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CARDINAL FUNCTIONS OF SPACES WITH ORTHO-BASES

By

Masami SAKAI

§1. Introduction.

Throughout this paper, “space” will mean T)-space. Let @ be a base of a
space X. @ is said to be an ortho-base if for every ¢’c B, NP’ is open or B’
is a neighborhood base of some point. & is said to have subinfinite rank if for
every B’'c P such that N B’ +¢ and P’ is infinite, at least two elements of B’
are related by set inclusion. Spaces having an ortho-base, and spaces having a
base of subinfinite rank were introduced by Nyikos as natural generalizations of
non-archimedean spaces [4] [5].

Concerning cardinal functions of spaces with special bases, Gruenhage showed
that for each regular space X having a base of subinfinite rank, d(X)=A4d(X)>hi(X)
=s(X) holds [3]. d(X) is the density of X, 4d(X) is the hereditary density, A/(X)
is the hereditary Lindelof degree, and s(X) is the spread (i.e., the supremum of
the discrete subspaces of X). In this paper we investigate cardinal functions of
spaces having ortho-bases. We shall show that 4d(X)>#/I(X)=s(X) holds for each
space X having an ortho-base.

§2. Main result.

We need two lemmas. For convenience, for a cardinal r, we say a space X
to be r-developable if there exist ¢ open covers {4 .}... such that for each zeX
{St (x, Ya)}aer is a neighborhood base of .

LemMa 1. Let X be a space having an ortho-base B and D be the set of
isolated points of X. If D is dence in X, then X is |D|-developable.

Proor. Set D={d,|a<r}, where r is a cardinal. For each zeX—D and a<z,
we take B.(xr)e B such that xeB,z) and d.4B.(z). Put d.={{d.}|a<z}U{B.(x)|
xeX—D). 4. is obviously an open cover of X. Let z be a point of X and W
be a neighborhood of z. If zeD, then St(z, 9.)={x}C W for some a. So, we as-
sume zeX~—D. Suppose that St(z, 4. ¢ W for any a<r. Then for each a, we
can take H.e.4(. such that xeH, and H,¢tW. Since {H.}.c. can not be a neigh-
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borhood base of x, H= /‘\ H,. must be open. But HND=¢, because H,dd,. Since
D is dense in X, this is a contradiction.

The following lemma is well known in the countable case and can be easily
carried over to the general case. So we omit the proof.

LemMma 2. Let X be t-developable. If the cardinality of each closed discrete
subspace is at most -, then X is -Lindelof (i.e., every open cover has a subcover
of the cardinalily ).

r

TueorREM 3. Let X be a space having an ortho-base B. Then hd(X)>s(X)=
hl(X) holds.

Proor. Since hd(X)=s(X) and 42X )=s(X) are obvious, we show s(X)=h{X).
Let s(X)=+. Since for each subspace ¥ of X, s(Y )<z and Y has an ortho-base,
the proof is complete if we show that X is r-Lindeléf. Suppose that there exists
an open cover ¢/ of X which has not a subcover of the cardinality r. Firstly we
take x,€ X and Uye?J such that zel, Put Vo=U, Let y<z*. We assume that
for each <y we could take z;6X and an open set V, such that the following (%)
is satisfied.

{Vﬁﬂ{xala(\r}:{xﬂ} for each g<j.
There exists UpeqJ such that V,c U; for each g<y.

Then, if we set A={z.la<y}, since |A|<r, ClA is r-Lindel6f by Lemma 1 and

Lemma 2. Thus CIAU(U V) is covered by r elements of 9J. So we can take

z,€X—-Cl AU(}J Vs). We take U,e?U and an open set V, such that z,¢V,c U, and
<

T
V,NA=¢. Now by the induction we get the discrete space {z.Ja<z*}. This is a
contradiction to $(X)=r.

There exists a space having an ortho-base such that Zd(X)#d(X). In fact
the space in [6, 3.6.1] is such a space.
Concerning SH (Souslin’s hypothesis), we note the following theorem.

THEOREM 4. The following (a), (b) and (¢) are equivalent.

(@) SH is faise.

(b) There exists a nom-metrizable non-archimedean space such that s(X) is
countable.

(¢) There exists a non-meirizable regular space having an ortho-base such that
s(X) is countable.
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Proor. The equivalence of (a) and (b) is due to [1]. Also, refer [5, Theorem
1.7). (b)—(c) is trivial. We show (¢)—»(b). Let X be a space of (c). Since by
Theorem 3 X is regular Lindelof, it is paracompact. Therefore X is a proto-
metrizable space (i.e., paracompact space having an ortho-base). It follows from
Fuller's result [2, Theorem 6] that X is the perfect irreducible image of a non-
archimedean space Y. Since metrizability is an invariant of perfect maps, Y is
not metrizable. Since the spread of a non-archimedean space is equal to the
cellularity, by the irreducibility of the map, s(Y') must be countable. Thus Y is
the desired space.

CoROLLARY 5. The following (a) and (D) are equivalent.

(@) SH.

(b) Each regular space having an ortho-base is metrizable if the spread is
countable.
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