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§0. Introduction and results

Let Q be a bounded domain of Euclidean space Rn, with C°°boundary F;

its closure Q is an n-dimensional, compact C°°manifold with boundary F. Let

be a second-order ellipticdifferentialoperator with real C°°coefficientson Q =

Q＼JF such that:

1) aij(x)=aJi(x), x<=Q, l<i, j^n.

2) 2 a"(*)ft^c.iei' x(eQ, £ e/2＼

with a constant co>O.

We consider the following oblique derivativeproblem: Given functions / and <p

defined in Q and on F respectively, find a function u in Q such that

(*)

Here:

1°

2°

3°

4°

f (A-l)u=f

Bu=a-^―＼-ctu-＼-bu＼r
av

in Q,

=(p on F.

2.is a complex number.

a and h are real-valued C°°functions on F.

a is a real C°°vector fieldon F.

d/dv is the conormal derivative associated with the matrix (aij)

d_

dv

1

(n s.1/2
.

S aVntn,) f

i,J=l ^

n =(ni, ･･･, nn) being the unit exterior normal to F

n

Figure 1

First we consider the problem of existence and uniqueness of solutions of

problem (*) in the framework of Sobolev spaces when |^| tends to +°°.

Our starting point is the following result, which is proved by Taira ([4],

Theoreme 11):
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Theorem 1. Let s^2. The following two assertions are equivalent:

(i) For every ―7r<0<7r, there exists a constant i?(0)>O depending on 6

such that, for all X=r*eie satisfying r2>0 and ＼X＼=rz^R{0), problem (*) admits

a unique solution u in H'-1+8(Q) (0<£^l) for any f^Hs~＼Q) and <p^Hs-s'＼F),

and that

(0.1) |M|^_1+5(fl)+ur1+5|MI|2(i3)

where C(0)>Q is a constant depending only on 6.

(ii) Hypothesis (H)8 is satisfied (cf. Figure 2):

(H)s The vector field a is non zero on rQ={x'^r; a(x')=0} and, along

the integral curve x(t, x'o) of a passing xj£f0 at t=0, the function: t>->a(x(t,x'o))

has zeros of even order ^2k, and d=l/(l-＼-2k).

Here H＼Q) (resp. H*{F)) denotes the Sobolev space on Q (resp. F) of

order s.

r.

X(t, X'o)

Figure 2

Remarks 2. 1) The constant d may take only the discrete values:

1, 1/3, - , 1/(26+1), - .

2) Hypothesis (H＼ (8=1) is satisfiedif and only if a(x)^0 on F. In other

words, problem (*) is elliptic(or coercive) if and only if a(jc)=£Oon F. If 0<

8<1, problem (*) is said to be subelliptic.

We associate with problem (*) a closed linear operator 91 from L＼Q) into

itself as follows:

(a) The domain of definition 3)(W) of % is the space

SDm={u<BL＼Q); Au<=L＼Q), Bu = a~+au+bu＼r=o＼

(b) <%u=Au, we 0(91).

Here the function Au is taken in the sense of distributions and the boundary

condition Bu can be defined as a distributionon F (cf.[5], Theorem 5.6.5 and
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Proposition 8.3.2).

Kazuaki Taira

Using Theorem 1 with s=2, we can prove the following:

Theorem 3. Assume that hypothesis (H)$ is satisfied. Then:

(i) For every e>0, there exists a constant r(s)>0 such that the resolvent set

of % contains the set I£={A=r2eid; r^r(e), ―n+ef^d^n―s}, and that the

resolvent (W―Aiy1 satisfiesthe estimate

where c(e)>0 is a constant depending only on e.

(ii) The operator 21 generates a semigroup U(z) on L2(Q) which is analytic

in the sectorJe={z―t+is; z^O, |argz|<7r/2―s} for any 0<e<7r/2, and enjoys

the following properties:

(a) The operators WU(z) and {dU/dz){z) are bounded operators on LZ{Q) for

each z<=ds, and satisfy the relation

~(z)=m(z), z^Js.
dz

(b) For each 0<£<tt/2, there exist constants M0(s)>0, M^s^O and j≪£>0

such that

(0.3) ＼＼U(z)U,5a^/2^-Re% *eJe.
I*I

(c) For each mog^)(31), we have

U(z)u0 ―> m0 in L＼Q)

as z-^0, zeAE (0<s<cy/2).

e)2

s

t

Figure 3

Now, as an applicationof Theorem 3, we considerthe followinginitial-

boundary valueproblem: Given functions/ and u0 definedin Qx[0, T] and in

Q respectively,find a function u in Qx[0, T] such that



(**)
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{^-A)u(x, t)=f(x, t)

Bu(x, t)=0

u(x, O)=wo(x)

in Qx(O, T] ,

on rx(0, T],

in Q.
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By using the operator 91, one can formulate problem (**) in terms of the

Cauchy problem in the space L2(Q):

(**)'

I

^=%u(t)+f(t), 0<t^T,

u＼t=o=uQ.

Here u(t)=u{-, t) and f(t)=f(-, t) are functions defined on the interval [0, T]

taking values in the space L＼Q).

First we consider the ellipticcase 8=1. The next resultis well known (cf

Friedman [1], Part 2, Theorem 9.1; Tanabe [6], Theorems 3.8.2 and 3.3.4):

Theorem 4. Assume that

a(x)^0 on r.

Let f(t)

(0.4)

=/(･, t) be a Holder continuous function with exponent ? (0<7'^l):

ll/(-, *)-/(･, s)＼＼Lta≫^C＼t-s＼r, t, se=[O, T]

Then, for every function u0 of L2(Q), the function

u(t)=U(t)uo+[tU(t-s)f(s)ds
Jo

belongs to C([0, T]; L2{Q))nC＼(0, T]; L＼Q)), and is a unique solution of prob-

lem (**)'.

Here C([0, T]; L＼Q)) denotes the space of continuous functions on [0, T] tak-

ing values in L＼Q), and C＼(0,T]; L2(Q)) denotes the space of continuously

differentiablefunctions on (0, T] taking values in L＼Q), respectively.

By Theorem 3, we can definethe fractionalpower (―2l)~afor 1―6<a<l

by the formula

and

(_g[)-≪=_
sin arc

TZ

s:
s-a(^-siylds

(-8l)a=the inverse of (-%)'a.

Then we can extend Theorem 4 to the subellipticcase 0<d<l as follows:
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Theorem 5. Assume that hypothesis(H)8 is satisfiedwith 0<<5<l. Let f(t)

―f{'> t) be a Holder continuous function with exponent J satisfying (l―d)/2<,y^l.

Then, for every function uQ of 3>((―91)')with (l-8)/2<7}<(l+d)/2, the function

u{t), defined by formula (0.4), belongs to C([0, T]; L＼Q))nC＼{Q, T]; L＼Q)),

and is a unique solution of problem (**)'.

The rest of this paper is organized as follows. Section 1 through Section

8 provide a careful and accessible exposition of the theory of analytic semi-

groups with weak singularity. Our presentation of semigroup theory follows

the book of Krein [2] and also part of Pazy's [3] fairly closely. Section 1

describes the basic definitionsand facts about the abstract Cauchy problem for

a densely defined, closed linear operator A in a Banach space E:

x(0)=x0.

We study the semigroup U(t) associated with the well-posed Cauchy problem.

In Section 2 we prove a representation formula for solutions x(t) of the Cauchy

problem (P) in terms of the Laplace transform. This formula allows us to

construct explicitly solutions of problem (P) in Section 4. Section 3 gives a

sufficient condition for the uniqueness of solutions of problem (P) in terms of

growth conditions on the resolvent R(X)=(A―XI)~X. In Section 5 we consider

the semigroup U(t) under the condition that the operator A satisfiessuch a con-

dition as (0.2). We prove that the semigroup U(t) can be extended to an analytic

semigroup U(z) in some sector containing the positive real axis, but may have

such a weak singularity as (0.3) at z=0 according to the decay order of the

resolvent R(X) (Theorem 5.3). It is in this point that our semigroup U(t) is

different from the usual analytic semigroups. In Section 6 we study the frac-

tional powers {―A)a. Section 7 is devoted to the characterization of admissible

initialdata x0 for problem (P) in terms of the domains of (―^4)" (Theorem 7.1).

Section 8 is devoted to the non-homogeneous Cauchy problem:

x(Q)=x0.

We prove an existence and uniqueness theorem for problem (NP) under Holder

continuous conditions on the non-homogeneous term fit)(Theorem 8.2). Our

results (Theorems 7.1 and 8.2) are a generalization of the well known results

for the usual analytic semigroups. In Section 9, as an applicationof the arguments
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developed in the previous sections, we study the oblique derivative problem, and

prove Theorems 3 and 5.

The research for this paper was done while the author was a Visiting Pro-

fessor at the University of Torino and the University of Bologna under the

sponsorship of the Italian "Consiglio Nazionale delle Richerche". I take this

opportunity to express my gratitude to all these institutions.

§1. The abstract Cauchy problem

Let £ be a Banach space over the real or complex number field,and let

A: E-*E be a densely defined, closed linear operator with domain <3){A).

A function x(t), defined on the interval /=[0, T] with values in E, is called

a solution of the equation

(*) lfi=AxR ont°'T^

if it satisfiesthe following three conditions:

(1) x(f)e C([0, T] ; E)nC＼(0, T] ; E).

(2) x(t)^W(A) forallO<^T.

(3)
^-=Ax(t)

forallO<a^T.

Here C([0, T]; £) denotes the space of continuous functions on [0, T] taking

values in E, and C＼(Q,T]; E) denotes the space of continuously differentiable

functions on (0, T] taking values in E, respectively.

We shall consider the following Cauchy problem: Given an element xo(=E,

find a solution x{t) of equation (*) satisfying the initial condition x(0)=x(l)

that is,

(P)

dx
It
=Ax(t), 0<t£T.

x(O)=xo

We say that the Cauchy problem (P) is well posed on [0, T] if we have:

(I) For any xa^<D(A), there exists a unique solution x(t) of problem (P).

(II) For each £<e(0,T], the solution x{t)depends continuously on x0, that is,

xQ ―> 0 in E =4 x(t)―> 0 in E .

The Cauchy problem is said to be well posed on [0, <x>)if it is well posed on

ro, T~＼for every T>0.
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First we have the following (cf. Krein [2], Chapter I, Theorem 1.1):

Theorem 1.1. // the Cauchy problem (P) is well posed on [0, oo), then the

operators U(t): E-+E, defined by

x(t)=U(t)x6, xo(E<£{A),

can be extended uniquely to bounded linear operators on E which form a strongly

continuous semigroup, thatis,

(i) U(t+s)=U(t)'U(s), t,s>0.

(ii) The function U(t)x is continuous on (0, oo) for each xe£.

Remark 1.2. We do not know whether the limit lim U(t)x exists or not if
no

x<eE, while ＼imU(t)xo=xo if xa<^3){A). Further, we do not know whether the
tio

function U(t)x, t>0, is strongly differentiableor not, and whether it belongs to

W(A) or not.

Proof of Theorem 1.1. 1) We remark thatcondition(II)implies that the

operators U(t) are continuouson 3){A)and hence can be extended uniquely to

bounded linear operatorson E, since the domain 3){A)is dense in E.

First we show the semigroup property:

(1.1) U(t+s)=U(t)-U(s), t,s>0.

If we let

w(t)=x(t+s)=U(t+s)x0, xa^2)(A),

then we have

>=>+'≫=&'+*>=

w(Q)=x(s)=U(s)x0

Ax(t+s)=Aw(t),

Thus, it follows from the uniqueness of solutions of problem (P) that

U(t+s)xo=w(t)=U(t)(U(s)xo), x,^0(A).

This proves property (1.1), since the operators U(t) are bounded on E and since

the domain 3){A) is dense in E.

2) Next we show that:

sup ||£/(0ll<+ 00 for every 8>0 .

Assume to the contrary that there exist a constant 8'>0 and a sequence

{tn＼c:[5',l/3'l such that
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＼＼U(!n)＼＼―++oo.

Then, by the resonance theorem (cf. Appendix C, Theorem C), it follows that

l|{/(fn)*oll―>+°° for some xo<=E.

For simplicity, we suppose that

l|tf(f.)*oll^n.

Further, by passing to a subsequence we may suppose that the sequence {tn＼

converges to some T^[$', 1/3']: tn-^y.

Since the operators U(t) are bounded on E, it follows that

(0, r)=Oi{Q<t<r; ＼＼u(t)xo＼＼£M}.

Here we remark that the function t'-*＼＼U(,t)xo＼＼is Lebesgue measurable, for it is

the limit of continuous functions. Thus there exists an integer M'2:l such that

fi({O<t<y; ＼＼U(t)xo＼＼£M'})>p for some p>0,

where ftis the Lebesgue measure on R.

We let

FM> = {O<t<r;W<t)xo＼＼&M'}.

Then we have

lim^Fjr-nCO, 7-e))=n{FH,)>p.
SlO

Since tn-*y, this implies that for all sufficientlylarge n

t*(Fu>n(Q,tn))>p.

If we let

en=-FM>n(0,tn)+tn,

then we obtain that the set <Sn is Lebesgue measurable and satisfies

fi(Sn)=ft(FM'r＼(0,tn))>p for all sufficientlylarge n.

Furthermore, we have for all re/vnCO, tn)

n<]＼U(tn)xo＼＼= ＼＼U(tn-T)U(T)xo＼mU(tn-T)＼＼M'.

This proves that

(1.2) ＼＼U(o)＼＼^-£pfor all otzen ･

Now we let

n=o v=n
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Then the set e is not empty, for we have

n-+ao ＼v=n /

But, we find that a point a belongs to the set S if and only if it belongs to

infinitely many ev's. Thus, in view of assertion (1.2),it follows that

||£/(<r)||= + oo forall<7e£.

This is a contradiction, since ||£/(<y)||is finitefor every ff6(0, oo).

3) Now let x be an arbitrary element of E, and choose a sequence {x_,}c

£)(A)such that

Xj ―> x in E.

Then we have for d^t^l/d

＼＼U(t)Xj-U(t)x＼＼£sup ＼＼U(t)h＼＼xj-x＼＼―>0 as ;^co .
ca.i/3]

Since this convergence is uniform in fe[5, 1/5], and since the functions U(t)xj

are continuous, it follows that the function U(t)x is continuous on [<5,1/5], for

every 5>0. This proves that the function U(t)x is continuous on (0, oo),for

each xg£.

The proof of Theorem 1.1 is now complete.

Assume that the operator A has a resolvent R(X0)=(A―X0I)~1 for some

^ogC. Then, for each x^E, the function U(t)(R(X0)x)is a solution of problem

(P), since R(X0)xtE£)(A). Hence we have for all T>0

sup ||£/(0(/?tfo)x)||<+ oo, x<=E.

By the resonance theorem (cf. Theorem C), this implies that

SUp||tf(f)/?tfo)||<+ oo.
OStiT

Further we have the following:

Proposition 1.3. Assume that the operator A has a resolvent R(X0)=(A―XJY1

for some 20gC. // the Cauchy problem (P) is well-posed on [0, oo), then we have

for all t>0

(1.3) R(X0)U(t)=U(t)R(X0) on E.

(1.4) AU(t)=U(t)A on 3){A).

Proof, i) Let x0 be an arbitrary element of W(A). Since the function

R(X0)(U(t)x0) is a solution of problem (P) with initial condition R(X0)x0, it fol-
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lows that

R(Z0)(U(t)x0)=U(t)(Rtt0)x0).

This proves formula (1.3), since the operators U(t)R(X0) and R(X0)U(t) are both

bounded on E and since the domain <D{A)is dense in E.

ii) By formula (1.3), we have for any xqg£)(A)

AU(t)xo=AU(t)RQo)(A-XoI)xo

=AR(Xo)U(jt)(A-XoI)xo

=(A-XJ)R(Xo)U(tXA-XoI)xo+XoR(WJ(t)(A-XJ)x0

= U(tXA-XoI)xo+XoU(f)R(Xo)(A-Xt)Dxo

= U(t)(A-XoI)xQ+XoU(t)xo

= U(t)Ax0.

This proves formula (1.4).

§2. Representation of solutions

The next theorem gives a representation formula for the solutionsof problem

(P) in terms of the Laplace transform (cf. Krein [2], Chapter I, Theorem 3.2):

Theorem 2.1. Assume that the operator A has a resolvent R(X)=(A―XI)'1

for any ieC satisfying ReA^a, and that there exists a constant M>0 such that

(2.1) ＼}R(X)＼＼£M(l+＼M), Re^a.

Then every solution x(t) of problem (P) can be written as

(2.2) *(t)=-U
a+t°°

e

a-ioa

uR(X)xadX

1 Ca+iN
^ lim enR(X)xodl 0<t<T .

Figure 4

Proof. Since x(OeC'((0, T]; E), by integration by parts, we have for any
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£>0

fr Xsx(s)ds
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r 1 iT l rr'-･""""l+T.'-" x'(s)ds

= y(≪-i≪x(8)-≪-arx(T))+yr≪ XsAx(s)ds

But, since *(OeC([0, T]; E), it follows that as e| 0

[Te-Xsx(s)ds―> [Te~ux(s)ds in E .

Hence we find that the improper integral ＼e~XsAx(s)ds exists and satisfies
Jo

[Te-XsAx(s)ds=x[Te-Xsx(s)ds+e-XTx(t)-x(O)
Jo Jo

On the other hand, by the closedness of A, it follows that

Thus we have

and hence

(2.3)

If we let

[Te-ux(s)ds<=2){A),

Jo

A([Te-*'x(s)ds)=＼Te-x'Ax(s)ds

(A-U)(＼Toe-Xsx(s)ds)=e XTx{T)-x(O)

[Te-*sx(s)ds=R(X)(e-XTx(T)-x(O))
Jo

X(s)

lo

(s) ifO^s^T,

if s>T ,

then formula (2.3) can be written as

(2.3')
[°e-XsX(s)ds=RU)(e-XTX(T)-X(O)).

Jo

Since Z(s)eC1((0, T); E), using the Laplace inversion formula (cf. Appendix B,

Theorem B), we obtain that for 0<t<T

X(t) =
~[a+lC°extRW(e-XTX(T)-X(O))dX
Z7ZlJa-i<x

= s=-:lim [a+lNeuR(X)(e-XTX{T)-XmdX.
Am N-+00Ja-iN

Hence we have for 0<t<T
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*(*)=-
1 fa+ioo
x-＼ extR(X)x(0)dX

L7Clja-iao

+
^-＼°+l~e-i<T-t>R(X)x(T)dt.

We will show that the second term on the right-hand side vanishes:

[a+tCOe-^T-^R(X)x(T)dX=0,
0<t<T,

Ja-ico

which proves formula (2.2).

a) First we remark that by inequality (2.1)

(2.10
ITOII s

＼M is bounded for all sufficientlylarge 1^1

b) Since we have for any xG^(i)

x=R(k){A-XI)x

if follows from assertion(2.1')that

This proves that

(2.4)

1 IIW)II
= i ･>19

＼＼xH~
7T7

R(X)y

X

＼＼RWx＼＼ =

1

~＼M

14*11 ―>0 as |lhoo

―>o as m-≫≪>

525

Ul Ul

―>0 for any y$=E .

since the domain £D(A)is dense in E. Hence we have for any x^S)(A)

1 , #tf)
Axx+~JTAx

11*11+1
i?U)
X Ax

c) Since x(T)g2)(A), it follows from assertion(2.4)that

＼＼R(X)x{T)＼＼―^0as |i|->≪>.

Hence, using Cauchy's theorem and Jordan'slemma (cf.Lemma A), we obtain

that

[a+ttoe-nT-tiR^)x(T)dk=0, 0<t<T .
Ja-ioo

The proof of Theorem 2.1 is complete.

§3. Uniqueness of solutions

The next theorem gives a criterion for the uniqueness of solutions of prob-

lem (P) (cf. Kreln [2], Chapter I, Theorem 3.1; Pazy [3], Chapter 4, Theorem
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1.2)
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Theorem 3.1. Assume that the operator A has a resolventR(X)=(A―XI)'1

for allsufficientlylarge X>0, and that

(3.1) lim sup
X

<0

Then the Cauchy problem (P) is uniquely solvableon the interval [0, T], for every

T>0.

Proof. 1) We remark that x(t)is a solution of problem (P) if and only

if extx(t)UeC) is a solution of the initialvalue problem

f ijL={A+XI)y(jt),
0<t^T,

{
y(0)=x0.

Thus one may translate A by a constant multiple of the identity, and assume

that the resolvent R(X) exists for all X>0.

The proof of the theorem is based on the following lemma (cf. Pazy [3],

Chapter 4, Lemma 1.1):

Lemma 3.2. Let u: [0, T~＼-*Ebe a continuous function. If there exists a

constant M>0 such that

(3.2) ＼ensu(s)ds ^M for all integer n^l

then it follows that u(t)=O on [0, T]

Proof. Take an arbitrary element e* of the dual space E*, and let

<p(t)=<u(t),e*>.

Then the function <pis continuous on [0, T] and, in view of inequality (3.2),it

follows that for allinteger n^>l

(3.3) I[Tens<p(s)ds
IJo
-l≪ ensu(s)ds＼＼

^||e*||M.

We shallshow that <p(s)=O on [0, T]; then the lemma follows,sincee*GP is

arbitrary.

Now we considerthe function
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l-exp{-erer} = g
(-1)*-1

k＼

e krn

527

The series converges uniformly in v on bounded intervals of R. Thus we have

by inequality (3.3)

This proves that

(3.4) limf

7J-≫ooJ

r

Jo

(-1

s＼ -

k

-1

k

£-1

I
ekn≪-T+^(p(s)ds

~ekn≪-T+s><p(s)ds

CO I

― ■^J u i
*=i k !

[Tekns<p(s)ds

=(exp{en<J-r>}-l)M||e*||

r - (_l)*-i

oft k!
eknit-T+s'<p(s)ds=O, O£t<T,

since the function exp{enc£"r)}―1 tends to zero as n―><*>,for every Q<it<T.

On the other hand, it follows from an application of Lebesgue's dominated

convergence theorem that

(3.5) ＼im[T(l-exp{-enit-T+s>})<p(s)ds

71-.00JO
=
＼l_t<p(s)ds

0<t<T.

Therefore, combining formulas (3.4) and (3.5), we obtain that

f
<p(s)ds=Q for every 0<t<T .
JT-t

This implies that <p(s)=O on [0, T], since <pis continuous.

The lemma is proved.

2) End of Proof of Theorem 3.1. Let x(t) be a solution of problem (P)

with #(0)=0. Then we have

so that

(3.6)

j{R(X)x(t))=
dx

R(X)=£=R(X)Ax(jt)=XR(X)x(t)+x(t),
at

R(X)x(t)^＼te^t-s'x(s)ds
Jo

since x(0)=0.

Now, condition (3.1) implies that, for each e>0, there exists a constant

Ms>0 such that

＼＼R(k)＼＼£MtesXfor all ^>0.



528

Thus it follows that

Kazuaki Taira

lime-*;||i?U)||=O

Hence we have by formula (3.6)

(3.7)
1

X

for each a>0.

im
[teXit-"-^x(s)ds=

lim e-XaR{X)x(t)=O.

-.+O0JO A-.+CX3

On the other hand, it follows from an application of Lebesgue's dominated con-

vergence theorem that

(3.8) limf
t

eHt-a-≫x(s)ds=
£-<X

lim ＼e XTx(T+t-a)dT=O

Combining formulas (3.7) and (3.8), we obtain that

limf
t-a
e

0
XTx(t-a-T)dr= lim [t~aeHt-"-s>x(s)ds

= lim
[teXct-"-^x(s)ds

a-+oc.Jo

-limT eXit-a-*>x(s)ds

X-*+ooJt-O

=0

Therefore,applying Lemma 3.2 to the function x(t―o―-),we find that

*(s)=0 on [0, t―a].

This proves that

*(s)=0 on [0, T], for every T>0,

since t and <rare arbitrary.

The proof of Theorem 3.1is now complete.

§4. Existence of solutions

The next theorem plays an essential role in the construction of solutions of

the Cauchy problem (P) (cf. Krein [2], Chapter I, Theorem 1.5):

Theorem 4.1. Assume that the operator A has a resolvent R(X)=(A~XI)~1

for any X^C satisfying Re^a, and that there exist constants 0<j8^1 and

M>0 such that

(4.1) IITOII£
M

(l+|ImJl|yf
Re^a.

Then the Cauchy problem (P) has a solution x(t)^C＼[O, oo); E) for any initial

condition x^3){A2).



(4.2)
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Furthermore, the solution x(t)is given by the following formula

x(t)=-
J_r+<>

2xija-ioo

R(mA-Zoiyxo)

U-^o)2
dX

≪―:
lim ＼ exc― r^ r-ri rfX, ?^0 .

Here Xois a complex number satisfyingRe^0>a

Figure 5
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PROOF. By Theorem 2.1, we know that a solution x(t)of problem (P), ifit

exists,is given by formula (2.2):

(2.2) x(t)―±-[
a+i°°

a-i<x>

extR(JOxodX, t>0.

i) First we show that:

// xa^3)(A2), then formula (2.2) can be written in the form (4.2).

Since every xQ^.3)(A2) can be written as

xo=R(Xoyzo with zo―(A―X0I)2x0

it follows from the resolvent equation that

Ra)xo=Ra)Rao)(R(Xo)z0)

mx)-mx9)

X-Xo

RQoYzp

Rtto)Zo

1 /i?U)-i?Uo)＼

x-xo＼ x-L r°

R(X)z0 Rtto?z<> R(Z0)z0

＼n Ao) A AO

Thus we have for any t>0

1

2xi

i

a+i°°

a-ico

a+i<*>

a-u ･

eztR(X)xodX

0

a-ico

Xt
R(X)z0

dl
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+
1 p*>*W*,^

2m}a-ioo X―ko

1 C≪+i- RO^

But, the second and third terms on the right-hand side vanish. In fact,

since we have for k=l, 2

U=XF-*° asUH°°

applying Cauchy's theorem and Jordan'slemma (cf. Appendix A, Remark after

Lemma A), we obtain that for any />0

＼ 2

Ja-ioo

Xt

1

a-xQy
dk= lim

f

r-+cojcr

ext

1

U-Jo)*
dX

=0, *=1,2,

where the path Cr is a semicircle of radius r shown in the following figure:

Figure6

Therefore, we have the following formula for x(t):

(4.2')

with

(4.2*)

x{1) 2m)*-tJ (x-xQy
dX, t>0,

Zq ― ＼/i. AqI ) Xq

ii) Next we show that:

The function x(t), defined by formulas (4.2') and (4.2"), belongs to

C*([0, oo); E), and satisfies

( x(t)<=3KA), t>0,

＼
Ax(t)=x'(t).

By inequality(4.1),we have for allRe^=a



dX=xf(t)
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^eat

£eat

llflWIl

I J 2 12
ll*oll

M

＼X-l,＼＼l+lmX＼f

^MQeat＼＼z0＼＼

Ikoll

1
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where Mo>0 is a constant depending on M and ^0. Thus, one can differentiate

formula (4.2') under the integral sign to obtain that

*'W=-2Sl tt+t-Xe≪-gW?LdX. t>0.
a-ioo ≪-Jo)f

Since 0<i8^1, this proves that

jc(Oe=Cx([0, oo);E).

Furthermore, if t>0, we have

2Kt)a-ioo (X ―Ao)

+

1 ra+too
＼ 0

+i≪.

,. AR(X)z0

a-^o)2
dX

dX

But, applying once again Cauchy's theorem and Jordan'slemma, we obtain that

ra+i<*>
＼ e

Ja-ioo

Xt Zo

(a Aq)

dX=O

Hence we have the following formula for x'(t)

*'W=-SiJ e

a-ioo

H ARU)z0

tf-Jo)1
dk f>0.

By the closedness of A. thisimplies that for any t>0

and

*≫=-d
≪+*-,, Ra)z0

a-ioo

1 fa+ioo

iii) Finally we show that:

U-Ao)2
dX(=3KA),

AR(X)zq

(a /o)
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2m)

≪+*≪ R(X)z0

≪-<≪W-;0)8
dk=x0

Let Dr be a semicircle of radius r shown in the following figure:

Figure 7

Then, by inequality (4.1).it follows that

＼

R(X)z*

Dra-xQy
<d|^MS||zoll

r

M'ok＼＼zo

r%

II

'≫ d$_

jt/2 r2

―>0 as r―>+oo .

Thus, using the residue theorem, we obtain that

X{Q)- 2≪J≪-^U-^o)2

_

1
.. (Ca+ir j

2nir->+aA.)a-iT (,

_
jR(X)zol

~ ia-Xofh=xo

=R(Xo)zZo

=x0.

The proof of Theorem 4.1 is now complete.

Remark 4.2.. Furthermore, we can prove that:

// xo<E$(Ak) for some k^N, then x(t)^Ck-＼l0, 00); E).

This implies that if the initialdatum x0 is "smooth", so is the solution x(t).

Combining Theorem 3.1 and Theorem 4.1, we can obtain

istence and uniqueness theorem for problem (P) (cf. Krein [2]

rem 3.3):

the following ex-

Chapter I, Theo-

THEOREM 4.3. Assume that the operator A satisfiescondition(4.1). Then
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the Cauchy problem (P) has a unique solution x(t)^C([0, <x>);£)nCco((0> 00); E)

for any initialcondition x^3){A).

Proof. 1) The uniqueness for problem (P) is an immediate consequence

of Theorem 3.1, since we have by inequality (4.1)

lim sup
fog II/?(*)≪

a

logM

a
= 0

2) Next we show that:

The Cauchy problem (P) has a solution

x(t)t=C(iO, oo); £)nC°°((Q,oo); E) for any xo^a){A).

(a) We let

We remark that

a+too
e

a-ioo

Xt RgX(A-XJ)x0)
dX, Xo^W(A).

(A-ZQI)x0=(A-XomR(Xo)xo), R(ko)xoG£KA2).

Thus, arguing as in the proof of Theorem 4.1, we obtain that the function x^t)

belongs to £^([0,oo);^), and is a solution of the Cauchy problem (P) with

initialcondition

(4.3) Xl(0)=RUo)xo.

Here it is worth pointing out that the function Xi(t)may be formally written as

x1(t)=eAtRQ0)x0.

Now we let

(4.4) x(t)=(A-XJ)xM) (=(A-XoI)eAtRao)xo).

Then we have for allt^O

(4.5) x(t)=Ax1(t)-Aox1(t)

This proves that

*(?)<= C([0, oo); £),

since x1(t)^C＼l0> 00); E).

(b) Next we show that

(4.6) jc(f)eC-((O, oo);J5).

In view of formula (4.5), it suffices to show that

(4.7) jcxCOeC-CCO, °o);£).
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litl N-^+ocJa-iNdt ＼t '
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To do so, we make use of the representation formula (2.2) for the solution

*i(0=-
2jh' Ja-fco
enR(X)xMdX

7T~- lim ＼
a+lNeuR{X)xMdX,

x1(O)=R(Xo)xo
a-iN

By integration by parts, it follows that

Xi(t)=-~ lim ＼＼^-RWXl(0)
]a+iN

a-iN

ra +iN p^ 1― RWxMdX}

Ja-iN t J

But, the firstterm on the right-hand side vanishes, for we have as A/->+°°

Vext -]a+iN oXt 2MLJN-uwIUi(0)ll^°

Therefore, we have the following formula for Xi(t)

1 (-1)2
*i(O=s-:

2m t

["""ei'RWxAOW,
t>0.

Ja-ioo

Repeating this process, we have after n-steps

(4.8)
1 (-l)≫(n-l)!

x1(t)=w-.
2m r-1

r
"RiXTxMdX, t>0.

Now let k be an arbitrary positiveinteger, and take a positive integer n

such that

n>

ikKt)(4.9)
(-l)B(n-l)!

Then one can differentiateformula (4.8) &-times with respect to t to obtain that

2ni

(-l)≫(n-l)!

In fact, by inequality (4.1), we have for all Re X=a

nke^Rarxm＼＼^M'e^xm＼＼^j^j^z-k,

so that the integralin formula (4.9) converges absolutely for t>0, since n{l―k>l.

Formula (4.9) proves assertion (4.7) and hence (4.6), since k is arbitrary.

(c) We show that for any t>0

r x(t)^0(A),
＼
Ax(t)=x'(t).

k+1

.8) &-times with respect to
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Since we have for any t>0

(4.10)

I Xl(jt)(=£KA),

＼
Ax1(t)=x[(t)

in view of assertion (4.7),it follows that

and also

lim
x1(t+h)-x1(t)

h
x[(t)

Hm
i4/x.(l+M-xlWx=

,im xlQ+h^xV,)

ft-o ＼ n / ft-o n

By the closedness of A, this implies that for any t>Q

f xi{t)t=SKA),
(4.11)

＼Ax[{t)=x'[{t).

Therefore, we have by assertions (4.5),(4.10) and (4.11)

x(t)=x[{t)-XoX&)(ER{A), t>0,

and

Ax{t)=Ax[{t)-XQ Ax-.it)

= x'((t)-Xoxi(t)

535

= x＼f).

(d) Finally we have by formulas (4.4) and (4.3)

x{0)=(A-X0I)x1{Q)={A-XoI)R(Xo)x0=Xo.

Summing up, we have proved that the function x(t), defined by formula

(4.4), belongs to C([0, oo);
JE)nCoo((0,

oo); E), and is a (unique) solution of prob-

lem (P).

The proof of Theorem 4.3 is now complete.

Corollary 4.4. Assume that the operator A satisfies condition (4.1). Then

the Cauchy problem (P) is well posed on [0, oo).

Proof. It remains to verify that:

(4.12) For each t>0, the solution x(t), given by formula (4.4),

depends continuously on the initial datum xo<^£)(A).

By Theorem 2.1, it follows that the solution x(t) can also be written in the

form (2.2):
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(2.2)
*(()=-2S
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Ja

+t~euR(X)xodX,
t>0.

Thus, arguing as in the proof of Theorem 4.3,we obtain the following formulas

(cf. formulas (4.8) and (4.9)):

(4.13)

(4.14)

1 (-l)ra(n-l)!
*(0=s-.
2j≪ r1-1

(-l)re(M-

x^k＼t)=
2m

[a+tC°extR(X)nxodX,
t>0,

Ja-ioo

l)lf
::::£(f>> *xodX

Hence, by formula (4.13),we have for an integer n>l/B

(4.15) ＼＼x(t)＼＼£M'

This proves assertion (4.12).

tn-l
llxoll, *>O.

§5. The semigroup U(t)

Assume that the operator A satisfiescondition (4.1):

t>0.

(4.D w^a+iikw ReX-a-

Then, by Theorems 4.3 and 2.1,we can definea linear operator

U(t):E―>E, t>0,

by the formula (cf. formula (2.2)):

(5.1) U(t)xo=-^[a+l0°eHR(X)xodX

We remark that

2ni
falim ＼
+iN

-Of

lim U(t)

tiO

euR(X)xodk, x*<zS)(A).

Xn― Xn

Further, in view of Corollary 4.4 and Theorem 1.1,it follows that the operators

U(t) can be extended uniquely to bounded linear operators on E which form a

strongly continuous semigroup, and satisfy the estimate

(5.2) ＼＼U(t)＼＼^M'-f^, n>l/j8.

In fact, by inequality (4.15), we have

＼＼U(t)xo＼＼£M'

e

tn

at

rrlUoll xa<E.£>(A).
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This proves estimate (5.2), since the domain 3){A) is dense in E.

This section is devoted to the study of the semigroup U(t). First we have

the following:

Theorem 5.1. Assume that the operator A satisfiescondition (4.1). Then

the semigroup U(t), defined by formula (5.1), is differentiate infinitely many

times for t>0, that is, for every x^E, the function t*->U(t)xis differentiate

infinitely many times for t>0.

Proof. Theorem 4.3 tellsus that

I7(f)xoeC([0, 00);£)nC-((0, oo); £) if x0e:4>04).

Hence we have for any integer k^l

(5.3) £/£*-1>(Oxo=rf/^^Xods+^'-^o^o, 0<f,<*.

But, in view of formula (4.14),we find that the derivative V^lf) also satisfies

an estimate of the form (5.2). Thus one can pass to the limit in formula (5.3)

to obtain that formula (5.3) remains valid for all x0 of E. This proves the k-

times differentiabilityof U(t) for if>0. Thus the semigroup U(t) is differentiate

infinitelymany times for £>0, since k is arbitrary.

Remark 5.2. The infinitely many times differentiabilityof U(t) for t>0

already follows from the differentiabilityof U(t). More precisely, we have for

any integer k^l

(5.4) £/<*>(*)=(Mt))'=Ht)) ■ '>≫･

Proof. If, for every xg£, the function t>-*U(t)xis differentiate for t>0s

then it follows that

f U(t)x<=£)(A), t>0,

I AU(t)x=U'(t)x ,

that is,

U'(t)=AU(t), t>0.

But, since AU(t) is a closed linear operator defined on all of E, applying the

closed graph theorem, we find that the operator U'(t)=AU(t) is bounded for all

t>0. Hence, by formula (1.4), we have for 0<s<t

U'(t)=AU(t)=AU(t-s)-U(s)=U(t-s)'AU(s).

Differentiating this formula with respect to t, we obtain that
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U^(t)=U'(t-s)-AU(s)=AU(t--s)-AU(s).

Taking s―t/2 yields formula (5.4) for k=2:

Uw(t) K'KB'-Ki))1 *>0.

Repeating this process, we have formula (5.4) for general k^.N.

Now assume that the operator A satisfiesa stronger condition than condi-

tion (4.1):

1) The resolvent set of A contains the region 2W={X^C; X^O, |arg/l|<

K/2+Q}}.

2) For each small $>Q, there exist constants O<05S1 and M£>0 such that

the resolvent R(X)=(A―XI)~l satisfiesthe estimate

M
(5.5) WRWW^jjfe' te2i={teC;X*Q, ＼argX＼^7t/2+a)~-e}.

(5.6)

Then we let

U(t) = -

Figure 8

^-.(
extR(X)dX.

2m)r

Here F is a path in the set 1% consisting of the following three curves:

F^ = {eir>;-(7r/2+G)-s)^)7^7r/2+(y-6},

rc3)= {refC!r/2+(U-£);l^r<oo}.

7C/2+Q)― S

Figure 9

It is easy to see that the integral
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U(t) = - ― 23 (

2m a=i Jrcfe)
eltR{X)dX

539

converges in the uniform operator topology for t>0, and thus defines a bounded

linear operator on E. By Cauchy's theorem and Jordan's lemma, we find that the

line of integration in formula (5.1) may be deformed into the path of integra-

tion F in formula (5.6); hence the two definitions(5.1) and (5.6)of U(t) coincide

(cf. the argument in the proof of formula (4.2')).

The next theorem states that the semigroup U(t) can be extended to an

analytic semigroup in some sector containing the positive real axis, but may be

unbounded at the origin:

Theorem 5.3. Assume that the operator A satisfiescondition(5.5). Then

the semigroup £7(0,defined by formula (5.6),can be extended to a semigroup U(z)

which is analytic in the sector Jm={z^C; z^O, |argz|<o>}, and enjoys the fol-

lowing properties:

(a) The operators AU{z) and (dU/dz)(z) are bounded operators on E for each

zeJ<u> and satisfy the relation

(5.7)
^(z)=AU(z)}

z^Au.
dz

(b) For each 0<£<<w/2, there exist constants M0(e)>0 and Mx(e)>0 such

that

(5.8)

(5.9)

where

lltf(*)ll^ 2G4f

zed*!

t

Mo(e)

UV'6

＼＼AlKz)＼＼ ^
Mt(e)

＼z＼2~d

J2J={z<=C;z^O, |arg<r|^<y-2£}

(c) For each x<,&£)(A),we have

U(z)x0 ―> x0 in E

as 2->0, z^J2J (0<£<o>/2).

s

Figure 10
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Proof, (i) The analyticity of U(z): If X(=r and zsJ" that is, if

X=＼X＼ei*

z = ＼z＼e*',

f] ― K l2-＼-0i― £

＼(p＼^o)-2z,

then we have

with

7r/2+s£r)+<p^n/2+2a)-3s<3x/2-3e

Note that

cos (7}+<p)£cos(ff/2+s)=―sins .

Henrft it-follows that

(5.10)

Similarly,we have

(5.11)

|gJ≪|^g-Ul..|sln. ;er<3>, Z<eJ2J

1***1 ^e-""*'8in≪, ^sft", zeAl1

Now, for each small e>0, we let

K^=A2jn{zGC; ＼z＼^s}

= {z(eC; ＼z＼^e,＼argz＼£(o-2s＼.

Then, combining estimates (5.5),(5.10) and (5.11), we obtain that

(5.12) ＼＼ex*R(X)＼＼tZjyj>~ssin"'", X^r^ur^, z<=Ki.

On the otherhand, we have

(5.13) ＼＼eXzR(X)＼＼^Msew, isfR, ze/ft.

Therefore,we findthattheintegral

(5.6') U(z)=-~＼ ex*R{l)dX=-^-. S f euR{k)dk

converges in the uniform operator topology, uniformly in z^K£, for every e>&

This proves that the operator U{z) is analytic in the domain Je= U K£.

By the analyticity of U(z), it follows that the operators U(z) also enjoy the

semigroup property:

U(z+w)=U(z)-U(w), z,w^A0).

(ii) We prove that the operators U(z) enjoy properties (a) and (b).

(b) First, using1 Cauchv's theorem, we obtain that
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u<*)=-2-
y/'*w<"

where F]z] is a path consisting of the following three curves:

r＼i＼={r≫

P (2)―

r (3)_

1 121 ―

-t(jr/2+oi-s) . ^T^r<ool
z＼ i

-(x/2+<o-e)^^ic/2+ o-e＼

Lei(≪/≪+≪-o.
^r<oo|

ff/2+a*-s

Figure 11

But, by estimates (5.5),(5.10) and (5.11),it follows that

ll≪ifi?WII^|^7≪-lil|I|>tat,

Hence we have for £=1, 3

f ＼＼e**RQ)＼＼＼dX＼^Ms

We have also for k=2

Jn(2)

1 12 t

XeniWJWl], zeA"

1 g-p＼z＼sins

TzT

p-'dp

=MX°e-sln―s-eds'＼z＼e-1

＼＼e**R(X)＼＼＼dM£Ms
fjl/2+ <0-£

J-(JT/2 + <W-O

=2eME(x/2+<o-e)＼z＼0-1

Summing up, we obtain the following estimate:

＼＼U(z)＼＼^~±＼ WR(X)M<U＼

1I2l

541
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^^(2Me^$-8e-sins"ds+27zeMsS)＼z＼e

= ―{＼~s~°e~*in"ids+ xe)＼z＼e~1

This proves estimate (5.8), with

M0(e)=―i
7T

($;
ee-int"ds+xe＼

To prove estimate (5.9), note that

' ■ AR(X)=(A-XI+XI)R(X)=I+XR(X),

so that

＼＼AR(X)＼＼<t+Mt＼X＼l-°,1seZ%.

Hence, arguing as in the proof of estimate (5.8), we obtain that

(5.14) If eXzAR(X)d2 ^2?°° e-?l'[*in%l+M.p1-e)dp

I jr Ji/131 .

Jh/U+(U-e (if)

-(ff/2+<u-e) [2r[

^2rfVsins"Vs+7re)u|-1

+2Me(rs1-^-sin -･ds..+ffe) k T"2

This proves that the integral ＼eXzAR(X)dX is convergent for every zgd*J. By

the closedness of A, thisimplies that for any zgA%

U(z)<=3){A),

and

(5.15) AU^=-2Fi [ex*AR(Z)dX.

Therefore, estimate (5.9) follows from estimate (5.14), with

We remark that formula (5.15) remains valid for allz^Am, since Am= U JLe.

(a) By estimates (5.12) and (5.13),one can differentiateformula (5.6')under

the integral sign to obtain that

(5.16) 7faM=-2sL>"≪≪><". ZtEda,
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On the other hand, it follows from formula (5.15) that

(5.17) AU(z)=-x-. ex'AR(X)dX

exV+XR(X))dX

ex*XR(X)dX, zeJ*,,
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for we have by Cauchy's theorem

[el*dJL=O.
... .

Therefore, formula (5.7) follows immediately from formulas (5.16) and (5.17).

(c) Let x0 be an arbitrary element of 3){A). By the residue theorem, it

follows that

so that

Xq ―
1 f e*z

A1

U(z)xa―xo= ―

Here we remark that

T^rW)ll£
Me

―＼W

2

1_

＼M1+e>

[~R{X)AxM

i<=r.

Thus it follows from an application of Lebesgue's dominated convergence theo-

rem that as z-≫0,zeJ^f

But we have

U(z)x0-x0―>-J^[ ~R(X)AxM

＼
＼R(X)AxodX=Q.

JI A,

In fact, by Cauchy's theorem, it follows that

[jR(X)AxM=

Iimf

r-*+ooJ

=0

-TR{X)AxM

^~R(X)AxodX
Cr A
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where Cr is a closedpath shown in the followingfigure:

Figure12

Summing up, we have proved that

U(z)x*―> x0 as z->0, z<bA*J,

for each z^3){A).

Remark 5.4. Assume that the operator A satisfiesa stronger condition

than condition(5.5):

(5.5') IIW)II£
Ms

(Ul+D* '
teSl

Then we have the followingestimates:

(5.8') ＼＼U(z)＼＼<j^re-a'≪'*,zejy,

(5.9') UU(zm^0le-a'Re°, z<=A*J,
z＼

with some constant a>0.

Proof. Take a real number a such that

0<a<T^

Then we have by estimate (5.5')

a＼＼(A-XI)-^^-~^-£aMs<l, X<=I'm.

Hence it follows that the operator (A-＼-aI)~XI has the inverse

({A+aI)-XI)-l=(I+a(A-XirlY＼A-XIYl,

and

M(A+aI)-XI)-H£KI+a(A-XI)-lhMA-U)-H

<

(IJtl+D'l-a

1
KA-xirw
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<
Ms 1

(＼X＼+l)e1-aM,
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This proves that the operator A+al satisfiescondition (5.5), so that estimates

(5.8) and (5.9) remain valid for the operator A+al:

(5.18)

(5.19)

where

＼W(z)＼＼£
M'ois)
＼z＼1-6'

＼＼(A+aI)V(z)＼＼^
＼z＼>-e> *eJ5?,

V(z)=--^[ ex*(A+aI-MYldX

But, we have by Cauchy's theorem

(5.20) V{z)―Ur, ex'{A+aI-XIYxdX
a

= -2^L≪/"≪"(^-^)"1^

=ea*U(z).

In view of formula (5.20), the desired estimates (5.8')and (5.9') follow from

estimates (5.18) and (5.19).

§6. The fractional powers (―A)a

Assume that the operator A satisfies a stronger condition than condition

(5.5):

1) The resolvent set of A contains the following region 2:

Figure13

2) There existconstantsO<0^1 and M>0 such that the resolventR(X)=

(A―XI)'1 satisfiesthe estimate



546

(6.1)
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lli?U)||^
M

a+＼w'
Xe=2.

If a>l―6, we define the fractional power (―A)~a of ―A by the following

formula:

(6.2) (-A)-≪-
1_

2th

＼

r(-X)-"R(X)dX.

Here the path F runs in the set 2 from hJrooe~ia)to b+°oei<0,avoiding the

positive real axis and the origin (cf. Figure 14), and for the function (―X)~a~

0-aiogc-^ we choose the branch whose argument lies between ―an and an; it

is analytic in the region obtained by omitting the positive real axis.

Figure 14

It is easy to see that the integral (6.2) converges in the uniform operator topo-

logy for a+6>l, and thus defines a bounded linear operator on E. In fact,it

sufficesto note the following:

|(―^)-≪|= |e-alo≪-^|=e-al°8|;i = |^|-B

lli?tf)ll^
M
U+UD*

Some basicpropertiesof (―A)~aare summarized in the following

Proposition 6.1. (i) We have for all a, $>l―d

(ii) // a is a positiveinteger n, then we have

{-Ay≪=((-A)-ly.

(iii) The fractional power (―A)~a is invertible for all a>l―d.

Proof, (i) By Cauchy's theorem, one may suppose that

(6.2') {-A)-l*= (-[i)-PR(fi)dii,
r

where F' is a path obtained from F by translatingeach point of F to the right
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by a fixedsmall positivedistance.

Then we have by Fubini'stheorem

(-A)-a(-A)-^=

Figure 15

d

iflU~ff"("fir''i(i)R(f')dXif'

-Mfc^**^

-2m)r{ *> R{X＼2m)r~X^r

dXdp :

dpt^dX

-i≪l^≪^L^dih

We calculate each term on the right-hand side,

a) We let

Then, applying the residue theorem, we obtain that (cf. Figure 16)

^fib'+re^e^dr+^fib'+Re^Rie'Uf]

JO J(O

+ [°f(b'+reii**-°>)eil**-≫>dr

=:-2ici(-X)-P.

Figure 16

547
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But we have as R-++00

and

Kazuaki Taira

[Rf{bf+reim)ei<odr ―> [+°°f{b'+reia>)eio>dr,

Jo Jo

(0
f(bt+rei≪*-m>)eiit*-">dr,

J+<≫

I C2n~at I r2n-at df)

Therefore, we find that

2m)r' *~/*

b) Similarly, since F lies to the left of F'f we find that

2jtiJ

Summing up. we obtain that

(-*)-*

r X―u,

(-A)"(-A)->=
1

2xi

dX=O

^

r(-Z)-<a+^R(X)dA

(~A)-^a+^

(ii) Since we have by inequality (6.1)

limf

r-+<≫J

It follows that

" (-reiri)-nR{reiii)irei1idy)=Q

―M

(-A)~n=

1

2xi

for any integer n^l,

^
r(-X)-nR(X)dX

Am r-.+oo
f (-X)-nR(X)dX,

where Cr is a closed path shown in the following figure:

Figure 17
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Thus, by the residue theorem, we obtain that

(-i4)-B=Res[(-^)-B/?U)]^0

(-1)" dn-1

(n-l)＼dXn~l

=(~l)≫(i4-1)≫

-((-^)-ir.

≪A-XI)-l)＼im≫

549

(iii) Since the operator (―A)-1 is injective,it follows that(―A)~n=((―A)~l)n

is injective for all integer n^l. Assume that (―A)~ax=0. Then, taking an

integer n such that n―a>l―8, we obtain that

{-AYnx~{- A)-<n-a＼(-A)-ax)=0,

so that

x=0.

This proves part (iii).

The proof of Proposition 6.1 is complete.

If 1―6<a<l, we have the following useful expression for the fractional

power (―A)~a;

Theorem 6.2. We have for l-d<a<l

(6.3) (~A)-"=
K Jo

Proof. By Cauchy's theorem, one may deform the path F in formula (6.2)

into the uooer and lower sidesof the positiverealaxis. But. we have

Hence it follows that

2mJo

1 eaK

K

I ＼X＼-'ettKi iflmiX),

＼X＼-≪e-a*i iflmJKO.

aeaj:iR(s)ds-~[0 s~ae-a7:iR(s)ds
ZTTZJoo

t― e-≪*i

~2i

[C°s-aR(s)ds

Jo

= _sinoxr-
s

X Jo

Corollary 6.3. We haveforl―0<a<＼

(6.4) ,(_^-.|SA^≫=l).
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Proof. By formula (6.3),it follows that

ll(-^)-all^

<

But we have

and also

＼s~a||R(s)||ds
7T Jo

..slnan
M

(Va(l+s)-'ds=
Jo

% Jo

)Xl-a) (1 G) (1-af

fVa(l-<x)a+(?-2d<7

Jo

= B(l-a, a+0-1)

rO―a)r(a + 0-l)

sin arc

no)

1
- na)ra-a)mJT

Summing up, we obtain that

11/ ≫v...^.*
X ni-a)r(a+d-l)_,,r(a + d-l)

K~A) "- /WXl-a) n$) na)T{0) '

Remark 6.4. Estimate (6.1) with ^=0 tellsus that estimate (6.4) remains

valid for a=l: K-AY'W^M.

In view of part (iii)of Proposition 6.1, we can define the fractional power

(,―A)" for a>l~d as follows:

(―4)a=the inverse of {-A)~a, a>l―0.

The next theorem states that the domain W{(―A)a) of (―A)a is bigger than

the domain 0{A) of A when l―d<a<6.

Theorem 6.5. We have for any l―d<a<6

$(A)^$((-A)a).

Proof. Let x be an arbitrary element of£>(A). Then there exists a unique

element y^E such that

x=(-A)-ly.

But, if 1―6<a<6, one can define the fractionalpowers (―A)~a and (―A)"0"00,

and write (―^l)"1 as follows:
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(-,4)-1=(-,4)-≪(-,4)-<1-a>.

Hence we have
jc=(-j4)-13>=(-4)-a((-4)-<1-a>30･

This proves that

§7. Homogenous solutions

Assume that the operator A satisfiescondition (6.1):

(6.1) ＼RW＼＼£
M

(1+UD*
X(=2
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In this section we characterize admissible initialdata x0 for the Cauchy problem

(P) in terms of the domains of the fractional powers (―A)a.

The next theorem states that problem (P) has a unique solution x(t) for

any initialcondition xo<=.0((―A)v) with l ―6<7)<d.

Theorem 7.1. Assume that the operator A satisfiescondition (6.1) with 0<

0£1. Then, for every xo^3){(-Ay) with l-d<rj<6, the function

(7.1) x(t)=U(t)xo=-^-.
[enR{X)xQdX,

t>0,

belongs to C([0, oo); £)nC°°((0,oo); E), and is a unique solution of the Cauchy

problem:

(P)
~=Ax(t), t>0,

x(O)=xo.

Remark 7.2. By Theorem 6.5, it follows that the domain 0{{―A)^)is

bigger than the domain <D(A)when l―d<7]<6. Hence Theorem 7.1is a gen-

eralizationof Theorem 4.3.

Proof of Theorem 7.1. 1) Firstwe show that:

(7.2)
Mra-a)r(a+e-i)

＼＼UW-A)-＼＼£^
n$)

By formulas (5.6) and (6.2'),it follows that

U(t)(-A)-a=(-A)-aU(t)

1

1

{2mf

I

l-0<a<l.

f
ext(-u)-aR(X)R(ii)dXd[i
Jr'

u
r' A―u
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2m)r [2mJr *―{* -J

1 c r 1 r pxt

=-U±-x)-eURwx-

dxldft

In fact,it sufficesto note the following (cf. the proof of Proposition 6.1):

2m

2ici

jr^~c-*-

dX=O

Therefore we obtain that

^―＼ s-a(l+s)-eds
% Jo

Mra-a)r(a+e-i)
･K n$)

2) Next we show that:

(7.3) lim U(t)(-A)-ax=(-A)-ax for each x^E.
no

Let x0 be an arbitrary element of 3){A). Then we have

U{t)x0 ―> xQ as 110,

so that

(7.4) U(t)((-A)-ax0)=(-A)-a(U(t)x0) ―^ (-A)-axe as t[ 0.

Now take an arbitrary element x of E. For each e>0, one can find an

element xo^.£)(A)such that

||x-xo||<e.

Then we have by inequality (7.2)

＼＼U(t)(-A)-ax-(-A)-ax＼＼

^＼＼U(t)(-Ara(x-Xo)＼＼+ ＼＼U(t)(-A)-aXo-(-Araxo＼＼+ ＼＼(-Ara(xo-x)＼＼

^ni-"^+'-1)+K-A)-'i),+nm-A)-x.-(-A)-*.i

Hence, by assertion (7.4),it follows that
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lim sup ||^)(-4)-',-(-^)-≪,||g(^r(1-''^(;)+fl-1) + |l(-^)-1|)£.

This proves assertion (7.3), since e>0 is arbitrary.

3) Now let x0 be an arbitrary element of 3){{―A)^) with l―6<7}<d.

Then the function x(t)=U(t)x0 can be written as

x(t)=U(t)(-A)-K(-A)*x0).

Thus, by assertion (7.3), we find that

*(*)= C([0, oo);£),

and also

jc(O)=(-i4)-'((-4)'*o)=*o.

On the other hand, we know from Theorem 5.3 that

| x(0 =C-((O, oo);£),

I x'(t)=Ax(t), t>0.

Summing up, we have proved that the function x(t)=U(t)x0, defined by

formula (7.1),is a (unique) solution of problem (P).

Remark 7.3. In the case 0=1, Theorem 7.1 remains validfor every xo^E

(i.e.,7]=0). In fact,it sufficesto note the following:

1) lim U(t)xo=xo for each xa^S){A).
no

2) We have by estimate(5.8')with 6=1 (Remark 5.4)

SUp||tf(f)||<oo.
0<≪Sl

§8. Non-homogeneous solutions

Let /: [0, T]-≫jE be a continuous function. Now we consider the following

non-homogeneous Cauchy problem:

{Np)

＼%=Ax<t)+f(t),
0<t*T.

I
*(O)=;co.

The next theorem gives an explicit formula for the solutions of problem

CNP) (cf. Krein [21, Chapter I, Theorem 6.1):

Theorem 8.1. Assume that the Cauchy problem (P) is well posed on [0, oo),

and that the operator A has a resolvent R{X0)={A―XJYl for some Xa^C. Then



t
U(t―s)f{s)ds exists, and

0
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a solution x(t) of problem (NP), if it exists,is given by the following formula:

(8.1) x(t)=U(t)xo+[U(t-s)f(s)ds
Jo

Here U(t)is the strongly continuous semigroup on E constructed in Theorem 1.1.

PROOF. First, applying the operators U(t―s), Q<s<t, to the equation

x'(s)=Ax(s)+f(s), 0<s^7＼

we obtain that

(8.2) U(t-s)x'(s)=U(t-s)Ax(s)+U(t-s)f(s), 0<s<t.

On the other hand, since sup ＼＼U(t)＼＼<°ofor every 8>0, it follows that
rd.lldl

(8.3) -=-(U(t-s)x(s))= Mm (
as ff-o＼

U(t-s-o)x(s+o)―U(t-s)x(s)＼

a I

= lim i U(t―s―ff){
CT-0 I ＼

-U(t-s-o)

<j)-x(s)＼

(i^>(4
= U(t―s)x＼s)-U(t-s)Ax(s), 0<s<t.

Hence it follows from formulas (8.2) and (8.3) that

-^-(U(t-s)x(s))=U{t-s)f(s), 0<s<t.
as

Integrating this equation from 0 to t―h (h>0) with respect to s, we obtain that

Ct-h

JO
U(.t-s)f(s)ds=tW-s)x(s)Y0-h=U(h)x(t-h)-U(t)x0

But we have as h j0

lKh)x(t-h)=U(h)R(JLo)lAx(t-h)-Xox(t-hy]

―> R(koXAx(t)-Xox(t))=x(t).

In fact, it sufficesto note the following:

1) SUp||TO)/?Wo)ll<oo.
0<ftSl

2) lim U(h)R(Xo)x=R(Xo)x for each x<=E.

3) x(f)eC([O, T1;E).

4) Ax(t)=x'(t)^C({O,n;E)

Therefore, we find that the improper integral ＼
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s

tU(t-s)f(s)ds
=x(t)-U(t)xo

555

This proves formula (8.1).

Now assume that the operator A satisfiescondition (6.1):

M
(6.1) I|J?WII-(1+U|)' ' XgS'

The next theorem states that the function x(t),defined by formula (8.1),is

a solution of problem (NP) (cf. Krein [2], Chapter I, Theorem 6.9):

THEOREM 8.2. Assume that the operator A satisfiescondition (6.1) with 0<

0^1. Let f: [0, T]-*£ be a Holder continuous function with exponent y satisfy-

ing l-d<r^l:

(8.4) ＼＼f<t)-ns)＼＼£C＼t-s＼r,t, se[0, T].

Then, for every xa^S){(―Ay) with l ―d<r)<d, the function

(8.1) x(t)=U(f)xo+＼tU(t-s)f(s)ds
Jo

belongs to C([0, T] ; E)nC＼(O, T] ; E), and is a unique solution of problem (NP).

Here U(t) is the semigroup on E defined by formula (5.6):

(5.6) U(t)= -

1

2ici

[extR(X)dX,
t>0.

Proof. Theorem 7.1 tellsus that the function U(t)x0 belongs to C([0, oo);E)

nC°°((0,oo);E), and is a (unique) solution of problem (P).

Thus it sufficesto consider the function

(8.10 >w=j
tU(t-s)f{s)ds

o

We remark that the function y(t) is well defined for all 0<Lt<>T. In fact, we

have by estimate (5.8')(Remark 5.4)

(8.5)

so that

II£7(011 ^Mr*'-1 0<t£T ,

lly(OII£JjW-s)IHI/(s)||ds

;S(max||/(s)||)fW)lldr
Vosssr /lo
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^Mr( max 11/(5)11)^, O^t^T.
＼osssr / fj

In particular,we have

y(0)=0.

(a) The continuityof y(t): We have for O^t^T, 0<t+h<T

y(t+h)-y(t)= Ct+h
rt

＼ U(jt+h-s)f(s)ds-＼ U(t-s)f(s)ds
Jo Jo

U(T)f(t+ h-T)dT-＼ U(T)f(t-t)dt
Jo Jo

＼l
U(T)(f(t+h-T)-f(t-t))dr
Jo

+^hU{r)f(Jt+h-t)dr.

Hence it follows from inequalities(8.4) and (8.5) that

＼＼y(t+h)-y(t)＼＼^(max＼＼f(a+h)-f(a)＼＼)＼T＼＼U(T)＼＼dT
＼aaasT /Jo

+(max||/(cr)||) ＼t+h＼＼U(r)＼＼dT

^^[C|/i|^+(maxrl|/((;)||)|a+/l/-^|]

Therefore, we obtain that

＼＼y(t+h)-y(t)＼＼―*O as h^Q.

This proves that

3>a)eC([0,T];£).

(b) The differentiabilityof y(t): For each small d>0, we let

y&)=＼

0 if O^t^d,

＼t~SU(t-s)f(s)ds
if 8<t£T.

Jo

Then, in view of estimate (8.5),it follows that

r Kj0 ifo^^a,

{ K2(Td-(T-5)e) if 5<t£T.

Hence we find that the the function ys(t)converges uniformly to the function

y(t) as 510. Furthermore, we have for 8<t<T



(8.6)

(8.7)
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y'8(t)=U(d)f(t-d)+＼t'8Yf(U(t-s)f(s))ds
Jo at

= U(d)f(t-§)+
＼t~SAU(t-s)f(s)ds

Jo

= U(d)(f(t-d)-f(t))+U(t)f(t)+＼t~SAU(t-s)(As)-f(t))ds
Jo

+({UW-U(t))f(t)+＼t~'AU(t-s)f(t)ds).

But the last term on the right-hand side vanishes:

(U(d)-U(t)f(t) +
＼t-d

0
AU(t-s)f(jt)ds=O

557

In fact, since the inverse (―A)~l exists and AU(t)―U(t)A on SKA), it follows

that

(8.8)
rt-8 rt
W-s)f(t)ds=＼

Jo Jo

SU(t-sX-A)(-A)-lf(t)ds

rt-d

Jo ds
(U(t-s)((-A)-lf(t)))ds

=[t/(*-s)((-i4)-1/(O)]!=5-a

= U(d)(-A)-if(t)-U(t)(-A)-if(t)

Hence, by the closedness of A, we find that

U(5)f(t)-U(t)f(t)=-A(^~8U(t-s)f(t)ds)

= -＼t~8AU(t-s)f(t)ds.
Jo

This proves equation (8.7).

Therefore, combining formulas (8.6) and (8.7), we obtain that

(8.9) y's(t)=U(d)(f(t-d)-f(t))+ U(f)f(f)

+
＼t~SAU(t-s)(f(s)-f(t))ds,

8<t^T.
Jo

Now we estimate each term on the right-hand side of (8.9):

1° We obtain from inequalities(8.4) and (8.5) that

WUiWdt-V-fmiSCMTdv***-1, d<t£T.

2° By estimate (5.9')(Remark 5.4),it follows that
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＼＼AW)＼＼= ＼＼U'(t)＼＼£Mit'-*, 0<t^T.

Hence we have for Q<d'<d

W''8'AU(t-s)(f(s)-f(t))ds ^CMN~5'＼t-s＼r+e-2ds
＼jt-5 Jt-3

= CMA8 Tr+d-zdT

__CMi_ r§r+o-i―§'T+o-ii

Since y+d>＼, this proves that the improper integral

(8.10)
＼tAU(t-s){f(s)-f(t))ds=

lim
rai4tf(f-s)(/(s)-/(0)ds

Jo 5io Jo

exists, and the convergence is uniform in £e[e, T], for every e>0.

Summing up, we find that

y'8(t)―* £/(O/(O+f'i4t/tf-s)(/(s)-/(O)ds as 810
Jo

uniformly in ?e[e, T], for every e>0. Thus one can let 5!0 in the formula

ys(t)=^y's(T)dz+ys(s), 0<d<e ,

to obtain that

y(t)= il U(T)f(z)+^AU(T-s)(f(s)-f(T))dsyT+y(e), 0<e£t^T .

Sinces is arbitrary,thisprovesthat

y(f)eCK(0,T];E),

and

(8.11) y(t)=U(t)f(t)+^AU(t-s)(f(s)-f(t))ds

(c) Finallywe show thatforany 0<t^T

(8.12) ＼

First, one can let 8 j0 in formula (8.8) to obtain that

＼tU(t-s)f(t)ds=(-A)-lf(t)-U(t)(-Ar1f(t)

Jo

=(-A)-Hf(t)-U(t)f(t)).

Hence it follows that for any 0<t^T



(8.13a)

and

(8.13b)
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<:

[tU(t-s)f(t)ds^3)(A),

Jo

t

oU(t-s)f(t)ds)=U(t)f(t)-f(t).

On the other hand, sincewe have for d<t<T

r

Jo
U(t-sXf(s)-f(t))dseaKA),
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in view of the closedness of A, it follows from assertion (8.10) that for any

0<t£T

(8.14a)

and

(8.14b)

['w-sXfW-fMdseSKA),
Jo

A([tU(t-s)(f(s)-f(t))ds)=^AU(t--s)(f(s)--f(t))ds

Therefore, by assertions (8.13),(8.14) and (8.11), we have for any 0<t^T

y(f)=
＼tU(t-s)f(s)ds

Jo

Jo

and

Ay(t)=A

U(t-s)f(t)ds+＼lU(t-s)(f(s)-f(t))ds<= SKA),
Jo

([t

oU(t-s)f(t)ds)+A({toU(t-s)(f(s)-f(t))ds)

=(U(t)f(t)-f(t))+(yV)-U(t)f(t))

=y'(t)-f(t).

This proves assertion (8.12).

Summing up, we find that the function y(t), defined by formula (8.1'), be-

longs to C([0, T]; E)r＼C＼(Q,T]; E), and is a solution of problem (NP) with

initialcondition y(0)=0.

Now the proof of Theorem 8.2 is complete.

Remark 8.3. In the case 6=1, Theorem 8.2 remains valid for every xo^E

(i.e., ^=0). This is an immediate consequence of Remark 7.3.

§9. Proof of Theorems 3 and 5

Proof of Theorem 3. (i) We find from the proof of Theoreme 11 of

Taira [4] (cf. [5], Section 8.4) that the constants R(6) and C{6) in Theorem 1
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depend continuously on d^(―7c, n), so that they may be chosen uniformly in

0e[―x-＼-e, jr+e], for every e>0. This proves the existence of the constants

r(e) and c(e). Estimate (0.2) is an immediate consequence of estimate (0.1) with

s=2 and <p=0.

(ii) By part (i),one may assume that, for/i£>0 large enough, the operator

satisfiescondition (6.1) with 0=(l+d)/2:

Figure18

Thus we can apply Theorem 5.3 (and Remark 5.4) to the operator %―ytJ.

to obtain part(ii).

PROOF of Theorem 5. Theorem 5 follows immediately from Theorem 3

and Theorem 8.2. (We remark that Theorem 5 includes Theorem 4 as the

particularcase 5=1, as is seen from Remark 8.3.)

Appendix A Jordan's lemma

Lemma A (Jordan). // f(z) is a continuous function on the half plane

{z<=C; Rez^O}, and if f(rei0)-*O as r->+oo, uniformly in 0e[―n/2, n/2], then

we have for any m>0

lim
t
e-m'f(z)dz=O

where

Cr = {z=reid; -x/2^d£7c/2}.

Remark. If f{z) is a continuous function on the half plane {z<=C;

Rez^O}, and if f(reie)^0 as r-*+oo, uniformly in d(E[_x/2,3^/2], then we

have for any m>0

where

limf eroC/(QrfC=O

Dr = {lL=rete; x/2£6£3tc/2}.



Theory of Semigroups with Weak Singularity 561

Appendix B The Laplace transform

Let E be a Banach space, and let u(t):R->E be a functionsatisfyingthe

followingthree conditions:

(a) M(0=0 for allf<0.

(b) There existconstants C>0 and ^eiZ such that

||m(0II^C^', f£0.

(c) u is Riemannian integrableon every bounded interval[0, T], T>0.

Then we let

uw=＼ Xe-Xtu{t)dt, ReX>B

0

It is easy to verify that U(X) is a holomorphic function of X in the half plane

{X^C;Re^>/3}. The function U(X) is called the Laplace transform of u(t).

The most fundamental result is the following:

Theorem B (The Laplace inversionformula). Let u: R^>E be a function

which satisfiesthe followingconditions:

(a) u(t)=O for all t<0.

(b) There existconstantsC>0 and $ej? such that

＼＼u(t)＼＼^Ce^,fZO.

(c') u is of bounded variationon any bounded interval[0, T], T>0.

Then we have for $> ft

lim^-＼*+lAextU(}0dX=^r[u(t+Q)+u(t-0)'] in E.

The convergenceis uniform in t on any bounded intervalof continuityof u.

Appendix C The resonance theorem

Let X, Y be normed linear spaces over the same scalar fieldand let L(X, Y)

be the space of bounded (continuous) linear operators on X into Y.

Then we have the following:

Theorem C (The resonance theorem). Let H be a subset of L(X, Y). If X

is a Banach space, then the boundedness of {||Tx||;Ts//} at each ig! implies

the boundedness of {＼＼T＼＼;T(eH}.

The material in Appendices B and C is standard and can be found in text-

books on functional analysis such as Yosida [71.
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