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§0. Introduction.

Let CP* and CH™ denote the complex projective n-space with constant
holomorphic sectional curvature 4, and the complex hyperbolic n-space with
constant holomorphic sectional curvature —4, respectively. Let M be a real
hypersurface of CP* or CH". M has an almost contact metric structure
($, & 7, g) induced from the complex structure / of CP" or CH". Real hyper-
surfaces in CP™ and CH* have been studied by many authors (cf. [17, [2], [3],
(117, [12], [13], [14], [15] and [17]). For real hypersurfaces in CP", Takagi
([167) showed that all homogeneous real hypersurfaces in CP" are realized as
the tubes of constant radius over compact Hermitian symmetric spaces of rank
1 or 2 (cf. [2] and [5]). He proved that all homogeneous real hypersurfaces
in CP™ could be classified into six types which are said to be of type A,, A,
B, C, D and E. Kimura ([5]) also proved that a real hypersurfaces M in CP"
is homogeneous if and only if M has constant principal curvatures and £ is
principal. Other interesting results in real hypersurfaces of CP” are shown by
Kimura-Maeda ([8]) and Maeda-Udagawa ([10]):

THEOREM A ([8]). Let M be a real hypersurface in CP™. Then the fol-
lowing inequality holds:

INSIP=1/(n—1) {2n(h—n(A§)P+($ A&)h+trace (V:A)AP)}*,

where S is the Ricci tensor of M and k=trace A. Moreover, the equality holds
if and only if M is locally congruent to a geodesic hypersphere of CP™.

Let TCP" be the tangent bundle of CP™. For a real hypersurface M of
CP", let TM be the tangent bundle of M. Then, T°M={XeTM|X1£} is a
subbundle of TM. Thus each of TM and T°M has a connection induced from
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TCP". The orthogonal complement of 7°M in TCP" with respect to the
metric on TCP"™ is denoted by N°M, which is also a subbundle of TCP"® with
the induced metric connection. Denote by V° and V* the connections of T°M
and N°M, respectively. Let A be the second fundamental form of 7°M in
TCP". Then, A is a smooth section of Hom (TM, Hom (T°M, N°M)). Set
A*=A|,,,. We say that A° is y-parallel if V3A°=0 for any XeT°M.

THEOREM B ([10]). Let M be a real hypersurface of CP". Assume that
A° is p-parallel. Then M is locally congruent to one of the following :

(i) a geodesic hypersphere,

(ii) a tube over a totally geodesic CP*(1<k<n—2),

(iii) a tube over a complex quadric Q,_,,

(iv) a real hypersurface in which T°M is integrable and its integral mani-
fold is a totally geodesic CP" ' (that is, M is a ruled real hypersur-
face),

(v) a real hypersurface in which T°M is integrable and its integral mani-
fold is a complex quadric Q.,_,.

Note that the cases (i), (ii) and (iii) in Theorem B are homogeneous but
(iv) and (v) are not homogeneous. Although as in ([16]), homogeneous real
hypersurfaces of CP™ has been given a complete classification, it is still open
for the question of the classification of that of CH™.

Montiel ([127) constructed five examples of homogeneous real hypersurfaces
in C H™ using the techniques similar to Cecil and Ryan ([2]). Berndt ([1]) gives
a characterization of real hypersurface in CH™ which corresponds to the result

in ([6]):

THEOREM C([1]). Let M be a real hypersurface in CH®. Then M has con-
stant principal curvatures and & is principal if and only if M is locally congruent
to one of the following :

(Ay) a horosphere in CH™,

(A1) a geodesic hypersphere (that is, a tube over a point),

(A]) a tube over a complex hyperplane CH™ !,

(A,) a tube over a totally geodesic CH* (1<k<n—2),

(B) a tube over a totally real hyperbolic space RH™.

The purpose of this paper is to investigate the real hypersurfaces of CH”
corresponding to the results in Theorem A and Theorem B. Namely, we first
show the following:
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THEOREM 1. Let M be a real hypersurface in CH™. Then the following
inequality hold.

(2.30) INSIIP=1/(n—=1){2n(h—n(AE)+(PAE)-h—trace (N:A)A)}*,

where S is the Ricci tensor of M and h=trace A. Moreover, equality of (2.30)
holds if and only if M is locally congruent to one of type (A,), (A,) or (A).

Similarly as in CP", we may define the A° and notion of y-parallelism of
A° for a real hypersurface in CH". Corresponding to Theorem B, we obtained
the following result for CH™.

THEOREM 2. Let M be a real hypersurface of CH™. Assume that A° is -
parallel. Then M is locally congruent to one of type (A,), (Ay), (AY), (Ap), (B) or
a ruled real hypersurface.

Finally the author would like to express his thanks to Professors M. Oku-
mura and M. Kimura for their valuable suggestions.

§1. Preliminaries

We begin with recalling fundamental formulas on real hypersurfaces of a
complex hyperbolic space CH", endowed with the Bergman metric g of con-
stant holomorphic sectional curvature —4, and J the complex structure of C H”.
Now, let M be a real hypersurface of CH" and let N be a unit normal vector
on M. For any X tangent to M, we put

JX=¢X+n(X)N
where ¢X and n(X)N are, respectively, the tangent and normal components of
JX. Then ¢ is a (1, 1)-tensor and 7 is a l-form. Moreover, p(X)=g(X, &)
with é&=—JN and (¢, 5, & g) determines an almost contact metric structure

on M.
Then we have

(1.1) P X=—X+9(X)E, g =1,  ¢&=0,
(1.2) (Vx@)Y =9(Y)AX—g(AX, V),
(1-3) fo:¢AX.

(1.2) and (1.3) follow from VyY =V,Y +g(AX, Y)N and YyN=—AX, where ¥
and V are, respectively, the Levi-Civita connections of CH" and M, and A4 is
the shape operator of M. Let R be the curvature tensor of M. Then the
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Gauss and Codazzi equations are the following:

(1.4) RX, V)Z=—g¥, 2)X+g(X, Z)YY —g(@Y, Z)pX+g(¢X, Z)pY
+2g(¢X, Y9 Z+g(AY, 2)AX—g(AX, 2)AY ,

(1.5) (TxA)Y (T A)X=—7(X)pY +n(Y )X +22($X, V)£ .

From (1.1), (1.3), (1.4) and (1.5), we get

(1.6) SX=—0@2n+1DX+3n(X)e+hAX—A*X,

(L.7) (VxS)Y =3{g(@AX, V)E+n(V)PAX} +(X - h)AY

+(hI-A)T A)Y —(Vx A)AY

where h=trace A, S is the Ricci tensor of type (1.1) on M and [ is the identity
map, respectively.

We here recall the notion of an 7-parallel Ricci tensor S of M, which is
defined by g((VxS)Y, Z)=0 for any X, Y and Z orthogonal to & Also, we
consider similarly the y-parallel shape operator A of M in CH", which is de-
fined by g((VyA)Y, Z)=0 for any X, ¥ and Z orthogonal to & Now we state
the following theorems without proof for later use.

THEOREM D([15]). Let M be a real hypersurface of CH". Then the Ricci
tensor of M is 7-parallel and & is principal if and only if M is locally congruent
to one of homogeneous real hypersurfaces of type (A,), (A;), (A}, (A) and (B).

THEOREM E([15]). Let M be a real hypersurface of CH". Then the shape
operator A of M in CH™ is y-parallel and & is principal if and only if M is
locally congruent to one of homogeneous real hypersurfaces of type (Ao), (Ay), (AL,
(A,) and (B).

It is easily seen that if the shape operator is y-parallel, then so is the Ricci
tensor, under the condition such that & is principal.

THEOREM F([3]). Let M be a real hypersurface of CH™. Then the follow-
ing are equivalent: (i) M is locally congruent to one of homogeneous real hyper-
surfaces of type (Ay), (Ay), (A} and (A,).

(i) (VxAY =9V)pX+g@X, Y)§ for any X, YTM.

PROPOSITION A([177). Assume that & is a principal curvature vector and the
corresponding principal curvature is a. If AX=rX for X 1§, then we have
ApX=(ar—2)/2r—a)pX.
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§ 2. Characterizations of real hypersurfaces of CH"
in terms of Ricci tensor.

We have the following

PROPOSITION 1. Let M be a real hypersurface of CH™ (n=3). If the Ricci
tensor S of M satisfies for some A

2.1) VxS)Y =2{g@X, Y)é+ 7Y )X} for any X, YeTM,
then 2 is constant and & is a principal vector.
PrROOF. Suppose that the condition (2.1) holds. First of all we shall show
that grad A=34¢A&. Erom (2.1), (1.2) and (1.3), we have
(2.2) (Ww(VxS)Y —(Ng,xSY
=W-D){g@X, Y)§+n(Y)pX} +2{n(X)g(AW, Y )6 —2n(Y )g(AW, X)¢
+8@X, Y)o AW +g(@ AW, V)X +n(X)n(Y)AW},
from which we get
23)  (Vx(WwS)Y =Ty wSY
=X-D{g@W, Y)E+n(Y )W} +2{n(W)g(AX, Y)E—29( )g(AX"W)é
+8(@W, Y)pAX+g(pAX, Y)W +9(W)n(Y )AX}.
It follows from (2.2) and (2.3) that
2.4) (RW,X)S)Y
=W-D{g@X, Y)E+ 7Y )X} —(X-D{ggW, Y )+ )pW}
+A{n(X)g(AW, Y )E—nW)g(AX, Y )E+g(¢ X, Y)PAW —g(@W, Y )p AX
+(AW, YV)pX—g(AX, Y)W + 5 Nn(X)AW —n(W)AX)},

where R is the curvature tensor of M.
Let ¢y, @, -, esn-1 be local fields of orthonormal vectors on M. From (2.4)
and (1.1), we find

(2.5) 2 g((Res, X)S)Y, ey)
=(e:- ){g(@X, Y)g(§, e+ n(Y)g(@X, e} +2{n(X)g(AY, §)—g(AX,Y)
+8(@Y, ¢ AX)—g(AQY, ¢ X)—n(Y)g(AX, §)+(trace A)p(X)np(¥)}.

Exchanging X and Y in (2.5), we see
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(2.6) 27 g(R(es, Y)S)X, er)
=(e:- D{g(@Y, X)g(§, e)+n(X)g@Y, e} +A{n(Y )g(AX, §)—g(AY, X)
+g(@X, 9AY)—g(AdX, ¢Y)—n(X)g(AY, §)+(trace A)n(X)yp(¥)}.
Here we see that
(the left hand side of (2.5))=2 g(R(e;, XXSY), ¢;)—2 g(R(e;, X)Y, Se;)

=g(SX, SY)—3 g(R(e;, X)Y, Se)
and

—2g(R(es, X)Y, Se)=>1g(R(X, Y)e;, Se)+2 g(R(Y, e)X, Ses)
=trace (S-R(X, Y)—3 g(R(e;, V)X, Se;)
:—2 g(R(ei; Y>Xy Sei)

that is, the left hand side of (2.5) is symmetric with respect to X, Y. And
hence equations (2.5) and (2.6) yield

(2.7) 0=2(5-Dg(@X,Y)+(@X - (Y )— (@Y - )n(X)+32 {n(X)n(AY ) —n(¥ )n(AX)}.
Putting Y=¢X in (2.7), we get

0=2(§-Dg(@X, ¢X)—{—X - A+9(X)§- 4} n(X)+34An(X)n(AgX).
Contracting with respect to X in the above equations, we have

4(n—1)E&-2)=0
thus
&-2=0
Putting Y=¢& in (2.7), we have

O X A+32{n(X)n(A&)—7n(AX)} =0.
Putting X=¢X in above equation, we have

X-A=31g(¢ 4§, X),
that is,

2.8) grad =3¢ A£.

Using (2.8), we can write (2.4) in the following.

2.9)  (RW,X)S)Y =32{g(p A§, W)(g(¢X, Y )E+n(Y)PX)—g($ A, X)(g(pW,Y)E
+n(NPW)} +2{n(X)g(AW, Y )e—n(W)g(AX, Y )é
+2@X, Y)PAW —g(¢W, YI$AX+g(p AW, V)X
—8(AX, Y)W +n(X)n(¥ )AW —n(W)y(Y)AX}.
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From (2.9),
(2.10) 23 8(R(ey, X)S)E, pes)=3(2n—3)Ag(¢ A§, X),
(2.11) 2 g((R(es, e:)S)E, X)=—64g(gA¢, X).

On the other hand by Gauss equation (1.4), the left hand side of (2.10) is

(2.12) D g((R(es, X)S)E, pe)=2ng(dSE, X)—g(APASE, X)+g(ASPAE, X).
Similarly using Gauss equation (1.4), we see that the left hand side of (2.11) is
(2.13) X g((R(ey, 9en)S)E, X)=4ng(pS¢, X)—28(ApASE, X)+2g(SAPAE, X)
From (2.10) and (2.12), we have

(2.14) —32n—3)Ap AE=2n¢SE— AP ASEF ASP A&

From (2.11) and (2.13), we have

(2.15) —329 A6=2npSE— AP ASE+S A AL
From (2.14) and (2.15), we have
(2.16) 622—n)pAé=ASPAE—SAPAE .

On the other hand, from (1.6), we have SX=—Q2n4+1)X+3p(X)é+hAX—AX
and ASX—SAX=3npX)A&—3n(AX)é. Hence AS(PAE)—SA(PAE=0, which,
together with (2.16), implies that (2—n)A¢g Aé=0. Therefore if n=3 we con-
clude that A¢A&=0. This, together with (2.8), implies 2 is constant. If 2 is
not non-zero, we have ¢ A£=0, which is equivalent to that & is a principal
vector. If 4=0, then VS=0, which is impossible by [4]. Q.E.D.

Using Proposition 1, we have the following

PROPOSITION 2. Let M be a real hypersurface of CH". Then the following
are equivalent :
(1) The Ricci tensor S of M satisfies
2.1) (VxS =2{g(@X, Y )e+(Y)$X}
for any X, YTM, where 2 is a function.
(2) M 1s locally congruent to one of type the following :
(A,) a horosphere,
(Ay) a geodesic hypersphere in CH",
(A]) a tube over a complex hyperplane CH™ .

PrROOF. From proposition 1, we know that the & is a principal vector satis-
fying (1). Moreover, equation (2.1) shows that the Ricci tensor of our real
hypersurfaces M is y-parallel. Therefore Theorem D asserts that M is one of
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the homogeneous real hypersurfaces of type (A,), (A)), (A}, (A,) and (B).
Next we shall check (2.1) for real hypersurfaces above one by one.
Let M be of type (Ay):
Principal curvatures and their multiplicities of type (A,) are given by the
following table.

principal curvatures 1 2
multiplicities 2n—2 1.
The shape operator A is as
(2.17) AX=X+nX)¢ for XeTM.

Substituting the condition (ii) in Theorem F and (2.17) into (1.7), we can see
that our real hypersurface M satisfies (2.1), that is,

(2.18) (VxS =2n{g@X, Y)+5¥)pX}.

Let M be of type (A)):
Setting t=coth (#). Then principal curvatures and their multiplicities of
type (A,) are given by the following table.

principal curvatures t t+(1/t)
multiplicities 2n—2 1.
The shape operator A is as
(2.19 AX=tX+1/tm(X)¢  for XeTM.

Substituting the condition (ii) in Theorem F and (2.19) into (1.7), we can see
that our real hypersurface M satisfies (2.1), that is,

(2.20) (VxS =2nt{g@X, Y )6+9Y )pX}.

Let M be of type (A]):
Setting t=tanh (#). Then principal curvatures and their multiplicities of
type (A}l) are given by the following table.

principal curvatures t t+(1/t)
multiplicities 2n—3 1.

By a similar computation we can see that our real hypersurface M satisfies
(2.1), that is,

(2.21) (VxS)Y =2nt{g(¢X, Y)6+n(Y )pX}.
Let M be of type (A,):
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Setting {=tanh (#). Then principal curvatures and their multiplicities of
type (A,) are given by the following table.

principal curvatures t 1/t t+(1/1)
multiplicities 2k 2in—k—1) 1.

Now, we put k=p, n—k—1=q so, p+g=n—1.

Let X be a principal curvature vector orthogonal to & with principal cur-
vature t. Note that AgX=t¢X (cf, proposition A). Substituting the condition
(ii) in Theorem F into (1.7), we find
(2.22) (VxS)PX={(2p+2)+2¢(1/D)} € .

On the other hand, let X be a principal curvature vector orthogonal to & with
principal curvature (1/t). By similar computations we see

(2.23) (VxS)pX= {2pt+(2¢+2)(1/1)} € .

From (2.22) and (2.20), we conclude that our manifold does not satisfy (2.1).
Let M be of type (B):
Setting t=cos%28). Then principal curvatures and their multiplicities of
type (B) are given by the following table.

principal curvature (vf—1)/(vi—1) (Wt +D/(VE=1) 2+t—1/~/t
multipricities n—1 n—1 1.

We put (Vi —1)/(Vt—D=r,, (Wt +1)/(Vt=1)=rs, 24/t—1/~/t =a.

From proposition A if X be a principal curvature vector orthogonal to &
with principal curvature 7,, then A¢X=r,¢X. With respect to such X, the
next formula (cf. [6])

(2.24) (Vx A)pX=(a—r)ré

being satisfied, we see

(2.25) (Vx A)AGX=(a—r)rirs€ .

With respect to this X, substituting (2.24) and (2.25) into (1.7), we find
(2.26) xS)PX=B+h-a—h-r,—a*+riré.

On the other hand, if X be a corresponding principal curvature vector to prin-
cipal curvature r., then from proposition A A¢X=r¢X. With respect to this
X, the next formula (cf. [6])

(2.27) (Vx A)gpX=(a—r)rf
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being satisfied, we see

(2.28) (VxA)AX=(a—r)ri7:€ .

With respect to this X, substituting (2.27) and (2.28) into (1.7), we find
(2.29) (VxS X=@B+h-a—h-ri—a®+riré

From (2.26) and (2.29) we conclude that our manifold does not satisfy (2.1).
Q.E.D.

Motivated by Proposition 2, we prove the following.

THEOREM 1. Let M be a real hypersurface in CH". Then the following
inequality hold.
(2.30) IVSIP=1/(n—1){2n(h—n(A&))— (@ AE)- h—trace (V:A)Ag)}
where S is the Ricci tensor of M and h=trace A. Moreover, the equality of (2.30)
holds if and only if M is locally congruent to one of type (A,), (A} or (A)).

PrROOF. We define a tensor 7 on M by the following:

TX, Y)=(xS)Y —2{g(@X, V)+7(Y )X} .

Let ey, e, -+, ¢sn-1 be local fields of orthonormal vector on M. Now we cal-
culate the length of 7. From (1.1) we have

(2.3 ITI*=IVS|*—42Zg((Ve,S)§, ped)+4(n—1)A*=0.

Regarding (2.31) as quadratic inequality with respect to 4, we calculate the
discriminant of the quadric equation and we have

(2.32) 1/(n =1)(22 8((Ve;9)E, ge))*< (VS|
It follows from (1.1), (1.5) and (1.7) that
28((V.,S), ges)
=3g(pAes, pe)—g(grad b, pAE+h-g(Ve, A, dei)
—8(A(V, A, dei)—g((Ve, A)AE, pe)
=3g(Ade;, pe;)—g(grad h, ¢ A§)+(2n—2)- h—trace (Ve A) Ag)
—&(Age;, pey)—2n(AE)+2g(AE, §)—(2n—2)7(A8)

=2n(h—n(A&)—(p A&)- h—trace (V:A)Ag),
that is,

(2.33) 23 8((Ve,S), gei)=2n(h—n(AE))—(pAE)- h—trace (V:A)AP) .
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Therefore we substitute (2.33) into (2.32) and get inequality (2.30). And, Pro-
position 2 shows that the equality of (2.30) holds if and only if M is locally
congruent to one of type (A,), (A,) or (A)). Q.E.D.

COROLLARY 1 ([4]). There are no real hypersurfaces with parallel Ricci
tensor of complex hyperbolic space CH™.

Proor. From Proposition 2, if M is not type (Ao), (A;) or (A}, then [VS]?
>0. Thus it follows VS=0. If M is type (A,), (A, or (A} then, from ¢ A=
A¢, $&=0 and V.A=0,

IVS|i2=1/(n—1){2n(h—7n(AEN}* .
If M be of type (A,), then
IVS||z=16n*n—1>0.
If M be of type (A,), then
1VS)2=16n%n—1) coth*(@)>0.
If M be of type (A]), then

[VS|*=16n%n—1) tanh*#)>0.
Thus, it follows VS=0. Q.E.D.

§3. Characterizations of real hypersurfaces in CH"
in terms of holomorphic distribution.

Now let M be a real hypersurface of CH". Let TCH"™ and TM be the
tangent bundles of CH" and M, respectively. Let T°M be a subbundle of TM
defined by T°M={XeTM|X | &. Thus each of TM and T°M has a connec-
tion induced from TCH". The orthogonal complement of T°M in TCH™ with
respect to the metric on TCH" is denoted by N°M, which is also a subbundle
of TCH™ with the induced metric connection. Denote by V° and V* the con-
nections of 7°M and N°M, respectively. We have

TV =V3Y +A°(X, Y) for any X, YeT M.

Let A be the second fundamental form of T°M in TCH". A is a smooth sec-
tion of Hom (TM, Hom (T°M, N°M)). Set A=A|,,,. The covariant derivative
of A is defined by

(Ve AY, Z2):=VKA(Y, Z)—-ANxY, 2)-A*Y, VxZ)
for any X&TM, Y, Z7€T°M.
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Now we prepare without proof the following fundamental relations.

PropPOSITION B ([107).
(i) A°(X,Y)=g(AX, Y)N—g(p AX, Y )&,
(i) Vi$=0,
(iii) Vzé=g(AX, &N,
(iv) ViN=—g(AX, &),
where X, Y =T°M.

ProposiTION C ([10]). For any X, Y, Z&T°M,
(VA )Y Z2)=UX, Y, ZIN+¥(X, Y, ¢Z)¢,
where U is the trilinear tensor defined by
YX, Y, 2)=g((VxA)Y, Z)—7(AX)g(pAY, Z)
—n(AY)g(PAX, Z)—n(AZ)g(pAX,Y).

We show the following fundamental result.

PROPOSITION 3. Let M be a real hypersurface of CH™. Then the following
are equivalent :

(i) The holomolphic distribution T°M={X<TM|X | & is integrable,
(i) gl@A+AP)X, Y)=0 for any X, Y &T°M.

Proor. The distribution 7°M is integrable
— [ X, Y]eT°'M for any X, YeT°M
— g([X, Y], §=0
«—— g(VxY —VpX, §)=0
— g(Y, ¢AX)—g(X, ¢ AY)=0
— g((pA+AP)X, V)=0  for any X,YT"M.
Q.E.D.

Recall the definition of 7-parallel of A. We say that A° is y-parallel if
VyA°=0 for any XeT°M. Using the notions defined above, we obtained the
following result.

THEOREM 2. Let M be a real hypersurface of CH". Assume that A° is
y-parallel. Then M is locally congruent to ond of type (Ay), (A)), (A)), (A,), (B)
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or a ruled real hypersurface (that is, a real hypersurface in which T°M is inte-
grable and its integral manifold is totally geodesic CH" ')

ProoF. By proposition C, A° is y-parallel if and only if VXY, 2)=0
for any X, Y, Z€T°M, that is,

(3.1 g( T AY, Z)=y(AX)g@AY, Z)+n(AY )g(@AX, Z)+n(AZ)g(pAX, Y)

for any X,Y, Z=T°M. Since the Codazzi equation (1.5) tells us that g(VyA)Y, Z)
is symmetric for any X, Y, Z&T° M, exchanging X and Y in (3.1), we obtain

(3.2) HAZ)g(Ap+pA)X, Y)=0  for any X, V, Z&T°M.

Now we assume that p(AZ)=0 for any Z&T°M, that is, & is a principal cur-
vature vector. Then the equation (3.1) shows that g(VxA)Y, Z)=0 for any
X, Y, ZeT°M, that is, the shape operator 4 of M is x-parallel. And hence
our real hypersurface M is locally congruent to one of type (A,), (Ay), (AD), (A,)
or (B) by Theorem E.

Next, if there exists Z&T°M such that n(AZ)+0, that is, £ is not a prin-
cipal curvature vector. Then the equation (3.2) tells us that the holomorphic
distribution 7°M is integrable (cf., Proposition 3) and the integral manifold M°
of T°M is a complex hypersurface in CH". Moreover, the second fundamental
form A° of M° is parallel. Therefore we conclude that M° is locally con-
gruent to CH" ' (cf. [9].) Q.E.D.
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