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APPROXIMATE SYSTEMS
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Abstract. Recently, S. Mardesi6, L. R. Rubin and T. Watanabe

have developed a theory of approximate inverse systems and appro-

ximate resolutions, providing thus a new tool to study topological

spaces. M. G. Charalambous then introduced a somewhat simpler

but more general notion of approximate system. Subsequently, S.

Mardesic showed, by a rather general and complicated construction,

that the two notions of approximate systems (approximate resolu-

tions) share all relevant properties of their limits (resolutions).

This paper presents a new and rather simple construction with

the same properties. Moreover, in the case of topologically com-

plete approximate resolutions, uniqueness up to isomorphisms is

established. At the end, it is indicated how one can extend this

construction onto approximate mappings.

1. Introduction

S. Mardesic, L. R. Rubin and T. Watanabe ([5], [7]) have developed a

theory of (gauged) approximate resolutions of spaces and mappings, which

allows successful study of topologically complete spaces using techniques of

(gauged and noncommutative) inverse systems and resolutions. A gauged ap-

proximate (inverse) system contains a prescribed collection of normal coverings,

called meshes, which controlls the noncommutativity of the bonding mappings

and it refines the relevant normal coverings.

Recently M. G. Charalambous ([1]) showed that one can study limits of

approximate systems of uniform spaces without meshes, Subsequently, S.

Mardesic ([4]) proved that, generally, gauging is not essential for objects, i.e.,

for approximate systems (resolutions) of Tychonoff (topologically complete)
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spaces. To a given nongauged approximate system X, he constructed an in-

duced gauged approximate system DC, showing that X and DC share all the

relevant limit and resolution properties.

This paper brings a new, more natural and much simpler construction of

an induced gauged approximate system. Moreover, in the case of topologically

complete approximate resolutions the uniqueness (up to isomorphism) of the

induced object is proved.

For the sake of completeness, let us brieflyrecall the main definitionsfrom

[71

(1.1) Definition. A (gauged) approximate (inverse) system is a collection

3C―(Xa, HJa, paa,, A) consisting of:

―a preordered set A=(A, <), which is directed and unbounded;

―for each a^A, a (topological)space Xa and a normal covering (mesh) HJa

of Xa;

―for each related pair a<a' in A, a (continuous) mapping paa> : Xa>―>Xa

(Paa = lxa is the identity mapping on Xa).

The data are to satisfy the following three conditions:

(Al) (paa'Pa'a", Paa-X^a whenever a<a'<a" ;

(A2) (＼/a<=A) (V<Ue £*≫(*,)) (3a'> a) (Va^a^a')

{PaaxPaxav Paai)<CU ',

(A3) (VflEX) WRJeiCo≫(Xa)) (Eo'>a) (Va">a') CUa,,<p-ala,,cU.

Here, for any two mappings /, g: X―>Y and any covering c＼?of Y, (/, g-)

<cv means that, for every xeZ, there exists a V^cv such that /(x) and g(,t)

belong to F. Instead of (/, g)<cV we shall often write f=cVg. For coverings

CL7,17' of X, CU/<CU means that £U/refines <U. COu(X) is the set of all normal

coverings of a space X. If X'gX and cU^lCov(X), then the star of X' with

respect to 1J is the set

sf(X',cU)=U{UeEcU＼X'nU^0}QX .

Recall that every VgCob(I) admits a 'U'eCo^X) such that ,t<iJ'={*t(U,V)＼

U'^.CU') belongs to Cov(X) and stHJ'KV. We inductively define st°cU=cU,stlcu

*t<U,･･･, sincU={st(U', V)＼U'G:,tn-lV}, neiV, which all belong to Co≫(X). The

above definition may be written as stncU=st(stn-lcU,V). (Somewhere stncUis

defined by stncU=st(stn~lcU)which only technically differs from the above).

(1.2) Definition. A (gauged) approximate system DC is called uniform
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provided condition

(AU) Va.KpalV, a<a',

is satisfied.
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(1.3) Definition. A (gauged) approximate map q from a space Y into a

(gauged) approximate sytem DC, q: Y―>DC, is any collection q= {qa＼a<=A}=-{qa)

of mappings qa: Y^Xa such that

(AS) For every a^A and every UeCo^IJ there exists an a'>a such

that (qa, paa''<ja')<V, whenever a">a'.

(1.4) Remark. Observe that in condition (AS) meshes do not appear. There-

fore, a more appropriate condition for a gauged approximate map q: Y―>DC

should be

{q,i,Paa'qa')<stCUa, CL<a'.

(Of course, the above condition and (A2), (A3) of DC imply (AS) for q.)

(1.5) Definition. A (gauged) approximate map p=(pa) '■X-+X is called a

limit of DC provided it has the following universal property:

(UL) For any approximate map q: Y―>3C there exists a unique mapping

g: Y-^X satisfying pag=qa, for every ae/1.

Since a limit space X is determined up to a unique homeomorphism, we

often speak of the limit X of DC and we write X=lim3C.

We adopt Theorem (2.8) from [7] as the definition of a gauged approximate

resolution of a soace.

(1.6) Definition. A gauged approximate resolution of a space X is any

approximate map p: X―>3£satisfying the following two conditions:

(Bl) (VUGCo.ffl) (3ae=A) (＼/a'<a) p'jHJo,<<=U ;

(B2) Wae=A) (3af>a) (Va">a') paa-{Xa,)Q,t(pa(X), Va).

A gauged approximate system 2C is said to be a gauged approximate resolu-

tion provided, there exist a topologically complete space X and a gauged appro-

ximate resolution n: X~^3C of X.

(1.7) Definition. A gauged approximate mapping f from a gauged appro-

ximate system DC to a gauged approximate system aj=(Yb, cvb, qw, B), f: 2C―+QJ,

is any collection f={f, fb＼b^B＼ consisting of a function /: B―>A and of map-
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pings fb: Xf(b)―>Yb,b^B, such that the followingconditionholds:

(AM) Wb<b' in B) (3a>f(b), fib')in A) (Va'>a)

(qbb'fb'Pf(b').a',fbPfW.a^^t^b ■

The set of allgauged approximate mappings from DC to 3/ is denoted by

APC3T, <y).

A gauged approximate mapping f: 3C―><yis called uniform, provided f

satisfiesthe additionalcondition

(AMU) cUfm<fbKcVb)) b^B.

(1.8) Definition. Let f, f'={f, f'b＼b^B} : 3f-><y be gauged approximate

mappings. We say that f is contiguous (or simply equivalent) to f, f=f,

provided, for each b^B, there exists an a<=A, a>f(b), f'{b),such that

(EM) (fbpfw.a', fbPfin.a-X'Wb, whenever a'>a.

The relation = generates an equivalence relation ~ on the set AP(3f, of).

The quotient set AP(3f, ≪/)/~ will be denoted by APpf, Qf＼,and the equi-

valence class of f by [f].

If f: 3C^QJ and gr= {g, gc＼c^C) : q/-≫2=(ZC, Wc, rccS C) are gauged appro-

ximate maps, where gris uniform, then the collection{gf, gcf g(c)|c<EC} deter-

mines the "composite" gauged approximate map gf : 3£^stZ*=(Zc, %fW, rcc>,C*),

where Z*=(ZC, "We,rcc.,C*) is the uniform system associated with % ([7], (1.6)

and (8.1)). By [7] (8.7), for any f＼X->Q} and g: QJ-+Z, where C is cofinite,

there exists a uniform a': y―^Z such that a'^g and g'f: 2£-*Z.

(1.9) The category APRES. The class of objects Ob(APRES) is formed by

all cofmite gauged approximate resolutions DC consisting of topologically com-

plete spaces. The set of morphisms APRES(3f, oj) is the set AP[3f, ≪/]. The

identity morphism 1^ on 3C is the class [I3?], where l%= {1a, lxa＼o.^A}^

AP(3f, 30). The existence of uniform representatives of morphisms and good

properties of the limit guarantee the existence of a well-defined composition in

APRES as well as its associativity([7] (8.10),(8.11),(8.12)).

We finallymention the criterion for isomorphisms in APRES obtained in

[8] (2.2).

(1.10) Let DC,≪/eEO6(APRES) and feAP(3f, <y) be given. Then [f] is an

isomorphism in APRES if and only if there exists an neJV0 such that, for every

b^B, there is an an<=A, ao> fib), such that, for any aeA there are a b'>b,
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an a'>a, f(b') and a mapping k : Yb>^Xa satisfying the following three con-

HiHrvns･

(AD) (fbpfw.akqb-b>, qbb*)<stncvb, whenever b">b';

(DA) (paa≫, kfb,pf<b'),a'>)<stncUa, whenever a">a';

(MU) <Vbl<k-＼HJay

We conclude this introduction with the definition of a non-gauged approxi-

mate inverse system (approximate resolution) as in [4], adding several nontrivial

examples of such systems.

(1.11) Definition. An approximate {inverse) system X is a collection

(Xa, Paa', A) consisting of:

―a preordered set A―{A, <), which is directed and unbounded ;

―for each a&A, a (topological) space Xa;

―for every related pair a<a', a (continuous) mapping paa, : Xa>-^Xa (paa

= lxa is tne identity mapping on Xa). Moreover, the following condition is

required:

(A) (Vae.4) (VUeCol7(Za)) (3ao>a) (V'a>'>a!>aa)

(Paa", Paa'Pa'a")<CU-

Note that (A)=(A2). The boldface characters denote approximate systems

in the sense of the above definition, while gauged approximate systems are

denoted by script characters.

(1.12) Definition. An approximate resolution of a space X is any approxi-

mate map p=(pa): X―>X―(Xa, paa-, A) satisfying the following two conditions:

(Rl) (VPePOL) (ycv^Cov{P)) (Vf:X-+P) (3a<=A) (＼/a'>a)

Bg:Xa.->P) (gpa-.fXW;

(R2) (VFePOL) (y<V<=cov(P)) (BcV'^Cov(P)) (VflGi) {Mg, g':Xa-*P)

(gpa, g'paKW^iiBa'Xi) Wa≫>a') (gpaa,,,g'paa-X^),

where POL denotes the class of all polyhedra (CW-topology).

An approximate system X is said to be an approximate resolution provided,

there exist a topologically complete space X and an approximate resolution

p: X-+X of X.

(1.13) Trivial examples, (a) Every usual (commutative) inverse system
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(resolution of a space X, [3]) is an approximate system (approximate resolution

of X). (This is not true neither for gauged approximate systems nor for

gauged approximate resolutions; see (1.14) below).

(b) Every gauged approximate system DC (gauged approximate resolution

p: X^DC of X), after forgetting of the meshes, becomes an approximate system

X (approximate resolution p: X―>X of X).

(c) Every approximate system (approximate resolution) X, which admits

gauges in the sense of [7](1.7)([7](3.4)),is an approximate system (approximate

resolution).

(1.14) Remark and nontrivial examples. One naturally asks if it is

possible to choose coverings HJa^Cov(Xa) such that a given approximate system

X=(Xa, paa', A) becomes a gauged approximate system 2£=(Xa, HJa, paa', A)?

If X is commutative, all Xa are compact metric and A is cofmite, the answer

is affirmative ([9](3.8),[7](1.8)). The same holds even without assuming com-

mutativity. However, the preorder of A has to be then slightly changed to

preserve condition (Al).

The following examples show that the answer to the above question is

negative even in the commutative case of compact Hausdorff or locally compact

metric (polyhedral) terms.

Let t be an uncountable cardinal number and let IT be the corresponding

Tychonoff cube. Then IT is compact Hausdorff but not metrizable. Take X=

(Xn, pnn', N), where Xn ―IT, for all n^N, and pnn- = ^ir, for all pairs ≪<;≪'.

Then X is a usual (commutative) inverse sequence, and thus, an approximate

system. Suppose that there exists a sequence of normal coverings HJn<=Cov(Xn),

neiV, such that 3C=(Xn, 1/n, pnn>, N) is a gauged approximate system. Then

(A3) implies that {<Ure|neiV} is a cofmal subfamily of Cov(Ir).

Claim. {1Jn＼n<^N} is a development of 7r, i.e., (see [2], p. 408), for

every xg/: and every neighbourhood VQ(x) in IT there exists an n^N such

that st(x,<!/,)£Vo- Indeed, let xg/1 and let Vo be any neighbourhood of x in

IT. Since /r is regular, there exists a neighbourhood U of x such that £/££/

SF0. Take F^/'W- Then q^= {Fo, FJ G^(/r). Choose a cj;'eCoi,(/r)

satisfying zi<V'<<=V. Then there exists a F'ecy' such that xe7' and *t(V',W)

gy0. Since {cUn＼n^N} is cofinalin Cov(IT), there is an neiVsuch that cUn<.cV'.

Consequently,

,t{x,vn)Qst(x, cv')^sKV', q^os^o

and the claim is proved.
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Now, since IT is collectionwise normal, the Bing metrization theorem ([2]

(5.4.1))implies metrizability of IT, which is a contradiction. Therefore, X does

not admit gauges.

In the same way, using collectionwisenormal non-metrizable spaces, one can

construct inverse sequences which do not admit gauges.

Another example in the (commutative) locally compact metric case is X―

(Xn, pan', N), where Xn = [0, l)QR, for every n, and pnn> is the identity map-

ping for every pair n^Ln'. Since Cov([0, 1)) has no countable cofinal subfamily

(compare [6], Examples 4 and 5), again (A3) cannot be fulfilledfor any choice

Of HJ^^CnnfX-). M =/V.

2. The main construction

There are various ways how to associate a gauged approximate system

with a non-gauged one. A very general construction of that kind was exhibited

by S. Mardesic in [4]. However, its main properties([4], Theorem 1) can also

be obtained by adapting a much simpler construction due to T. Watanabe ([9]

C3 7YI.

(2.1) Let X―(Xa, paa', A) be an approximate system. For each flGi

choose a cofinal subfamily Ca^Cov(Xa) of the minimal cardinality. Consider

the family J. = {{a, <U)＼ckeA, V^Ca}= ＼J({a} XCa). Define A = {X^JL＼0^X
a<=A

finite}and order it by inclusion. Then A is a directed, unbounded, cofiniteand

antisymmetric set. Therefore, there exists an increasing surjection s: A―*A

such that s({(a, cU)})=a, for every (a, 1/)e^. For each X<=A, define

XJ.=XsU) and Vf^ APalsu^^CoviXf),
i=l

whenever X={{au HJi),･･■,(an, HJn)}. Since s increases, the covering HJf is

well defined. Observe that cU%a,cU))= cu, for any (a, cU)eLi. For every pair

X<X' in A, put

P% = Pta),ta-i '･X% -^ X* .

Let us show that the collection(Xf, 1/J, p%, A) satisfiesconditions (A2)

and (A3) of Definition (1.1).

(A2). Let 1<=A and HJ^Cov(Xf=XsU)) be given. For s(X) and V, choose

an ao>s(/0 by (A) of X. Since s is an increasing surjection, there exists a

X'>X such that s(l')>a0. If ^2>^1>>?/, then s(X2)>sU0>sU')>^o and therefore,
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(A3). Let X^A, X={(a1, <UX), ■■■,(am, Vm)}, and let V(ECov(Xf=XsU)) be

given. Take a Vg^, refining *U and let X'=Xu{W), V)}. Then X'>X.

＼iX">X', i.e., X"={(a1, HJJ, ■■■, (am> <Vm), (s(X), V), (am+1, Vm+1), ■■■,{an, HJn)},

then

cVf.=(Apa1i.ia≫'>cUi)Ap7h.*U')tV'<p7U≫a'>cU

= ptf.ltU'<ptf.1<U.

(2.2) Let us define a new relation <* on A by putting X<.*A' provided

X=Xr, or l + l', 1<1' and {^1{>1{>1')

(Phir PhjfaX'V*, HJ^KiPXY'Vt.

Note that A<*X' implies X<Xr, and X<*X'<X" and 1^1' imply ^<*^. Since

the collection(X*, HJf, pfX',A) satisfies(A2) and (A3), A*=(A, <*) is a directed,

unbounded, cofiniteand antisymmetric set. Furthermore, the collection(Xf, 17f,

pfx1,A*) also satisfiesconditions (A2) and (A3). Moreover, it obviously satisfies

(Al) and (AU) too. Therefore, 3C*=(X*, HJf, p%, A*) is a uniform gauged

approximate system. Hence, we have proved the following theorem:

(2.3) Theorem. For every approximate system X={Xa, paa>, A) there exist

a gauged approximate system 2£*=(Xf, HJf, pfx<,A*) and a function s: A*-*A

having the following properties:

( i ) A* is cofiniteand antisymmetric;

(ii) s is increasing and surjective;

(iii) Xf=Xsa), for each X^A*, and p*x-―psa),sw), whenever 1<*1';

(iv) for any ae/1 and 1J<=Cov(Xa), there is a X^A* such that s(X)―a and

(v) 3C* is uniform.

A gauged system 3£* with properties (i)-(v)is said to be induced by X.

(2.4) Remark and Question. In the construction of a gauged approximate

system DC, associated with a given approximate system X, it is often convenient

to obtain DC with an indexing set of minimal cardinality. In the preceding

construction the entire family J'= U ({a}xCov(Xa)) would also do. However,
ap-A

3C*', obtained in that way, would have A*' as its indexing set and this set is,

in general, of a larger cardinality than A*. Moreover, A* even need not be

cofinal in A*'. Of course, the construction in (2.1) may also start with any

cofinal A'QA.
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The above consideration raises the following question : Let X―{Xa, paa>,A)

be an approximate system which does not admit gauges, and let 3£=(X'b,Vd,

p'w, B) be a gauged approximate system such that each X'b is an Xa and each

p'w is a paa'. Is it necessarily ＼B＼^＼A*＼(=＼Ji＼)? (Assume that Jl is ob-

tained via a cofinal A'^A and a cofinal Ca^Cov(Xa), a^A', all of minimal

cardinalities＼)

We now center our attention to the relation between a given approximate

map q: Y~>X and the induced (gauged) approximate map q*: Y^3C*, and vice

versa.

Let q=(qa)'. Y―>X be an approximate map from a space Y into an appro-

ximate system X. Define the collectionq*=(qf), by putting q*=qsU): Y-≫Xta)

=Xf, 1<^A*. Conversely, if a gauged approximate map q~{qx) '■Y―>X* is

given, define the collection q={qa), by putting qa=qa<,a)'■Y-*X^a)=Xa, a^A,

where a: A^A* is a section of s, i.e., sa=lA.

We say that q* is induced by q and that q is associated with q.

Observe that(q*)~= q : Y->Y, but in general (q)*^q :F->2T* (see(2.6)below).

As in [41, one can easily prove:

(2.5) (i) If q: Y-*Y is an approximate map, then the induced g*: Y-^2£ is

a gauged approximate map.

(ii) If q : Y-^X* is a gauged approximate map, then any associated q : Y-^2C

is an approximate map.

Since Theorem (2.3)in essence coincides with [4], Theorem 1, all the cor-

responding statements from [4] may be transferred to our 3£*,q*: Y^X* and

q: Y-+X. Therefore, we shall not repeat them. Only the following three

facts are not to be found in T41.

(2.6) Lemma. Let a gauged approximate map q : Y-^I£* be given. If in

the approximate system X all Xa are Tychonoff spaces, then (q)*=q, for any asso-

ciated n : Y―+X.

Proof. Note that{q)*―{qa≫u))'･Y-+X*, where a is a section of s. We must

prove that qaSa)=Qx, A<^A*. Since Xfsa)=Xia)=Xf, X<^A*, and all Xa are

Tychonoff spaces, it is sufficientto verify the following:

(V^G^I*) (VVe=Cov(XlU>)) {qa,u>, qiXV .

Indeed, by (AS) of q for X, as{X) and a V, stcu'<cu, there exists a 2'>*A, os(/L)
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(qx, Phqx'XV

(Qa≫U),Pfs(X),x,qx-XW .

Hence,

QasU)―V'Pfsa),X', QX

and consequently

pg{X),sW)Q?. = pf,x>, Qi =<V'Qx

p=

p=

(2.7) Let in an approximate system X allXa be Tychonoff spaces and let

(px): X―+3C*be an approximate map. Then p is a limitif and only if any

(Pa=Po(a))'-X-+X is a limit.

Proof. Since all Xa from X are Tychonoff spaces we may apply the an-

alogue of [4], Theorem 4 and our Lemma (2.6). Hence, p is a limit if and only

if (p)*=p is a limit.

In an analogous way one obtaines

(2.8) Let in an approximate system X allXa be Tychonoff spaces and let

p―(.pi):X~*2C*be an approximate map. Then p is a gauged approximate

resolutionof X if and only if any p=(pa = paU-,):X-+X is an approximate

resolutionof X.

3. The uniqueness of 3C*

The theorem below indicates which of the properties (2.3),(i)-(v),are "uni-

versal", i.e., essential in the theory of (gauged) approximate resolutions. As a

consequence, it assures the uniqueness (up to isomorphism) of the induced

gauged approximate resolution.

(3.1) Theorem. Let X={Xa, paaj, -4) be an approximate resolution consist-

ing of topologically complete spaces. Let 3C/―(X'b>cU'b,p'bb',B), T"―{X'^HJ'c,

Pec, C) be gauged approximate resolutions and let s': B-+A, s" : C―+A be func-

tions having the following properties:

( i) B and C are cofinite ;

(ii) s' and s" are increasing and surjective;

(iii) X'b=XS'lb), for each b<=B, p'bb'= Ps'ib).s'(b'),whenever b<br, X'c'=Xs≫tc),

for each c<=C and Pcc=Ps≪m,s>i<.c'), whenever c<c'.

Then X' is isomorphic to DC" in the category APRES.

Proof. First of all, note that the assumption on X and property (i) guar-
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antee that 3C', 3?*eO&(APRES). Since 2£*=(Xf, Vf, pfx>, A*) and s: A*^A

have all the above properties, if suffices to prove the theorem in the case 2£"

=2C*. Let u : A*-+A* be an increasing function denned by choosing a m(^)>*

>*>? such that su(X) satisfies condition (A) of X simultaneously, for s^O, ･･･,

sUft), s(X) and 1Jfv ■■■, 1Jfk, Vf respectively, where Xu ･･･, Xk are all the pre-

decessors of X in J* (such a function u exists, since A* is cofinite and s is

increasing and surjective). Furthermore, since s' is surjective, there exists a

function g: A*^B such that s'g=s. Then, su = s'gu: A*-+A. Take f―gu:

A*->B and

/^/^wU)!*^)―J^c-o.jitU) ･ ^/(/)=^≪u(/i) ―*Xslx)―Xf, A^A*.

Then, f―{f, fx＼X^A*} : IX^―>2?* is a gruged approximate map. Indeed, if any

A<*A' in A* are given, choose a b>f(X), f(X') in 5 and let a &'>& be given.

Then,

ph'fvP'f(D,b' ―Ph'P*.u(t>)lp'guU'),b'

―ps(X).sU')Ps(X').su<.X')Ps'gu(k"),s'<.b')

―<U*P≫U),iu(X')Psv,(.X'),s'W>―<U*P≫(X),t'(br)

―cUfPs(X),su(X)Psu(X),s'<.b')=
pA,u(X)s-pguU),b'

= fxPfU).b' ■

Therefore,

(Ph'fx'p/a'i.v, fiPfui.b'K'tVf,

which establishes condition (AM), for /eAP(3?', 3?*). We now apply (1.10) to

prove that [f] is an isomorphism in APRES. Take n ―l. If Z^A*, take bo=

f(Z) and let any b>b0 in 5 be given. Pick up a cUe6Vc6> (see (2.1)) refining

i/ftGCo^Z^^cs)) and then choose a ^'>*^ in /!*, such that (s'(b), HJ^Z'

and s(Z') satisfies condition (A) of X, for s'(b) and HJi Note that s(Zf)>s'(b)>

s'(bo)=s'f(Z)=s'gu(Z)=su(Z) in ^4. Choose a ft'>6, /(^') and take £=/V(&>.≪<;'> :

X?=X,(^,-*^≪'(6)=^6. Let any ^>*^ and 6*>6r be given. Then,

f Zp'fU),bkpT> X"―jt≫sC/i),su<.X)Psu(X),s'(6)/>≪'(6),sU ')P*U'),s(X≪)

― V*PsU),s'(b)Ps'(.b).s(X')Psa'),s(.X'>->

=z<UfPs(X).s(X')Ps<.X'),s<,X≫):=P*X'P*X''=1V*P*X''■

Hence,

(fxPfUi.bkP**", Ptx.)<*t<Vf,

which verifies condition (AD) for f. Furthermore,
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kf*'Pf(/.'),b" ― ps'(.b),$(i')Ps(l.
'),su(X')Psu(.X'),s' (6")

= V'b Ps' (b), su(X')Psu(X '),≪'(&")=cU'bPs'(b),s'(.b'') ―
pbb''

and consequently

(kfi-Pfa-).b', PL,)<sicu'b>

which proves condition (DA) for f. Finally, by (2.1),

eUf.<(p,>w.lu>>)-llV<(pl.ib),.w>)-lcU'b=k-lcU'b,

which verifies(MU) for f. This completes the proof of the theorem.

As an immediate consequence of Theorems (3.1)and (2.3) we get the follow-

ing corollary:

(3.2) Corollary. Let X―{Xa, paa', A) be an approximate resolution con-

sistingof topologically complete spaces and let DC* be its induced gauged appro-

ximate system.

( i) // 3C*' is induced by X via any cofinalA'^=A and C'aQCov(Xa), a<=A',

and any increasing surjection s': A*'-^A', then 2C*'= 3C* in APRES.

(ii) If X is obtained by omittng the gauges of an 36 belonging to APRES,

then 3C=3C* in APRES.

(iii) // X* is obtained by omitting the gauges of 3£* and if 3C** is induced

by X*, then DC**^3£* in APRES.

4. The induced gauged approximate mapping

In this section we briefly sketch an extension of the ^-construction .3?>-h>.3?*

onto approximate mappings f>->f*:3f*―><y*. First, we have to define a gene-

ralization of the notion of a gauged approximate mapping (1.7), suitable for the

nongauged case. A natural one is the following

(4.1) Definition. An approximate mapping f from an approximate system

X=(Xa, paa1, A) to an approximate system Y―(Yb) qw, B), f:X-*Y, is any

collection f={f, fb＼b^B＼ consisting of a function f ＼B-*A and of mappings

fb＼XfW-*Yb, b&B, such that the following condition holds:

(AM)* (V6e£) (ycv^CovWd) (3bo>b) (W>b) (3a>f(bQ), f(b'))

(＼/a'>a) (qbbofboPf(bo),a>,qwfb'Psw),a')<°^ ･

The set of all approximate mappings from X to Y is denoted by APCY, lr).

One can easily see that AP(3C, Q/)<=AP(X, Y), whenever X and Y are ob-

tained by omitting the meshes of DC and <y respectively.
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Secondly, as a natural generalization of (1.8) onto the nongauged case, we

define

(4.2) f~f'={f＼ f'b＼b(EB}: X->Y, provided the following condition is

satisfied:

(EM)* (Vb^B) (＼fc[/^Cov(Yb))(3bo>b) (W>b) (3a>f(b'), /'(&'))

(Va'>a) (fypfwi.a-, f'vPrw-i.a'XqdiFV).

The relation~ is indeed an equivalence relationon the set AP(Jf, Y).

The quotientset AP(X, F)/~ is denoted by AP[X, F], and the equivalence

classof f by [f].

Again an easy testingshows that,if X and F are 3C and <y without the

meshes respectively,then f^f : 3c->y implies f^f : X-*Y. Moreover, if B

is cofmite,then the converse also holds.

(4.3) Let f―{f, fb＼b^B) : X―>Y be an approximate mapping. Then the

formal composition

.1 / 1*
3C* ―> X ―> Y ―> <V*=(K*, q/*, q*M.,M*),

where 1 = {a, 1XJ a e A), 1* = {t,1F?(;U)＼pe M*}, <r:^4->J* is a section of

s: A*-+A and £:M*^B comes from the construction of <V*, defines the collec-

tion lfl*={aft, /i^IjUgM*}. It is easy to see that 3/1*: X*->F* (meshes

forgotten) is an approximate mapping. Using appropriate terminal shifts(see

[7], (7.4) and (7.5)),one can obtain a gauged approximate mapping v2v1(lfl*)

= f*: 3?*-><y*. Here, vi: M*-^M* is defined by means of (A2) and (A3) of <ij*r

which v2: M*^M* is defined by means of (AM)* of f.

This construction is natural and has functorial properties,i.e., f~f if and

only if f*~f'*, and 1*~1^*. The proof of these facts is rather long, but not

complicated, and we omit it.

Furthermore, if f:!£-^qj and g : <y -> Z are interpreted as f: X ―>Y and

g: Y-^Z respectively (meshes forgotten), then

whenever of: DC―>Z exists.

(4.4) The facts from the above allow to define the category APRES, with

the objects all cofiniteapproximate resolutions consisting of topologically com-

plete spaces, and with the sets of morphisms APRES(X, F) = AP[X*, F*]

(meshes forgotten). Moreover, if APRES is the category from [7], Theorem
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(8.12),then one can show that the meshes forgettingfunctor

F:APRES―> APRES, F{2£)=X and F([f])=[f],

is an equivalenceof categories.
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