisfy (2.1).

Let M be of type (B):

Setting t=cos＼2d). Then principal curvatures and their multiplicitiesof

type (B) are given by the following table.

principal curvature (V£-l)/(Vf-i) (Vf+1)/(V^1) 2Vfzl/y/t

multipricities n ―1 n ―1 1.

We put (vr-l)/(Vf-l)=r1, (V^+l)/(VF-l)=r2, 2Vf-l/＼/i=a.

From proposition A if I be a principal curvature vector orthogonal to £

with principal curvature ru then A^X―r^X. With respect to such X, the

next formula (cf. [6])

(2.24) ^xA)^>X=(a-r2)r^

being satisfied,we see

(2.25) {lxA)A(j)X={a-r,)r1r^.

With respect to this X, substituting (2.24) and (2.25) into (1.7), we find

(2.26) (VxS)^=(3+/z-a-/i-r2-a2+r!)r1£.

On the other hand, if X be a corresponding principal curvature vector to prin-

cipal curvature r2, then from proposition A A(j)X―rx<j)X. With respect to this

X, the next formula (cf. [6])

(2.27) {lxA)6X={a-rx)r^
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being satisfied,we see

(2.28) (7xA)A^X=(a-r1)r1rt$.

With respect to this X, substituting (2.27) and (2.28) into (1.7), we find

(2.29) {lxS)^X={Z+h >a-h ･r1-a2+rl)r^

From (2.26) and (2.29) we conclude that our manifold does not satisfy (2.1).

Q.E.D.

Motivated by Proposition 2, we prove the following.

THEOREM 1. Let M be a real hypersurface in CHn. Then the following

inequality hold.

(2.30) ＼＼VS＼＼2^l/(n-l){2n(h-v(A$))-(0A$)-h-tmce(C7sA)A<p)}2

where S is the Ricci tensor of M and /j= trace A. Moreover, the equality of (2.30]

holds if and only if M is locally congruent to one of type (Ao), (Aj) or (Ax).

Proof. We define a tensor T on M by the following:

T{X, Y)=(lxS)Y-X{g{<f>X, Y^+V(Y)4>X＼.

Let ei,e2,･･･,02n_i be local fields of orthonormal vector on M. Now we cal-

culate the length of T. From (1.1) we have

(2.31) ||r||2=||VS||2-4;G£((Ve,;S)f,<j>ei)+A{n-l)X^{).

Regarding (2.31) as quadratic inequality with respect to X, we calculate the

discriminant of the quadric equation and we have

(2.32) l/(n-l)(2*((V.4S)£ ?^))2^ |V5||2.

It follows from (1.1),(1.5) and (1.7) that

2£((VerS)£,fa)

=3g(0Aei} #et)-g(gradh, &A$)+h-g((VeiA)g, $et)

-g(A(yetA)$, tet)-g(C7etA)A$, $et)

=3g(A$ei, &ei)~g(gmdh, 0^)+(2n-2)-/i-trace((V^)^)

-g(A$et, ^ei)-2V(A$)+2g(Al $)~(2n-2)rj(A$)

=2n(h―q(A$))-($A$)'h-traice ((7SA)A^),

that is,

(2.33) 2#((Ve,S)£, <4e0=2n(/i-)7(^))-(^^)-/i-trace (WSA)AS).
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Therefore we substitute (2.33) into (2.32) and get inequality (2.30). And, Pro-

position 2 shows that the equality of (2.30) holds if and only if M is locally

congruent to one of type (Ao), (Ax) or (A{). Q. E. D.

Corollary 1 ([4]). There are no real hypersurfaces with parallel Ricci

tensor of complex hyperbolic space CHn.

Proof. From Proposition 2, if M is not type (Ao),(AO or (A{), then ||7S||2

>0. Thus it follows 7S^0. If M is type (Ao), (Ax) or (AO then, from <pA=

A(j>,0£=O and Veyl=0,

||75||2-l/(n-l){2n(/i-)7(^))}2.

If M be of type (Ao), then

||7S||2=16n2(n-l)>0.

If M be of type (AO, then

iiVS|!2=16n2(H-l) coth2(^)>0.

If M be of type (AO, then

||7S|2=16n2(n-l) tanh2(^)>0 .

Thus, it follows 7S^0. 0. E. D.

§3. Characterizations of real hypersurfaces in CH"

in terms of holomorphic distribution.

Now let M be a real hypersurface of CHn. Let TCHn and TM be the

tangent bundles of CH'1 and M, respectively. Let T°M be a subbundle of TM

defined by T"M={X<=TM＼X_L£}. Thus each of TM and T°M has a connec-

tion induced from TCH'1. The orthogonal complement of TaM in TCHn with

respect to the metric on TCHn is denoted by N°M, which is also a subbundle

of TCHn with the induced metric connection. Denote by V° and V1 the con-

nections of T°M and N°M, respectively. We have

1XY=1W + A＼X, Y) for any X, Y^T°M .

Let A be the second fundamental form of T°M in TCHn. A is a smooth sec-

tion of Horn (TM, Horn (T°M, N°M)). Set A=A＼TOiW. The covariant derivative

of A is defined by

{1XAW, Z):=lkiA＼Y, Z))-A＼1XY, Z)-A＼Y, 1XZ)

for any XzeTM, Y, Z(eT°M.
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Now we prepare without proof the following fundamental relations.

Proposition B ([10]).

( i ) A°(X,Y)=g(AX, Y)N-g(0AX, Y)$,

(ii) 7^=0,

(iii)ljg=g(AX, $)N,

(iv) l^xN=-g{AX, ^,

where X,Y<eT°M.

Proposition C ([10]). For any X, Y, Z^T°M,

(1XA°){YZ)=W{X, Y, Z)N+W(X, Y, $Z)$,

where ＼ is the trilinear tensor defined by

＼{X, Y, Z)=g{{lxA)Y, Z)-rj(AX)g^AY, Z)

-V(AY)g(0AX, Z)-rj{AZ)g(<f)AX, Y).

We show the following fundamental result.

Proposition 3. Let M be a real hypersurface of CHn. Then the following

are equivalent:

(i) The holomolphic distributionT°M― {X^TM＼X_L£} is integrable,

(ii) g(($A+A$)X, Y)=Q for any X, Ye=T°M.

Proof. The distribution T°M is integrable

<―≫IX, Y~＼<=T°M for any X, Y(eT°M

≪―*([*, n,0=o

^->gWxY-VYX,£)=0

^g(Y, <j>AX)-g{X, <j,AY)=Q

<―- g(($A+A$)X, Y)=0 for any X, Y^T°M .

Q.E.D.

Recall the definition of ^-parallel of A. We say that A" is ^-parallel if

Vx/T=0 for any X<=T°M. Using the notions defined above, we obtained the

following result.

Theorem 2. Let M be a real hypersurface of CHn. Assume that A° is

in-parallel. Then M is locally congruent to ond of type (Ao), (A,),(Aj), (A2),(B)
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or a ruled real hypersurface (that is, a real hypersurface in which T°M is inte-

grable and its integral manifold is totally geodesic CHn~l.)

Proof. By proposition C, A° is ^-parallel if and only if ＼(X, Y, Z)―0

for any X, Y, Z(eT°M, that is,

(3.1) g{{!xA)Y, Z)=v(AX)g(0AY, Z) + V(AY)g^AX, Z)+r](AZ)g((f)AX, Y)

for any X, Y, Z<^T°M. Since the Codazzi equation (1.5) tells us that g((VxA)Y, Z)

is symmetric for any X, Y, Z(=T°M, exchanging X and Y in (3.1), we obtain

(3.2) v(AZ)g((A<p+0A)X,Y)=O for any X, Y, Z^T°M.

Now we assume that r](AZ)=0 for any Z^T°M, that is, £is a principal cur-

vature vector. Then the equation (3.1) shows that g((VxA)Y, Z)=0 for any

X, Y, Z<E:T0M, that is, the shape operator .4 of M is ^-parallel. And hence

our real hypersurface M is locally congruent to one of type (Ao), (Ax), (A'i),(A2)

or (B) by Theorem E.

Next, if there exists Z<bT°M such that r](AZ)^0, that is, £is not a prin-

cipal curvature vector. Then the equation (3.2) tells us that the holomorphic

distribution T°M is integrable (cf., Proposition 3) and the integral manifold M°

of T°M is a complex hypersurface in CH". Moreover, the second fundamental

form A° of M° is parallel. Therefore we conclude that M° is locally con-

gruent to CH'1-1 (cf. [9].) Q.E.D.
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