A REMARK ON THE SECOND HOMOTOPY GROUPS OF COMPACT RIEMANNIAN 3-SYMMETRIC SPACES

By

Takashi KodA

Abstract

In order to calculate the second Stiefel-Whitney class of a 1-connected compact Riemannian 3 -symmetric space G / K by BorelHirzebruch's method, we have to know the second cohomology group $H^{2}\left(G / K, \boldsymbol{Z}_{2}\right) \cong \operatorname{Hom}\left(\pi_{2}(G / K), \boldsymbol{Z}_{2}\right)$. In this paper, we shall describe precisely the connected Lie subgroup K and calculate explicitly the second homotopy group $\pi_{2}(G / K)$ in terms of the roots of G.

1. Introduction

A. Gray [3] introduced the notion of Riemannian 3 -symmetric spaces which includes Hermitian symmetric spaces and he showed that every Riemannian 3symmetric space is a homogeneous almost Hermitian manifold with the canonical almost complex structure associated to the Riemannian 3 -symmetric structure. It is known that many compact Riemannian 3-symmetric spaces appear as the twistor spaces over even dimensional compact Riemannian symmetric spaces. So it is worth to study Riemannian 3 -symmetric spaces.

An oriented Riemannian manifold (M, g) is a spin manifold if and only if the second Stiefel-Whitney class $w_{2}(M)$ of M vanishes. There are many compact Riemannian 3 -symmetric spaces which are spin manifolds and also many ones which are not. Hence it seems interesting to determine compact Riemannian 3 -symmetric spaces which are spin manifolds.

In order to calculate the second Stiefel-Whitney classes of a smooth manifold M, we have to know the second cohomology group $H^{2}\left(M, Z_{2}\right)$. If M is 1-connected, $H^{2}\left(M, \boldsymbol{Z}_{2}\right)$ is isomorphic to the group $\operatorname{Hom}\left(\pi_{2}(M), \boldsymbol{Z}_{2}\right)$. In this paper, we shall calculate the second homotopy groups $\pi_{2}(M)$ of all 1-conncted compact irreducible Riemannian 3-symmetric spaces $M=G / K$ in terms of the roots of G, and in the course of its calculation, we shall describe presicely the

This research was partially supported by the Grant-in-Aid for Scientific Research (No. 03740022), the Ministry of Education, Science and Culture.

Received August 10, 1992. Revised January 13, 1993.
connected Lie subgroup K by the elementary method. We shall show the foll lowing theorem.

Theorem A. Let $M=G / K$ be a connected simply connected irreducible compact Riemannian 3-symmetric space with a G-invariant Riemannian metric, where G is a compact connected centerless simple Lie group and K is the connected Lie subgroup of G with Lie algebra $\mathfrak{f}=\mathfrak{g}^{\prime \prime}$ for some automorphism θ of \mathfrak{g} of order 3. Then K, the second homotopy group $\pi_{2}(M)$ and the second cohomology group $H^{2}\left(M, Z_{2}\right)$ are given by the following table.

REMARK. We can see that a 6 -dimensional connected, simply connected irreducible compact Riemannian 3 -symmetric space M is not a spin manifold if and only if $M=S O(5) /\{S O(2) \times S O(3)\}$ or $M=S p(2) / U(2)$. We are going to calculate $w_{2}(M)$ for all irreducible compact Riemannian 3-symmetric spaces in

Table 1

G	K	$\pi_{2}(G / K)$	$H^{2}\left(G / K, \boldsymbol{Z}_{2}\right)$
$\begin{gathered} S U(n) / \boldsymbol{Z}_{n} \\ \quad(n \geqq 2) \end{gathered}$	$\begin{gathered} S\left\{U\left(r_{1}\right) \times U\left(r_{2}\right) \times U\left(r_{3}\right)\right\} / Z_{n} \\ 0 \leqq r_{1} \leqq r_{2} \leqq r_{3}, \\ 0<r_{2}, \\ r_{1}+r_{2}+r_{3}=n \end{gathered}$	$\begin{aligned} & \boldsymbol{Z} \times \boldsymbol{Z} \\ & \text { if } r_{1}=0, n=2 \end{aligned}$	$\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$
		Z if $r_{1}=0, n \geqq 3$	Z_{2}
		$\begin{aligned} & \boldsymbol{Z} \times \boldsymbol{Z} \times \boldsymbol{Z} \\ & \text { if } r_{1}>0, n=3 \end{aligned}$	$\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$
		$\begin{aligned} & \boldsymbol{Z} \times \boldsymbol{Z} \\ & \text { if } r_{1}>0, n \geqq 4 \end{aligned}$	$\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$
$\begin{gathered} S O(2 n+1) \\ \quad(n \geqq 1) \end{gathered}$	$\begin{gathered} U(r) \times S O(2 n-2 r+1) \\ (1 \leqq r \leqq n) \end{gathered}$	Z	Z_{2}
$\begin{gathered} S p(n) / Z_{2} \\ (n \geqq 1) \end{gathered}$	$\begin{gathered} \{U(r) \times S p(n-r)\} / Z_{2} \\ \\ (1 \leqq r \leqq n) \end{gathered}$	Z	Z_{2}
$\begin{gathered} S O(2 n) / \mathbb{Z}_{2} \\ (n \geqq 3) \end{gathered}$	$\begin{gathered} \{U(r) \times S O(2 n-2 r)\} / Z_{2} \\ (1 \leqq r \leqq n) \end{gathered}$	$\begin{aligned} & Z \times Z \\ & \text { if } r=n-1 \end{aligned}$	$\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$
		$\begin{aligned} & Z \\ & \text { if } 1 \leqq r<n-1 \end{aligned}$	Z_{2}
		Z if $r=n$	Z_{2}

G		K	$\pi_{2}(G / K)$	$H^{2}\left(G / K, Z_{2}\right)$
G_{2}	$U(2)$		Z	\boldsymbol{Z}_{2}
F_{4}	$\left\{\operatorname{Spin}(7) \times T^{1}\right\} / \boldsymbol{Z}_{2}$		Z	Z_{2}
	$\left\{S p(3) \times T^{1}\right\} / Z_{2}$		Z	Z_{2}
E_{6} / Z_{3}	$\{S \sin (10) \times S O(2)\} / Z_{4}$		$Z_{4} \times \boldsymbol{Z}$	$\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$
	$\left\{\left[S(U(5) \times U(1)) / Z_{3}\right] \times S U(2)\right\} / Z_{2}$		$\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{5} \times \boldsymbol{Z}$	$\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$
	$\left\{\left[S U(6) / \boldsymbol{Z}_{3}\right] \times T^{1}\right\} / \boldsymbol{Z}_{2}$		$\boldsymbol{Z}_{2} \times \boldsymbol{Z}$	$\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$
	$\left\{[\operatorname{Spin}(8) \times S O(2)] / Z_{2} \times \operatorname{SO}(2)\right\} / \boldsymbol{Z}_{2}$		$\begin{aligned} \boldsymbol{Z} & \times \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2} \\ & \times \boldsymbol{Z} \times \boldsymbol{Z} \end{aligned}$	$\begin{aligned} & \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2} \\ & \quad \times \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2} \end{aligned}$
$E_{7} / \boldsymbol{Z}_{2}$	$\left\{E_{6} \times T^{1}\right\} / Z_{3}$		$Z_{3} \times \boldsymbol{Z}$	Z_{2}
	$\left\{\left[S U(2) \times(\operatorname{Spin}(10) \times S O(2)) / \boldsymbol{Z}_{2}\right] / \boldsymbol{Z}_{2}\right\} / \boldsymbol{Z}_{2}$		$\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2} \times \boldsymbol{Z}$	$\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$
	$\left\{[S O(2) \times \operatorname{Spin}(12)] / \boldsymbol{Z}_{2}\right\} / \boldsymbol{Z}_{2}$		$\boldsymbol{Z}_{2} \times \boldsymbol{Z}$	$\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$
	$S\{U(7) \times U(1)\} / Z_{2}$		$\boldsymbol{Z}_{2} \times \boldsymbol{Z}$	$\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$
E_{8}	$S O(14) \times S O(2)$		$\boldsymbol{Z}_{2} \times \boldsymbol{Z}$	$\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$
	$\left\{E_{7} \times T^{1}\right\} / Z_{2}$		Z	Z_{2}
G_{2}	$S U(3)$		0	0
F_{4}	$\{S U(3) \times S U(3)\} / Z_{3}$		Z_{3}	0
E_{6} / Z_{3}	$\{S U(3) \times S U(3) \times S U(3)\} /\left\{\boldsymbol{Z}_{3} \times \boldsymbol{Z}_{3}\right\}$		Z_{3}	0
E_{7} / Z_{2}	$\left\{S U(3) \times\left[S U(6) / \boldsymbol{Z}_{2}\right]\right\} / \boldsymbol{Z}_{3}$		Z_{3}	0
E_{8}	$\left\{S U(3) \times E_{6}\right\} / Z_{3}$		Z_{3}	0
	$S U(9) / Z_{3}$		Z_{3}	0
	G	K	$\pi_{2}(G / K)$	$H^{2}\left(G / K, \boldsymbol{Z}_{2}\right)$
$\operatorname{Spin}(8)$		$S U(3) / Z_{3}$	Z_{3}	0
		G_{2}	0	0
$\{L \times L \times L\} / Z$ where L is compact simple and simply connected and Z is its center embedded diagonally.		L / Z where L is embedded diagonally in $L \times L \times L$ and Z is its center.	$\left.L\right\|^{0}$	0

the forthcoming paper.

2. Preliminaries

Let G be a compact connected centerless simple Lie group and T be a maximal torus of G. We denote by g and t the Lie algebras of G and T respectively. Let $\Psi=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ be a simple root system of g with respect to 1 . Let σ be an automorphism of order 3 on G and put

$$
K=G^{\sigma}=\{g \in G \mid \sigma(g)=g\}
$$

We denote by $\mu=\sum_{j=1}^{l} m_{j} \alpha_{j}$ the maximal root. Let $v_{0}, v_{1}, \cdots, v_{l}$ be the vectors in 1 defined by

$$
v_{0}=0, \quad \alpha_{i}\left(v_{j}\right)=\frac{1}{m_{i}} \delta_{i j}
$$

In this paper, the simple roots of simple Lie algebras are numbered as follows:

e_{8}

J. A. Wolf and A. Gray [10] has given the complete classification of ($\mathrm{g}, \mathrm{d} \boldsymbol{\sigma}, \mathrm{f}$).

Theorem 2.1 [10]. Let φ be an inner automorphism of order 3 on a compact or complex simple Lie algebra g. Choose a Cartan subalgebra t and let $\Psi=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ be a simple root system of \mathfrak{g} with respect to t . Then φ is conjugate (up to inner automorphism of \mathfrak{g}) to some $\theta=\operatorname{Ad}(\exp 2 \pi \sqrt{-1} x)$ where $x=(1 / 3) m_{i} v_{i}$ with $1 \leqq m_{i} \leqq 3$ or $x=(1 / 3)\left(v_{i}+v_{j}\right)$ with $m_{i}=m_{j}=1$. A complete list of the possibilities for x is listed in the table below.

Theorem 2.2 [10]. Let θ be an outer automorphism of order 3 on a compact or complex simple Lie algebra \mathfrak{g}. Then ($\mathfrak{g}, \mathfrak{f}$) is one of Table 3.

Table 2

g	x	Ψ_{x}	g^{θ}
$\mathfrak{s u}(2)$	$\frac{1}{3} v_{1}$	empty	t^{1}
$\begin{aligned} & \mathfrak{B u} \mathfrak{u}(n) \\ & \quad n \geqq 3 \end{aligned}$	$\frac{1}{3} v_{i}$	$\begin{aligned} & \left\{\alpha_{1}, \cdots, \alpha_{i-1},\right. \\ & \left.\quad \alpha_{i+1}, \cdots, \alpha_{n-1}\right\} \end{aligned}$	$\mathfrak{s} \mathfrak{u}(i) \oplus \mathfrak{H} \mathfrak{u}(n-i) \oplus \mathrm{l}^{1}$
	$\begin{gathered} \frac{1}{3}\left(v_{i}+v_{j}\right) \\ i<j \end{gathered}$	$\begin{aligned} & \left\{\alpha_{1}, \cdots, \alpha_{i-1},\right. \\ & \quad \alpha_{i+1}, \cdots, \alpha_{j-1}, \\ & \left.\alpha_{j+1}, \cdots, \alpha_{n-1}\right\} \end{aligned}$	$\begin{aligned} & \mathfrak{\mathfrak { l } u (i) \oplus \mathfrak { H u } (j - i)} \\ & \quad \oplus \mathfrak{\mathfrak { u } (n - j) \oplus \mathfrak { t } ^ { 2 }} \end{aligned}$
$\begin{gathered} \mathfrak{g n}(2 n+1) \\ n \geqq 2 \end{gathered}$	$\frac{1}{3} v_{1}$	$\left\{\alpha_{2}, \cdots, \alpha_{n}\right\}$	$\mathfrak{s o}(2 n-1) \oplus \mathrm{t}^{1}$
	$\begin{gathered} \frac{2}{3} v_{i} \\ 2 \leqq i \leqq n \end{gathered}$	$\begin{aligned} & \left\{\alpha_{1}, \cdots, \alpha_{i-1},\right. \\ & \left.\quad \alpha_{i+1}, \cdots, \alpha_{n}\right\} \end{aligned}$	$\begin{aligned} & \mathfrak{s u}(i) \oplus \mathfrak{s p}(2(n-i)+1) \\ & \oplus \mathrm{t}^{1} \end{aligned}$
$\begin{aligned} & \mathfrak{Z p}(n) \\ & \quad n \geqq 2 \end{aligned}$	$\begin{gathered} \frac{2}{3} v_{i} \\ 1 \leqq i \leqq n-1 \end{gathered}$	$\begin{aligned} & \left\{\alpha_{1}, \cdots, \alpha_{i-1},\right. \\ & \left.\quad \alpha_{i+1}, \cdots, \alpha_{n}\right\} \end{aligned}$	$\begin{gathered} \mathfrak{z u}(i) \oplus \mathfrak{s p}(n-i) \\ \oplus \mathfrak{t}^{1} \end{gathered}$
	$\frac{1}{3} v_{n}$	$\left\{\alpha_{1}, \cdots, \alpha_{n-1}\right\}$	$\mathfrak{n} \mathfrak{n}(n) \oplus \mathrm{t}^{1}$

9	x	Ψ_{x}	g^{θ}
30(8)	$\frac{1}{3} v_{1}$	$\left\{\alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$	$\mathfrak{h u}(4) \oplus \mathrm{t}^{1}$
	$\frac{2}{3} v_{2}$	$\left\{\alpha_{1}, \alpha_{3}, \alpha_{4}\right\}$	$\begin{gathered} \mathfrak{z u}(2) \oplus \mathfrak{z u}(2) \\ \quad \oplus \mathfrak{z u}(2) \oplus \mathfrak{r}^{1} \end{gathered}$
	$\frac{1}{3}\left(v_{1}+v_{3}\right)$	$\left\{\alpha_{2}, \alpha_{4}\right\}$	$\mathfrak{h u}(3) \oplus \mathrm{t}^{2}$
$\begin{array}{r} \mathfrak{S o}(2 n) \\ n \geqq 5 \end{array}$	$\frac{1}{3} v_{1}$	$\left\{\alpha_{2}, \alpha_{3}, \cdots, \alpha_{n}\right\}$	$\mathfrak{s p}(2 n-2) \oplus \mathfrak{t}^{1}$
	$\frac{1}{3} v_{n}$	$\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n-1}\right\}$	$\mathfrak{z} \mathfrak{u}(n) \oplus \mathrm{t}^{1}$
	$\begin{gathered} \frac{2}{3} v_{i} \\ 2 \leqq i \leqq n-3 \end{gathered}$	$\begin{aligned} & \left\{\alpha_{1}, \cdots, \alpha_{i-1},\right. \\ & \left.\quad \alpha_{i+1}, \cdots, \alpha_{n}\right\} \end{aligned}$	$\begin{gathered} \mathfrak{R} \mathfrak{u}(i) \oplus \mathfrak{s p}(2 n-2 i) \\ \oplus \mathfrak{t}^{1} \end{gathered}$
	$\frac{1}{3}\left(v_{n-1}+v_{n}\right)$	$\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n-2}\right\}$	
g_{2}	v_{1}	$\left\{\alpha_{2},-\mu\right\}$	$\mathfrak{\zeta u}(3)$
	$\frac{2}{3} v_{2}$	$\left\{\alpha_{1}\right\}$	$\mathfrak{\mathfrak { u }}(2) \oplus \mathrm{t}^{1}$
f_{4}	$\frac{2}{3} v_{1}$	$\left\{\alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$	$\mathfrak{s p}(7) \oplus \mathrm{t}^{1}$
	v_{3}	$\left\{\alpha_{1}, \alpha_{2}, \alpha_{4},-\mu\right\}$	$\mathfrak{\mathfrak { u }}(3) \oplus \mathfrak{H} \mathfrak{u}(3)$
	$\frac{2}{3} v_{4}$	$\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$	$\mathfrak{R p}(3) \oplus \mathrm{t}^{1}$
e_{6}	$\frac{1}{3} v_{1}$	$\left\{\alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right\}$	$\mathfrak{3 0}(10) \oplus \mathrm{t}^{1}$
	$\frac{2}{3} v_{3}$	$\left\{\alpha_{1}, \alpha_{2}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right\}$	$\mathfrak{S u}(2) \oplus \mathfrak{y u}(5) \oplus \mathfrak{t}^{1}$
	$\frac{2}{3} v_{2}$	$\left\{\alpha_{1}, \alpha_{3}, \cdots, \alpha_{6}\right\}$	$\mathfrak{3 u}(6) \oplus \mathrm{t}^{1}$
	v_{4}	$\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{5}, \alpha_{6},-\mu\right\}$	$\mathfrak{s} \mathfrak{u}(3) \oplus \mathfrak{a r} \mathfrak{u}(3) \oplus \mathfrak{h} \mathfrak{u}(3)$
	$\frac{1}{3}\left(v_{1}+v_{6}\right)$	$\left\{\alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\}$	$\mathfrak{B l}(8) \oplus \mathrm{t}^{2}$

g	x	Ψ_{x}	g^{θ}
e_{7}	$\frac{1}{3} v_{1}$	$\left\{\alpha_{2}, \cdots, \alpha_{7}\right\}$	$\mathrm{e}_{6} \oplus \mathrm{t}^{1}$
	$\frac{2}{3} v_{2}$	$\left\{\alpha_{1}, \alpha_{3}, \cdots, \alpha_{7}\right\}$	$\mathfrak{B u}(2) \oplus \mathfrak{s p}(10) \oplus \mathfrak{r}^{1}$
	$\frac{2}{3} v_{6}$	$\left\{\alpha_{1}, \cdots, \alpha_{5}, \alpha_{7}\right\}$	$\mathfrak{g o}(12) \oplus \mathfrak{1}^{1}$
	$\frac{2}{3} v_{7}$	$\left\{\alpha_{1}, \cdots, \alpha_{6}\right\}$	$\mathfrak{h u}(7) \oplus \mathrm{r}^{1}$
	v_{3}	$\begin{aligned} & \left\{\alpha_{1}, \alpha_{2}, \alpha_{4}, \alpha_{5}\right. \\ & \left.\alpha_{6}, \alpha_{7},-\mu\right\} \end{aligned}$	$\mathfrak{z u}(3) \oplus \mathfrak{m} \mathfrak{u}(6)$
e_{8}	$\frac{2}{3} v_{1}$	$\left\{\alpha_{2}, \cdots, \alpha_{8}\right\}$	$\mathfrak{g l}(14) \oplus \mathrm{t}^{1}$
	$\frac{2}{3} v_{7}$	$\left\{\alpha_{1}, \cdots, \alpha_{6}, \alpha_{8}\right\}$	$\mathrm{e}_{2} \oplus \mathrm{I}^{1}$
	v_{6}	$\begin{aligned} & \left\{\alpha_{7},-\mu,\right. \\ & \left.\quad \alpha_{1}, \cdots, \alpha_{5}, \alpha_{8}\right\} \end{aligned}$	$\mathfrak{n l}(3) \oplus \mathrm{e}_{6}$
	v_{8}	$\left\{\alpha_{1}, \cdots, \alpha_{7},-\mu\right\}$	$\mathfrak{3 u}(9)$

Table 3

\mathfrak{g}	$\mathfrak{f}=\mathfrak{g}^{\boldsymbol{\theta}}$
$\mathfrak{Z D}(8)$	\mathfrak{g}_{2}
	$\mathfrak{\mathfrak { Z } (3)}$

3. Proof of the Main Theorem

By the universal coefficient theorem, we have an exact sequence

$$
0 \longrightarrow E x t\left(H_{1}(M, \boldsymbol{Z}), \boldsymbol{Z}_{2}\right) \longrightarrow H^{2}\left(M, \boldsymbol{Z}_{2}\right) \longrightarrow \operatorname{Hom}\left(H_{2}(M, \boldsymbol{Z}), \boldsymbol{Z}_{2}\right) \longrightarrow 0 .
$$

Since M is simply connected, we have $H_{1}(M, Z)=0$. Hence we have

$$
H^{2}\left(M, \boldsymbol{Z}_{2}\right) \cong \operatorname{Hom}\left(H_{2}(M, \boldsymbol{Z}), \boldsymbol{Z}_{2}\right) .
$$

Since M is 1 -connected, by Hurewicz Theorem (cf. Whitehead [9], p. 169), we have

$$
H_{2}(M, \mathscr{Z}) \cong \pi_{2}(M) .
$$

So, in order to prove our Main Theorem, we have only to calculate the second homotopy group $\pi_{2}(M)$.

The homotopy exact sequence of the principal K-bundle ($G, K, M=G / K$) is as follows:
$(3-1) \quad \pi_{2}(G) \longrightarrow \pi_{2}(G / K) \xrightarrow{f} \pi_{1}(K) \xrightarrow{h} \pi_{1}(G) \longrightarrow \pi_{1}(G / K) \longrightarrow \pi_{0}(K)$.
Let \tilde{G} and $Z(\tilde{G})$ be the universal covering group of G and the center of G, respectively. Then G is isomorphic to the quotient group $\tilde{G} / Z(\tilde{G})$. Since the second homotopy group of a simply connected compact simple Lie group \tilde{G} is trivial and $\pi_{2}(G) \cong \pi_{2}(\tilde{G})$, the homomorphism f is injective and $\pi_{2}(G / K) \cong \operatorname{lm} f=$ ker h. So we shall calculate the kernel of the homomorphism h.

Now we shall express $\pi_{1}(G) \cong Z(\tilde{G})$ in terms of the roots of \check{G}. Let T and \pm be a maximal torus of \tilde{G} and the Lie algebra of T, respectively. We denote by $\Psi=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ the simple root system of g with respect to t, and by exp: $g \rightarrow \tilde{G}$ the exponential map. The central lattice Λ_{1} and the unit lattice $\Lambda(\tilde{G})$ of \tilde{G} are defined by

$$
\begin{gathered}
\Lambda_{1}(\tilde{G})=\exp ^{-1}(Z(\tilde{G})), \\
\Lambda(\tilde{G})=\exp ^{-1}(e),
\end{gathered}
$$

respectively, where e denotes the identity element of \tilde{G}. We choose an $\operatorname{Ad}(\tilde{G})$ invariant inner product (,) on g . For each linear form $a \in t^{*}$, the element $\vec{a} \in t$ is defined by

$$
(\vec{a}, v)=a(v) \quad \text { for any } \quad v \in \mathrm{t},
$$

and for each root α, we define $\alpha^{*} \in \ddagger$ by

$$
\alpha^{*}=\frac{2 \vec{\alpha}}{(\alpha, \alpha)},
$$

where the inner product (a, b) of two linear forms a and b is defined by $(a, b)=$ (\vec{a}, \vec{b}). Then we have the following proposition (cf. [4] p. 479).

Proposition 3.1. Let \tilde{G} be a compact semisimple Lie group and $\Psi=$ $\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ the simple root system of \tilde{G} with respect to a maximal torus T of \tilde{G}. Then
(1) $Z(\tilde{G}) \cong \Lambda_{1}(\tilde{G}) / \Lambda(\tilde{G})$.
(2) $\Lambda_{1}(\tilde{G})=\left\{v \in t \mid \alpha_{j}(v) \in Z\right.$, for any $\left.j=1, \cdots, l\right\}$.
(3) Furthermore, if \tilde{G} is simply connected, then $\Lambda(G)=\boldsymbol{Z} \alpha_{1}{ }^{*}+\cdots+\boldsymbol{Z} \alpha_{l}{ }^{*}$.

By a straightforward calculation, we have

Proposition 3.2. The centers of $\operatorname{SU}(n), \operatorname{Spin}(n), \operatorname{Sp}(n), G_{2}, F_{4}, E_{6}, E_{7}$ and E_{8} are given as follows;

$$
\begin{aligned}
& Z(S U(n))=\left\{\left.\exp \left(\frac{j}{n} \sum_{i=1}^{n-1} i \alpha_{i}^{*}\right) \right\rvert\, j=0,1, \cdots, n-1\right\}, \\
& Z(\operatorname{Spin}(2 n+1))= Z(\operatorname{Spin}(2 n)) \\
&=\left\{\operatorname { e x p } \left(\frac{j}{2} \sum_{i=1}^{n-2} i \alpha_{i}{ }^{*}+\frac{j}{4}\left(n \alpha_{n-1}^{*}+(n-2) \alpha_{n}^{*}\right)\right.\right. \\
&\left.\left.+\frac{k(n-1)}{2}\left(\alpha_{n-1}^{*}+\alpha_{n}^{*}\right)\right) \mid j=0,1,2,3, k=0,1\right\}, \\
& Z(S p(n))=\{e\}, \\
& Z\left(G_{2}\right)=\{e\}, \\
& Z\left(F_{4}\right)=\{e\}, \\
& Z\left(E_{6}\right)=\left\{\left.\exp \left(\frac{j}{3}\left(\alpha_{1}^{*}+2 \alpha_{3}^{*}+\alpha_{5}^{*}+2 \alpha_{6}^{*}\right)\right) \right\rvert\, j=0,1,2\right\}, \\
& Z\left(E_{7}\right)=\left\{\left.\exp \left(\frac{j}{2}\left(\alpha_{1}^{*}+\alpha_{3}^{*}+\alpha_{7}^{*}\right)\right) \right\rvert\, j=0,1\right\}, \\
& Z\left(E_{8}\right)=\{e\} .
\end{aligned}
$$

In the case where \tilde{G} is a classical Lie group or $Z(\tilde{G})=1$, then we may calculate $\pi_{2}(G / K)$. So we shall deal with the case where $\tilde{G}=E_{6}$ or E_{7}.

First we shall show the following lemma.
Lemma 3.3. Let \mathfrak{f} be the Lie algebra of a connected Lie group \tilde{K}. Suppose \mathfrak{f} is a direct sum $\mathfrak{f}_{1} \oplus \mathfrak{f}_{2}$ of two ideals \mathfrak{f}_{1} and \mathfrak{f}_{2}. We denote by \tilde{K}_{i} the connected Lie subgroup of \tilde{K} of Lie algebra $\mathfrak{\varkappa}_{i}(i=1,2)$. Then \tilde{K} is isomorphic to the quotient group $\tilde{K}_{1} \times \tilde{K}_{2} / \tilde{K}_{1} \cap \tilde{K}_{2}$.

Proof. For any $X \in f_{1}, Y \in \mathfrak{f}_{2}$,

$$
\begin{aligned}
\exp Y \exp X(\exp Y)^{-1} & =\exp (A d(\exp Y) X) \\
& =\exp \left(e^{a d(Y)} X\right) \\
& =\exp X
\end{aligned}
$$

Hence we have $k_{1} k_{2}=k_{2} k_{1}$, for any $k_{1} \in \tilde{K}_{1}, k_{2} \in K_{2}$. We consider the homomorphism $\pi: \tilde{K}_{1} \times \tilde{K}_{2} \rightarrow \tilde{K}$ defined by $\pi\left(k_{1}, k_{2}\right)=k_{1} k_{2}$. Since

$$
\begin{aligned}
\operatorname{ker} \pi & =\left\{\left(k_{1}, k_{2}\right) \in \tilde{K}_{1} \times \tilde{K}_{2} \mid k_{1} k_{2}=e\right\} \\
& =\left\{\left(k, k^{-1}\right) \in \tilde{K}_{1} \times \tilde{K}_{2} \mid k \in \tilde{K}_{1} \cap \tilde{K}_{2}\right\}
\end{aligned}
$$

$$
\cong \tilde{K}_{1} \cap \tilde{K}_{2}
$$

we obtain the lemma.
In the sequel, we shall adopt the following notation. Let $p: \tilde{G} \rightarrow G$ be the universal covering group of compact Lie group G, and \tilde{K} (resp. K) the connected Lie subgroup of \tilde{G} (resp. G) generated by the Lie subalgebra i. We denote by $\pi: \bar{K} \rightarrow \tilde{K}$ the universal covering group of \tilde{K}. Let $\bar{\gamma}: I \rightarrow \bar{K}$ be a path with $\bar{\gamma}(1) \in(p \circ \pi)^{-1}(e)$. We define a loop γ at e in K by $\gamma=p \circ \pi \circ \bar{\gamma}$. By the unique lifting property, the curve $\tilde{\gamma}:=\pi \circ \bar{\gamma}$ is the lifting of γ starting at the identity of \tilde{K}.

Case (E6-1) $\mathrm{g}=\mathrm{e}_{6}, x=(1 / 3) v_{1}$.
Take a direct sum decomposition of 1 by the following two ideals;

$$
\begin{aligned}
& \mathfrak{f}_{1}=[\mathfrak{l}, \mathfrak{l}] \cong \mathfrak{Z g}(10), \\
& \mathfrak{f}_{2}=\boldsymbol{R}\left(4 \alpha_{1}^{*}+3 \alpha_{2}^{*}+5 \alpha_{3}^{*}+6 \alpha_{4}^{*}+4 \alpha_{5}^{*}+2 \alpha_{6}^{*}\right) .
\end{aligned}
$$

Put

$$
\begin{aligned}
& v_{1}=\frac{1}{2}\left(\alpha_{2}^{*}+\alpha_{3}^{*}\right), \\
& w_{1}=\frac{1}{4}\left(3 \alpha_{2}^{*}+5 \alpha_{3}^{*}+2 \alpha_{4}^{*}+2 \alpha_{6}^{*}\right), \\
& v_{2}=4 \alpha_{1}^{*}+3 \alpha_{2}^{*}+5 \alpha_{3}^{*}+6 \alpha_{4}^{*}+4 \alpha_{5}^{*}+2 \alpha_{6}^{*} .
\end{aligned}
$$

Then $\left\{w_{1}\right\}$ forms a basis of $\Lambda_{1}\left(\widetilde{K}_{1}\right)$. We have

$$
\begin{aligned}
Z\left(\tilde{K}_{1}\right) & =\left\{\exp \left(k w_{1}\right) \mid k=0,1,2,3\right\} \cong \boldsymbol{Z}_{4}, \\
\tilde{K}_{1} & =\operatorname{Spin}(10) .
\end{aligned}
$$

Since the intersection $\tilde{K}_{1} \cap \tilde{K}_{2}$ is equal to $\left\{\exp (k / 4) v_{2} \mid k=0,1,2,3\right\}$, we have

$$
\tilde{K}=\{S p i n(10) \times S O(2)\} / Z_{4} .
$$

If we put $\Gamma=Z(G) \cap \tilde{K}$, then K is isomorphic to \tilde{K} / Γ. In our case,

$$
\begin{aligned}
K & \cong\left\{[\operatorname{Spin}(10) \times S O(2)] / \boldsymbol{Z}_{4}\right\} / \boldsymbol{Z}_{3} \\
& =\left\{\operatorname{Spin}(10) \times\left[S O(2) / \boldsymbol{Z}_{3}\right]\right\} / \boldsymbol{Z}_{4} \\
& =\{\operatorname{Spin}(10) \times S O(2)\} / \boldsymbol{Z}_{4} .
\end{aligned}
$$

Thus we have $\pi_{1}(K)=\boldsymbol{Z}_{3} \times \boldsymbol{Z}_{4} \times \boldsymbol{Z}$. We define paths $\bar{\gamma}_{j}(j=1,2,3)$ in $\bar{K}=\operatorname{Spin}(10)$ $\times \boldsymbol{R}$ by

$$
\bar{\gamma}_{1}(t)=\left(e, \frac{t}{3} v_{2}\right)
$$

$$
\begin{aligned}
& \bar{\gamma}_{2}(t)=\left(\exp \left(t w_{1}\right), 0\right), \\
& \bar{\gamma}_{3}(t)=\left(e, t v_{2}\right),
\end{aligned}
$$

so that the corresponding paths $\tilde{\gamma}_{1}, \tilde{\gamma}_{2}$ and $\tilde{\gamma}_{3}$ represent the generators ($1,0,0$), $(0,1,0)$ and $(0,0,1)$ of $\pi_{1}(K)$ respectively. It is easily seen that γ_{2} and γ_{3} are null-homotopic and γ_{1} is not. Therefore we have $\pi_{2}(G / K) \cong \operatorname{ker} h=\boldsymbol{Z}_{4} \times \boldsymbol{Z}$.

Case (E6-2) $\mathrm{g}=\mathrm{e}_{6}, x=(2 / 3) v_{3}$.
Take a direct sum decomposition of f by the following two ideals;

$$
\begin{aligned}
& \mathfrak{l}_{1}=[\mathfrak{f}, \mathfrak{t}] \cong \mathfrak{H u}(2) \oplus \mathfrak{B u}(5), \\
& \mathfrak{f}_{2}=\boldsymbol{R}\left(5 \alpha_{1}^{*}+6 \alpha_{2}^{*}+10 \alpha_{3}^{*}+12 \alpha_{4}^{*}+8 \alpha_{6}^{*}+4 \alpha_{6}^{*}\right) .
\end{aligned}
$$

Put

$$
\begin{aligned}
& v_{1}=\frac{1}{2} \alpha_{1}{ }^{*} \\
& w_{1}=\frac{1}{5}\left(4 \alpha_{2}^{*}+3 \alpha_{4}^{*}+2 \alpha_{6}^{*}+\alpha_{6}^{*}\right) \\
& v_{2}=5 \alpha_{1}{ }^{*}+6 \alpha_{2}^{*}+10 \alpha_{3}^{*}+12 \alpha_{4}^{*}+8 \alpha_{5}^{*}+4 \alpha_{6}^{*}
\end{aligned}
$$

Then $\left\{v_{1}, w_{1}\right\}$ forms a basis of $\Lambda_{1}\left(\tilde{K}_{1}\right)$. We have

$$
\begin{aligned}
Z\left(\tilde{K}_{1}\right) & =\left\{\exp \left(j v_{1}\right) \mid j=0,1\right\} \times\left\{\exp \left(k w_{1}\right) \mid k=0,1,2,3,4\right\} \\
& \cong \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{5} \\
& \cong Z(S U(2) \times S U(5)), \\
\tilde{K}_{1} & \cong S U(2) \times S U(5) .
\end{aligned}
$$

Since the intersection $\tilde{K}_{1} \cap \tilde{K}_{2}$ is equal to $\left\{\exp (k / 10) v_{2} \mid k=0,1, \cdots, 9\right\}=$ $\left\{\exp (j / 5) v_{2} \mid j=0,1,2,3,4\right\} \times\left\{\exp (k / 2) v_{2} \mid k=0,1\right\}$, we have

$$
\begin{aligned}
\tilde{K} & \cong\left\{S U(2) \times[S U(5) \times U(1)] / \boldsymbol{Z}_{6}\right\} / \boldsymbol{Z}_{2} \\
& \cong\{S U(2) \times S(U(5) \times U(1))\} / \boldsymbol{Z}_{2} .
\end{aligned}
$$

If we put $\Gamma=Z(\tilde{G}) \cap \tilde{K}$, then K is isomorphic to \tilde{K} / Γ. In our case,

$$
\begin{aligned}
K & \cong\left\{[S U(2) \times S(U(5) \times U(1))] / \boldsymbol{Z}_{2}\right\} / \boldsymbol{Z}_{3} \\
& =\left\{S U(2) \times\left[S(U(5) \times U(1)) / \boldsymbol{Z}_{3}\right]\right\} / \boldsymbol{Z}_{2} .
\end{aligned}
$$

Thus we have $\pi_{1}(K)=\boldsymbol{Z}_{3} \times \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{5} \times \boldsymbol{Z}$. We define paths $\bar{\gamma}_{j}(j=1,2,3,4)$ in $\bar{K}=$ $\{S U(2) \times S U(5)\} \times \boldsymbol{R}$ by

$$
\bar{\gamma}_{1}(t)=\left(e, \frac{2 t}{3} v_{2}\right)
$$

$$
\begin{aligned}
& \bar{\gamma}_{2}(t)=\left(\exp \frac{1}{2} v_{2}, \frac{-t}{2} v_{2}\right), \\
& \bar{\gamma}_{3}(t)=\left(\exp \frac{1}{5} v_{2}, \frac{-t}{5} v_{2}\right), \\
& \bar{\gamma}_{4}(t)=\left(e, t v_{2}\right)
\end{aligned}
$$

so that the corresponding paths $\tilde{\gamma}_{1}, \tilde{\gamma}_{2}, \tilde{\gamma}_{3}$ and $\tilde{\gamma}_{4}$ represent the generators $(1,0$, $0,0),(0,1,0,0),(0,0,1,0)$ and $(0,0,0,1)$ of $\pi_{1}(\tilde{K})$ respectively. It is easily seen that γ_{2}, γ_{3} and γ_{4} are null-homotopic and γ_{1} is not. Therefore we have $\pi_{2}(G / K) \cong \operatorname{ker} h=\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{5} \times \boldsymbol{Z}$.

Case (E6-3) $\mathfrak{g}=\mathrm{e}_{6}, x=(2 / 3) v_{2}$.
Take a direct sum decomposition of \ddagger by following two ideals:

$$
\begin{aligned}
& \mathfrak{f}_{1}=[\mathfrak{f}, \mathfrak{f}] \cong \mathfrak{n} \mathfrak{u}(6), \\
& \mathfrak{f}_{2}=\boldsymbol{R}\left(\alpha_{1}^{*}+2 \alpha_{2}^{*}+2 \alpha_{3}^{*}+3 \alpha_{4}^{*}+2 \alpha_{6}^{*}+\alpha_{6}^{*}\right) .
\end{aligned}
$$

Put

$$
\begin{aligned}
& v_{1}=\frac{1}{6}\left(5 \alpha_{1}{ }^{*}+4 \alpha_{3}^{*}+3 \alpha_{4}^{*}+2 \alpha_{5}{ }^{*}+\alpha_{6}^{*}\right) \in \mathfrak{f}_{1}, \\
& v_{2}=\alpha_{1}{ }^{*}+2 \alpha_{2}{ }^{*}+2 \alpha_{3}{ }^{*}+3 \alpha_{4}^{*}+2 \alpha_{5}^{*}+\alpha_{6}{ }^{*} \in \mathfrak{f}_{2} .
\end{aligned}
$$

Then $\left\{v_{1}\right\}$ forms a basis of $\Lambda_{1}\left(\tilde{K}_{1}\right)$. We have

$$
\begin{aligned}
Z\left(K_{1}\right) & =\exp \Lambda_{1}\left(\tilde{K}_{1}\right) \\
& =\left\{\exp \left(j v_{1}\right) \mid j=0,1, \cdots, 5\right\} \\
& \cong Z_{6} \cong Z(S U(6)), \\
\tilde{K}_{1} & \cong S U(6) .
\end{aligned}
$$

Since the intersection $\tilde{K}_{1} \cap \tilde{K}_{2}$ is equal to $\left\{\exp \left((j / 2) v_{2}\right) \mid j=0,1\right\} \cong Z_{2}$, we have

$$
\tilde{K} \cong\left\{S U(6) \times T^{1}\right\} / \boldsymbol{Z}_{2} .
$$

If we put $\Gamma=Z(\tilde{G}) \cap \tilde{K}$, then K is isomorphic to \tilde{K} / Γ. In our case,

$$
K \cong\left\{\left[S U(6) / \boldsymbol{Z}_{3}\right] \times T^{1}\right\} / \boldsymbol{Z}_{2}
$$

Thus we have $\pi_{1}(K)=\boldsymbol{Z} \times \boldsymbol{Z}_{3} \times \boldsymbol{Z}_{2}$. We define paths $\bar{\gamma}_{j}(j=1,2,3)$ in $\bar{K}=S U(6)$ $\times \boldsymbol{R}$ by

$$
\begin{aligned}
& \bar{\gamma}_{1}(t)=\left(e, t v_{2}\right), \\
& \bar{\gamma}_{2}(t)=\left(\exp \left(2 t v_{1}\right), 0\right), \\
& \bar{\gamma}_{3}(t)=\left(\exp \frac{1}{2} v_{2},-\frac{t}{2} v_{2}\right),
\end{aligned}
$$

so that the corresponding paths $\tilde{\gamma}_{1}, \tilde{\gamma}_{2}$ and $\tilde{\gamma}_{3}$ represent the generators $(1,0,0)$, $(0,1,0)$ and $(0,0,1)$ of $\pi_{1}(\tilde{K})$ respectively. It is easily seen that γ_{1} and γ_{3} are null-homotopic and γ_{2} is not. Therefore we have $\pi_{2}(G / K) \cong \operatorname{ker} h=\boldsymbol{Z} \times \boldsymbol{Z}_{2}$.

Case (E6-4) $g=e_{6}, x=v_{4}$.
The center of \mathfrak{f} is 0 , and \mathcal{L} is semisimple. We denote by $\alpha_{0}=-\mu$ the negative of the maximal root. Then we have

$$
\begin{aligned}
& Z(\tilde{K})=\left\{\left.\exp \frac{j}{3}\left(\alpha_{1}^{*}+2 \alpha_{3}^{*}\right) \right\rvert\, j=0,1,2\right\} \times\left\{\left.\exp \frac{k}{3}\left(\alpha_{5}^{*}+2 \alpha_{6}^{*}\right) \right\rvert\, k=0,1,2\right\} \\
& \cong \boldsymbol{Z}_{3} \times \boldsymbol{Z}_{3}, \\
& \tilde{K} \cong\{S U(3) \times S U(3) \times S U(3)\} / \boldsymbol{Z}_{3},
\end{aligned}
$$

If we put $\Gamma=\boldsymbol{Z}(\tilde{G}) \cap \tilde{K}$, then K is isomorphic to \tilde{K} / Γ. In our case

$$
K \cong\{S U(3) \times S U(3) \times S U(3)\} /\left\{\boldsymbol{Z}_{3} \times \boldsymbol{Z}_{3}\right\} .
$$

Thus we have $\pi_{1}(K) \cong \boldsymbol{Z}_{3} \times \boldsymbol{Z}_{3}$. We define paths $\bar{\gamma}_{j}(j=1,2)$ in $\bar{K}=S U(3) \times S U(3)$ $\times S U(3)$ by

$$
\begin{aligned}
& \bar{\gamma}_{1}(t)=\left(\exp \frac{t}{3}\left(\alpha_{1}^{*}+2 \alpha_{3}^{*}\right), \exp \frac{t}{3}\left(\alpha_{0}^{*}+2 \alpha_{2}^{*}\right), \exp \frac{2 t}{3}\left(\alpha_{5}^{*}+2 \alpha_{6}^{*}\right)\right), \\
& \bar{\gamma}_{2}(t)=\left(\exp \frac{t}{3}\left(\alpha_{1}^{*}+2 \alpha_{3}^{*}\right), e, \exp \frac{t}{3}\left(\alpha_{5}^{*}+2 \alpha_{6}^{*}\right)\right)
\end{aligned}
$$

so that the corresponding paths $\tilde{\gamma}_{1}$ and $\tilde{\gamma}_{2}$ represent the generators (1,0) and $(0,1)$ of $\pi_{1}(\tilde{K})$ respectively. It is easily seen that γ_{1} is null-homotopic and γ_{2} is not. Therefore we have $\pi_{2}(G / K) \cong \operatorname{ker} h=\boldsymbol{Z}_{3}$.

Case (E6-5) $\mathfrak{g}=\mathrm{e}_{6}, x=(1 / 3)\left(v_{1}+v_{6}\right)$.
Take a direct sum decomposition of $£$ by the following two ideals:

$$
\begin{aligned}
& \mathfrak{f}_{1}= {[\mathfrak{f}, \mathfrak{f}] \cong \mathfrak{j v}(8), } \\
& \mathfrak{f}_{2}=\boldsymbol{R}\left(4 \alpha_{1}{ }^{*}+\alpha_{2}{ }^{*}+3 \alpha_{3}^{*}+2 \alpha_{4}^{*}-2 \alpha_{6}^{*}\right) \\
& \oplus \boldsymbol{R}\left(-2 \alpha_{1}^{*}-\alpha_{3}^{*}+\alpha_{5}^{*}+2 \alpha_{6}^{*}\right) .
\end{aligned}
$$

Put

$$
\begin{aligned}
& v_{1}=\frac{1}{2}\left(\alpha_{2}^{*}+\alpha_{3}^{*}\right), \\
& w_{1}=\frac{1}{2}\left(\alpha_{2}^{*}+\alpha_{6}^{*}\right), \\
& v_{2}=4 \alpha_{1}{ }^{*}+\alpha_{2}^{*}+3 \alpha_{3}^{*}+2 \alpha_{4}^{*}-2 \alpha_{6} * \\
& w_{2}=-2 \alpha_{1}^{*}-\alpha_{3}^{*}+\alpha_{5}^{*}+2 \alpha_{6}{ }^{*} .
\end{aligned}
$$

Then $\left\{v_{1}, w_{1}\right\}$ forms a basis of $\Lambda_{1}\left(\tilde{K}_{1}\right)$. We have

$$
\begin{aligned}
Z\left(\tilde{K}_{1}\right) & =\left\{\exp \left(j v_{1}\right) \mid j=0,1\right\} \times\left\{\exp \left(k w_{1}\right) \mid k=0,1\right\} \\
& \cong Z_{2} \times \boldsymbol{Z}_{2} \\
& \cong Z(\operatorname{Sin}(8)), \\
\tilde{K}_{1} & \cong \operatorname{Spin}(8) .
\end{aligned}
$$

Since the intersection $\widetilde{K}_{1} \cap \tilde{K}_{2}$ is equal to $\left\{\exp (j / 2) v_{2} \mid j=0,1\right\} \times\left\{\exp (k / 2)\left(v_{2}+w_{2}\right) \mid k\right.$ $=0,1\}$, we have

$$
\tilde{K} \cong\left\{[\operatorname{Spin}(8) \times S O(2)] / Z_{2} \times S O(2)\right\} / Z_{2} .
$$

If we put $\Gamma=Z(G) \cap \tilde{K}$, then K is isomorphic to \tilde{K} / Γ. In our case,

$$
\begin{aligned}
K & \cong\left\{\left\{[\operatorname{Spin}(8) \times S O(2)] / \boldsymbol{Z}_{2} \times S O(2)\right\} / \boldsymbol{Z}_{2}\right\} / \boldsymbol{Z}_{3} \\
& =\left\{[\operatorname{Spin}(8) \times S O(2)] / \boldsymbol{Z}_{2} \times\left[S O(2) / \boldsymbol{Z}_{3}\right]\right\} / \boldsymbol{Z}_{2} \\
& =\left\{[\operatorname{Spin}(8) \times S O(2)] / \boldsymbol{Z}_{2} \times S O(2)\right\} / \boldsymbol{Z}_{2} .
\end{aligned}
$$

Thus we have $\pi_{1}(K) \cong \boldsymbol{Z}_{3} \times \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2} \times \boldsymbol{Z} \times \boldsymbol{Z}$. We define paths $\bar{\gamma}_{j}(j=1, \cdots, 5)$ in $\hat{K}=\operatorname{Spin}(8) \times \boldsymbol{R} \times \boldsymbol{R}$ by

$$
\begin{aligned}
& \bar{\gamma}_{1}(t)=\left(\exp \left(v_{1}+w_{1}\right), 0,-\frac{t}{6} w_{2}\right), \\
& \bar{\gamma}_{2}(t)=\left(\exp v_{1},-\frac{t}{2} v_{2}, 0\right), \\
& \bar{\gamma}_{3}(t)=\left(\exp w_{1},-\frac{t}{2} v_{2},-\frac{t}{2} w_{2}\right), \\
& \bar{\gamma}_{4}(t)=\left(e, t v_{2}, 0\right), \\
& \bar{\gamma}_{5}(t)=\left(e, 0, t w_{2}\right),
\end{aligned}
$$

so that the corresponding paths $\tilde{\gamma}_{1}, \tilde{\gamma}_{2}, \tilde{\gamma}_{3}, \tilde{\gamma}_{4}$ and $\tilde{\gamma}_{5}$ represent the generators $(1,0,0,0,0),(0,1,0,0,0),(0,0,1,0,0),(0,0,0,1,0)$ and $(0,0,0,0,1)$ of $\pi_{1}(\tilde{K})$ respectively. It is easily seen that $\gamma_{2}, \gamma_{3}, \gamma_{4}$ and γ_{5} are null-homotopic and γ_{1} is not. Therefore we have $\pi_{2}(G / K) \cong \operatorname{ker} h=\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2} \times \boldsymbol{Z} \times \boldsymbol{Z}$.

Case (E7-1) $\mathrm{g}=\mathrm{e}_{7}, x=(1 / 3) v_{1}$.
Take a direct sum decomposition of \mathfrak{t} by the following two ideals :

$$
\begin{aligned}
& \mathfrak{f}_{1}=\left[\mathfrak{f}, \mathfrak{\ell}^{*}\right] \cong \mathfrak{e}_{6}, \\
& \mathfrak{f}_{2}=\boldsymbol{R}\left(3 \alpha_{1}^{*}+4 \alpha_{2}^{*}+5 \alpha_{3}^{*}+6 \alpha_{4}^{*}+4 \alpha_{6}^{*}+2 \alpha_{6}^{*}+3 \alpha_{7}^{*}\right) .
\end{aligned}
$$

Put

$$
\begin{aligned}
& v_{1}=\frac{1}{3}\left(\alpha_{2}^{*}+2 \alpha_{3}^{*}+\alpha_{6}^{*}+2 \alpha_{6} *\right), \\
& v_{2}=\left(3 \alpha_{1}^{*}+4 \alpha_{2}^{*}+5 \alpha_{3}^{*}+6 \alpha_{4}^{*}+4 \alpha_{5}^{*}+2 \alpha_{6}^{*}+3 \alpha_{7}^{*}\right) .
\end{aligned}
$$

Then $\left\{v_{1}\right\}$ forms a basis of $\Lambda_{1}\left(\tilde{K}_{1}\right)$. We have

$$
\begin{aligned}
Z\left(\tilde{K}_{1}\right) & =\left\{\exp \left(j v_{1}\right) \mid j=0,1,2\right\} \cong Z_{3} \cong Z\left(E_{6}\right), \\
\widetilde{K}_{1} & \cong E_{6} .
\end{aligned}
$$

Since the intersection $\tilde{K}_{1} \cap K_{2}$ is equal to $\left\{\exp (k / 3) v_{2} \mid k=0,1,2\right\}$, we have

$$
\tilde{K} \cong\left\{E_{6} \times T^{1}\right\} / Z_{3} .
$$

If we put $\Gamma=Z(\tilde{G}) \cap K$, then K is isomorphic to \tilde{K} / Γ. In our case,

$$
\begin{aligned}
K & \cong\left\{\left[E_{6} \times T^{1}\right] / \boldsymbol{Z}_{3}\right\} / \boldsymbol{Z}_{2} \\
& =\left\{E_{6} \times\left[T^{1} / \boldsymbol{Z}_{2}\right]\right\} / \boldsymbol{Z}_{3} \\
& \cong\left\{E_{6} \times T^{1}\right\} / \boldsymbol{Z}_{3} .
\end{aligned}
$$

Thus we have $\pi_{1}(K) \cong \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{3} \times \boldsymbol{Z}$. We defined paths $\bar{\gamma}_{j}(j=1,2,3)$ in $\bar{K}=E_{6} \times$ \boldsymbol{R} by

$$
\begin{aligned}
& \bar{\gamma}_{1}(t)=\left(\exp \frac{1}{3}\left(\alpha_{2}^{*}+2 \alpha_{3}^{*}+\alpha_{5}^{*}+2 \alpha_{6}^{*}\right), \frac{t}{6} v_{2}\right), \\
& \bar{\gamma}_{2}(t)=\left(\exp \frac{1}{3}\left(\alpha_{2}^{*}+2 \alpha_{3}^{*}+\alpha_{6}^{*}+2 \alpha_{6}^{*}\right),-\frac{t}{3} v_{2}\right), \\
& \bar{\gamma}_{3}(t)=\left(e, t v_{2}\right),
\end{aligned}
$$

so that the corresponding paths $\tilde{\gamma}_{1}, \tilde{\gamma}_{2}$ and $\tilde{\gamma}_{3}$ represent the generators $(1,0,0)$, $(0,1,0)$ and $(0,0,1)$ of $\pi_{1}(\tilde{K})$ respectively. If is easily seen that γ_{2} and γ_{3} are null-homotopic and γ_{1} is not. Therefore we have $\pi_{2}(G / K) \cong \operatorname{ker} h=\boldsymbol{Z}_{3} \times \boldsymbol{Z}$.

Case (E7-2) $\mathfrak{g}=\mathrm{e}_{7}, x=(2 / 3) v_{2}$.
Take a direct sum decomposition of by the following two ideals:

$$
\begin{aligned}
& \mathfrak{f}_{1}=[\mathfrak{t}, \mathfrak{\ell}] \cong \mathfrak{j} \mathfrak{u}(2) \oplus \mathfrak{g n}(10), \\
& \mathfrak{f}_{2}=\boldsymbol{R}\left(2 \alpha_{1}{ }^{*}+4 \alpha_{2}^{*}+5 \alpha_{3}^{*}+6 \alpha_{4}{ }^{*}+4 \alpha_{5}^{*}+2 \alpha_{6}^{*}+3 \alpha_{7}^{*}\right) .
\end{aligned}
$$

Put

$$
\begin{aligned}
& v_{1}=\frac{1}{2} \alpha_{1}^{*} \\
& w_{1}=\frac{1}{4}\left(\alpha_{3}^{*}+2 \alpha_{4}^{*}+2 \alpha_{6}^{*}+3 \alpha_{7}^{*}\right), \\
& v_{2}=2 \alpha_{1}^{*}+4 \alpha_{2}^{*}+5 \alpha_{3}^{*}+6 \alpha_{4}^{*}+4 \alpha_{6} *+2 \alpha_{6} *+3 \alpha_{7}^{*}
\end{aligned}
$$

Then $\left\{v_{1}, w_{1}\right\}$ forms a basis of $\Lambda_{1}\left(\tilde{K}_{1}\right)$. We have

$$
\begin{aligned}
\boldsymbol{Z}\left(\tilde{K}_{1}\right) & =\left\{\exp \left(j v_{1}\right) \mid j=0,1\right\} \times\left\{\exp \left(k w_{1}\right) \mid k=0,1,2,3\right\} \\
& \cong \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{4} \\
& \cong Z(S U(2) \times \operatorname{Spin}(10)), \\
\widetilde{K}_{1} & \cong S U(2) \times \operatorname{Spin}(10) .
\end{aligned}
$$

Since the intersection $\widetilde{K}_{1} \cap \widetilde{K}_{2}$ is equal to $\left\{\exp (k / 4) v_{2} \mid k=0,1,2,3\right\}$, we have

$$
\begin{aligned}
K & \cong\left\{[S U(2) \times \operatorname{Spin}(10)] \times T^{1}\right\} / \boldsymbol{Z}_{4} \\
& \cong\left\{S U(2) \times\left[\operatorname{Spin}(10) \times T^{1}\right] / \boldsymbol{Z}_{2}\right\} / \boldsymbol{Z}_{2} .
\end{aligned}
$$

If we put $\Gamma=Z(\tilde{G}) \cap \tilde{K}$, then K is isomorphic to \tilde{K} / Γ. In our case,

$$
K \cong\left\{\left[S U(2) \times(S \sin (10) \times S O(2)) / \boldsymbol{Z}_{2}\right] / \boldsymbol{Z}_{2}\right\} / \boldsymbol{Z}_{2}
$$

Thus we have $\pi_{1}(K) \cong \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{4} \times \boldsymbol{Z}$. We define paths $\gamma_{j}(j=1,2,3)$ in $\bar{K}=\operatorname{SU}(2)$ $\times \operatorname{Sin}(10) \times \boldsymbol{R}$ by

$$
\begin{aligned}
& \bar{\gamma}_{1}(t)=\left(\exp \left(v_{1}\right), \frac{t}{2} v_{2}\right) \\
& \bar{\gamma}_{2}(t)=\left(\exp \left(v_{1}+w_{1}\right),-\frac{t}{4} v_{2}\right), \\
& \bar{\gamma}_{3}(t)=\left(e, t v_{2}\right)
\end{aligned}
$$

so that the corresponding paths $\tilde{\gamma}_{1}, \tilde{\gamma}_{2}$ and $\tilde{\gamma}_{3}$ represent the generators $(1,0,0)$, $(0,1,0)$ and $(0,0,1)$ of $\pi_{1}(\tilde{K})$ respectively. It is easily seen that γ_{2} and γ_{3} are null-homotopic and γ_{1} is not. Therefore we have $\pi_{2}(G / K) \cong \operatorname{ker} h=\boldsymbol{Z}_{4} \times \boldsymbol{Z}$.

Case (E7-3) $\mathfrak{g}=\mathrm{e}_{7}, \quad x=(2 / 3) v_{6}$.
Take a direct sum decomposition of f by the following two ideals:

$$
\begin{aligned}
& \mathfrak{I}_{1}=[\mathfrak{f}, \mathfrak{f}] \cong \operatorname{Son}(12), \\
& \mathfrak{f}_{2}=\boldsymbol{R}\left(\alpha_{1}^{*}+2 \alpha_{2}^{*}+3 \alpha_{3}^{*}+4 \alpha_{4}^{*}+3 \alpha_{5}^{*}+2 \alpha_{6}^{*}+2 \alpha_{7}^{*}\right) .
\end{aligned}
$$

Put

$$
\begin{aligned}
& v_{1}=\frac{1}{2}\left(\alpha_{1}^{*}+3 \alpha_{3}^{*}+3 \alpha_{5}^{*} *\right) \\
& w_{1}=\frac{1}{2}\left(\alpha_{5}^{*}+\alpha_{7}^{*}\right) \\
& v_{2}=\alpha_{1} *+2 \alpha_{2}^{*}+3 \alpha_{3}^{*}+4 \alpha_{4}^{*}+3 \alpha_{5}^{*}+2 \alpha_{6} *+2 \alpha_{7}^{*}
\end{aligned}
$$

Then $\left\{v_{1}, w_{1}\right\}$ forms a basis of $\Lambda_{1}\left(\tilde{K}_{1}\right)$. We have

$$
Z\left(\tilde{K}_{1}\right)=\left\{\exp \left(j v_{1}\right) \mid j=0,1\right\} \times\left\{\exp \left(k w_{1}\right) \mid k=0,1\right\}
$$

$$
\begin{aligned}
& \cong \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2} \\
& \cong Z(\operatorname{Spin}(12)), \\
\bar{K}_{1} & \cong \operatorname{Spin}(12) .
\end{aligned}
$$

Since the intersection $\widetilde{K}_{1} \cap \widetilde{K}_{2}$ is equal to $\left\{\exp (k / 2) v_{2} \mid k=0,1\right\}$, we have

$$
\tilde{K} \cong\left\{\operatorname{Spin}(12) \times T^{1}\right\} / \boldsymbol{Z}_{2} .
$$

If we put $\Gamma=Z(\tilde{G}) \cap \tilde{K}$, then K is isomorphic to \tilde{K} / Γ. In our case,

$$
K \cong\left\{[\operatorname{Spin}(12) \times S O(2)] / Z_{2}\right\} / Z_{2} .
$$

Thus we have $\pi_{1}(K) \cong \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2} \times \boldsymbol{Z}$. We define paths $\bar{\gamma}_{j}(j=1,2,3)$ in $\bar{K}=\operatorname{Spin}(12)$ $\times \boldsymbol{R}$ by

$$
\begin{aligned}
\bar{\gamma}_{1}(t) & =\left(\exp \frac{t}{2}\left(\alpha_{1}^{*}+\alpha_{3}^{*}+\alpha_{7}^{*}\right), 0\right), \\
\bar{\gamma}_{2}(t) & =\left(\exp \frac{1}{2} v_{2},-\frac{t}{2} v_{2}\right), \\
\bar{\gamma}_{3}(t) & =\left(e, t v_{2}\right)
\end{aligned}
$$

so that the corresponding paths $\tilde{\gamma}_{1}, \tilde{\gamma}_{2}$ and $\tilde{\gamma}_{3}$ represent the generators $(1,0,0)$, $(0,1,0)$ and $(0,0,1)$ of $\pi_{1}(\tilde{K})$ respectively. It is easily seen that γ_{2} and γ_{3} are null-homotopic and γ_{1} is not. Therefore we have $\pi_{2}(G / K) \cong \mathrm{ker} h=\boldsymbol{Z}_{2} \times \boldsymbol{Z}$.

Case (E7-4) $\mathfrak{g}=\mathfrak{e}_{7}, \quad x=(2 / 3) v_{7}$.
Take a direct sum decomposition of f by the following two ideals:

$$
\begin{aligned}
& \mathfrak{f}_{1}=[\mathfrak{f}, \mathfrak{f}] \cong \mathfrak{Z u}(7), \\
& \mathfrak{f}_{2}=\boldsymbol{R}\left(3 \alpha_{1}^{*}+6 \alpha_{2}^{*}+9 \alpha_{3}^{*}+12 \alpha_{4}^{*}+8 \alpha_{5}^{*}+4 \alpha_{6} *+7 \alpha_{7}^{*}\right) .
\end{aligned}
$$

Put

$$
\begin{aligned}
& v_{1}=\frac{1}{7}\left(\alpha_{1} *+2 \alpha_{2} *+3 \alpha_{3} *+4 \alpha_{4}^{*}+5 \alpha_{6}^{*}+6 \alpha_{6} *\right) \\
& v_{2}=\left(3 \alpha_{1}^{*}+6 \alpha_{2} *+9 \alpha_{3}^{*}+12 \alpha_{4}^{*}+8 \alpha_{6} *+4 \alpha_{6} *+7 \alpha_{7} *\right)
\end{aligned}
$$

Then $\left\{v_{1}\right\}$ forms a basis of $\Lambda_{1}\left(\tilde{K}_{1}\right)$. We have

$$
\begin{aligned}
Z\left(\tilde{K}_{1}\right) & =\left\{\exp \left(j v_{1}\right) \mid j=0,1, \cdots, 6\right\} \cong Z_{7} \cong Z(S U(7)) \\
\tilde{K}_{1} & \cong S U(7)
\end{aligned}
$$

Since the intersection $\tilde{K}_{1} \cap \tilde{K}_{2}$ is equal to $\left\{\exp (k / 7) v_{2} \mid k=0,1, \cdots, 6\right\}$, we have

$$
\tilde{K} \cong\left\{S U(7) \times T^{1}\right\} / Z_{7} \cong S\{U(7) \times U(1)\} .
$$

If we put $\Gamma=Z(\tilde{G}) \cap \tilde{K}$, then K is isomorphic to \tilde{K} / Γ. In our case,

$$
K \cong S(U(7) \times U(1)) / Z_{2} .
$$

Thus we have $\pi_{1}(K) \cong \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{7} \times \boldsymbol{Z}$. We define paths $\bar{\gamma}_{j}(j=1,2,3)$ in $\bar{K}=S U(7)$ $\times \boldsymbol{R}$ by

$$
\begin{aligned}
& \bar{\gamma}_{1}(t)=\left(e, \frac{t}{2} v_{2}\right), \\
& \bar{\gamma}_{2}(t)=\left(\exp \left(3 v_{1}\right),-\frac{1}{7} v_{2}\right), \\
& \bar{\gamma}_{3}(t)=\left(e, t v_{2}\right),
\end{aligned}
$$

so that the corresponding paths $\tilde{\gamma}_{1}, \tilde{\gamma}_{2}$ and $\tilde{\gamma}_{3}$ represent the generators ($1,0,0$), $(0,1,0)$ and $(0,0,1)$ of $\pi_{1}(\tilde{K})$ respectively. It is easily seen that γ_{2} and γ_{3} are null-homotopic and γ_{1} is not. Therefore we have $\pi_{2}(G / K) \cong \operatorname{ker} h=\boldsymbol{Z}_{2} \times \boldsymbol{Z}$.

Case (E7-5) $\quad \mathrm{g}=\mathfrak{e}_{7}, x=v_{3}$.
The center of \mathfrak{f} is 0 , and \mathfrak{f} is semisimple. We denote by $\mu=-\alpha_{0}$ the maximal root $\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+4 \alpha_{4}+3 \alpha_{5}+2 \alpha_{6}+2 \alpha_{7}$ of \mathfrak{g}. Put

$$
\begin{aligned}
v_{1} & =\frac{1}{3}\left(\alpha_{1} *+2 \alpha_{2} *\right), \\
w_{1} & =\frac{1}{6}\left(\alpha_{0} *+2 \alpha_{6} *+3 \alpha_{5}^{*}+4 \alpha_{4}^{*}+5 \alpha_{7}{ }^{*}\right) \\
& =\frac{1}{6}\left(-\alpha_{1} *-2 \alpha_{2}^{*}-3 \alpha_{3}^{*}+3 \alpha_{7} *\right) .
\end{aligned}
$$

Then $\left\{w_{1}\right\}$ forms a basis of $\Lambda_{1}(\tilde{K})$. We have

$$
\begin{aligned}
Z(\tilde{K}) & =\left\{\exp \left(k w_{1}\right) \mid k=0,1, \cdots, 5\right\} \cong \boldsymbol{Z}_{6}, \\
\tilde{K} \cong & \{S U(3) \times S U(6)\} / \boldsymbol{Z}_{3},
\end{aligned}
$$

If we put $\Gamma=Z(G) \cap \tilde{K}$, then K is isomrphic to \tilde{K} / Γ. In our case,

$$
\begin{aligned}
K & \cong\left\{[S U(3) \times S U(6)] / \boldsymbol{Z}_{3}\right\} / \boldsymbol{Z}_{2} \\
& =\left\{S U(3) \times\left[S U(6) / \boldsymbol{Z}_{2}\right]\right\} / \boldsymbol{Z}_{3} .
\end{aligned}
$$

Thus we have $\pi_{1}(K) \cong \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{3}$. We define paths $\bar{\gamma}_{j}(j=1,2)$ in $\bar{K}=S U(3) \times S U(6)$ by

$$
\begin{aligned}
& \bar{\gamma}_{1}(t)=\left(e, \exp \left(3 t w_{1}\right)\right), \\
& \bar{\gamma}_{2}(t)=\left(\exp \left(t v_{1}\right), \exp \left(2 t w_{1}\right)\right),
\end{aligned}
$$

so that the corresponding paths $\tilde{\gamma}_{1}$ the $\tilde{\gamma}_{2}$ represent the generators $(1,0)$ and $(0,1)$ of $\pi_{1}(\tilde{K})$ respectively. It is easily seen that γ_{2} is null-homotopic and γ_{1} is not. Therefore we have $\pi_{2}(G / K) \cong \operatorname{ker} h=Z_{3}$.

Acknowledgement The author wishes to express his sincere thanks to Professor K. Sekigawa for his hearty guidance and many valuable suggestions and to the referee for many valuable suggestions.

References

[1] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207.
[2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces l, Amer. J. Math. 30 (1958), 458-538.
[3] A. Gray. Riemannian manifolds with geodesic symmetries of order 3, J. Differential Geom. 7 (1972), 343-369.
[4] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.
[5] T. Koda, The first Chern classes of compact Riemannian 3-symmetric spaces, Math. Rep. Toyama Univ. 12 (1989), 113-138.
[6] T. Koda, The first Chern class of Riemmanian 3-symmetric spaces: the classical case, Note di Matematica 10 (1990), 141-156.
[7] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, 1972.
[8] M. Takeuchi, On Pontrjagin classes of compact symmetric spaces, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 9 (1961-63), 313-328.
[9] G.W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, New York, 1978.
[10] J. A. Wolf and A. Gray, Homogeneous spaces defined by Lie group automorphisms I, II, J. Differential Geom. 2 (1968), 77-114, 115-159.

Department of Mathematics,
Faculty of Science,
Toyama University,
Gofuku, Toyama 930, Japan

