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A REMARK ON THE SECOND HOMOTOPY GROUPS OF

COMPACT RIEMANNIAN 3-SYMMETRIC SPACES

By

Takashi Koda

Abstract. In order to calculate the second Stiefel-Whitney class of

a 1-connected compact Riemannian 3-symmetric space G/K by Borel-

Hirzebruch's method, we have to know the second cohomology group

H2{G/K, Z2) = Hom(n2(G/K), Z2). In this paper, we shall describe

precisely the connected Lie subgroup K and calculate explicitly the

second homotopy group x2(G/K) in terms of the roots of G.

1. Introduction

A. Gray [3] introduced the notion of Riemannian 3-symmetric spaces which

includes Hermitian symmetric spaces and he showed that every Riemannian 3-

symmetric space is a homogeneous almost Hermitian manifold with the canonical

almost complex structure associated to the Riemannian 3-symmetric structure.

It is known that many compact Riemannian 3-symmetric spaces appear as the

twistor spaces over even dimensional compact Riemannian symmetric spaces.

So it is worth to study Riemannian 3-symmetric spaces.

An oriented Riemannian manifold (M, g) is a spin manifold if and only if

the second Stiefel-Whitney class w2(M) of M vanishes. There are many compact

Riemannian 3-symmetric spaces which are spin manifolds and also many ones

which are not. Hence it seems interesting to determine compact Riemannian

3-symmetric spaces which are spin manifolds.

In order to calculate the second Stiefel-Whitney classes of a smooth mani-

fold M, we have to know the second cohomology group H2(M, Z2). If M is

1-connected, H2(M, Z2) is isomorphic to the group Hom(Kz(M), Z2). In this

paper, we shall calculate the second homotopy groups 7r2(M) of all 1-conncted

compact irreducible Riemannian 3-symmetric spaces M = G/K in terms of the

roots of G, and in the course of its calculation, we shall describe presicely the
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connected Lie subgroup K by the elementary method. We shall show the fol-

lowing theorem.

Theorem A. Let M=G/K be a connected simply connected irreducible

compact Riemannian Asymmetric space with a G-invariant Riemannian metric,

where G is a compact connected centerlesssimple Lie group and K is the connected

Lie subgroup of G with Lie algebra f=g° for some automorphism 0 of g of order

3. Then K, the second homotopy group x2(M) and the second cohomology group

H2{M, Z2) are given by the following table.

Remark. We can see that a 6-dimensional connected, simply connected

irreducible compact Riemannian 3-symmetric space M is not a spin manifold if

and only if M=S0(5)/{SO(2)xSO(3)＼ or M=Sp(2)/U(2). We are going to

calculate w2(M) for all irreducible compact Riemannian 3-symmetric spaces in

Table 1

SU(n)/Zn

(n^2)

S{U(ri)xU(rt)XU(rs)}/Zn

0<r2,

ri+r2+r3―n

ZxZ

if Tl=0, n=2

^2X £di

z

if ri=O, n^3

z,

ZxZxZ

if r1>0, n=3

Z2XZ2XZ2

zxz

if rx>0, n^4

/sXZ?

S0(2n + l)

(n^l)

U(r)XSO(2n-2r+l)

(l^r^n)

z z2

Sp(n)/Z2 {U(r)XSp(n-r)}/Z2 z z,

SO(2n)/Z2

(n^3)

{U(r)XSO(2n-2r)}/Z2 zxz

if r=n ―l

/sX ^2

z

if I<r<≪-1

z

2

z

if r=n

z,
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G K ^(G/K) HHG/K, Z2)

G2 U(2) z z,

F4 {Spin(7)XT1＼/Z2 z
z

2

{Sp(3)XT1＼/Zt z z2

E6/Zs {Spin(10)xSO(2)＼/Zi Z4XZ ZZXZ2

{[5(f/(5) X f/(l))/Z8] X SU(2)} /Zs j£i2X j£ikX & £j%X ^2

{[St/(6)/Z,]xT1}/Zl Z2XZ Z/o Xi^2

{LSpin(8)xSO(2)l/Z2XSO(2)}/Z2 Z3 XZ2XZ2

xZxZ XZ2XZ5

EJZo {EexTl＼/Z3 Z3XZ z,

{[SU(2) X (SpinaO) X SO(2))/Z2] /Z2＼/Z2 JJi X Ju<t X /ij J&2X ^2 X £t%

＼＼-SO(2)xSpin(12)l/Z2＼ /Z2 Z2XZ Jji X Jji

S{U(7)XU(1)}/Z2 ZoXZ £ii X £j%

Es SO(U)XSO(2) Z2XZ .Z^X £J2

{E.xT^/Z, z z2

G2 5(7(3) 0 0

F, ＼SU(3)xSU(3)}/Zz z, 0

EJZZ iSU(3) X SU(3) X SU(S)＼/{ZsXZ3＼ z3
0

EJZ2 {SU(3)x[SU(6)/Zzl}/Z3
＼z

≫

0

Es {SU(3)XEA/ZS z3
0

SU(9)/ZS za 0

G K 7t2(G/K) HHG/K, Z2)

Spin(8)

{LXLXL＼/Z

where L is compact simple

and simply connected and

Z is its center embedded

diagonally.

! SU(3)/Za

G2

LIZ

where L is embedded

diagonallyin LxLxL

and Z is its center.

0

0

0

0
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2. Preliminaries

Let G be a compact connected centerless simple Lie group and T be a

maximal torus of G. We denote by g and t the Lie algebras of G and T

respectively. Let W={au ■■･,a{＼be a simple root system of g with respect

to i. Let a be an automorphism of order 3 on G and put

K=G*={gt=G＼a(g)=g＼.

We denote by ^<=S}=i^≪y the maximal root. Let v0,vu ■■■,vt be the vectors

in t defined by

yo=O, ai{v,)-~dij.

In this paper, the simple roots of simple Lie algebras are numbered as follows:

8u(n)

§D(2n + l)

Sto(n)

So(2n)

92

Cs

e

1 I

o o

1

12 2 2

2 2 2 1
o o

≪1 #2

1 2

o o

≪1 ≪2

a≫-i

2

an

2 1

2 3

2 4 3 2

≪, a2 ≪s ≪4

12 3 2

1 2 3 4

1

3

6

2
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J.A. Wolf and A. Gray [10] has given the complete classification of

(0, da, I).

Theorem 2.1 [10]. Let <p be an inner automorphism of order 3 on a com-

pact or complex simple Lie algebra g. Choose a Cartan subalgebra 1 and let

W―{a1, ･･■,oti)be a simple root system of g with respect to t. Then <p is con-

jugate (up to inner automorphism of g) to some Q ―Ad (exp27r＼/―ix) where

x = (l/3)miVi with l^m,^3 or x = (l/3)(vi+Vj) with mi=mj=l. A complete list

of the possibilitiesfor x is listedin the table below.

Theorem 2.2 [10]. Let d be an outer automorphism of order 3 on a compact

or complex simple Lie algebra g. Then (g, I) is one of Table 3.

§u(2)

§u(n)

n^3

§o(2n + l)

n>2

§J>(n)

n>2

1

3^

1

~3Vi

i<j

1

2£i£n

1

Table 2

empty

ai+l, ･･■, an_i}

{au ･■■, eti-u

ai+1, ■■■, aj-u

aj+u ･･･ , an-i)

{a2, ･･･, an}

＼au ■■■,an-i＼

t1

§u(/)c§u(/-/)

0§u(n-i)ct2

§o(2n-l)ct1

§u(*)cSo(2(n-*) + l) ;

et1

%u(j)RSp(n-i)

ct1

suwet1
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§0(8) 1

3^
＼aZ) a3> aA suf^et1

2
{au at, a4} §u(2)c§u(2)

c§u(2)ci1

-o-CVi+Vs) {a2, ctA §u(3)0t2

§o(2n)

n>5

1

3^
{az, a3, ･･･, an) §o(2n-2)ci1

1

{au at, ･■･. anA SuCn)c!1

2

2<i<n-3

{alt ■■■,cti-i,

at+u ･･･, an]

8u(Oc8o(2n-2O

ct1

y(i>n_i+vB) {au at, ･･･, an-2} §it(n-l)0i2

92 Vi {≪2, ―a) §u(3)

2

W ^cet1

?4 2
{at, a%> aA somet1

v* {≪i, a2> at, ―a} §u(3)0§u(3)

2
{≪i, az, a3} BK3)c*1

e6
1

{a2, a,, at, as, ae＼ SodO)c!1

2
{au ≪2, ≪4, as, ae＼ Suf^eSufS)R!1

2
{au a3, ■■■,aA %u(6Wtl

Vi {au a2, a3, aB, ae, ―a} §u(3)c§u(3)0§u(3)

■o-fri+Ve) {a2, a3, aif a5} §o(8)0t2
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e7
1

V1 {a2, ■■■,a,} eeSt1

2
{ai, a3, ■■■,a-,} §u(2)c§o(lO)ci1

2

3^
{au ■■■, a5, an) socket1

2

3^
{cti, ■■■, (x6) §u(7)0t1

Vs {au at, a4> a5>

a,, a,, ―u)

§u(3)c§u(6)

e8
2

{az, ■■■,a8} S0U4)c!1

2
3^

{au ･･･, at, a8} e701x

^6 {a-,, ―fi,

au ■■■, a5, as}

§u(3)0e6

v8 {au ･･■, a7, ―a} Su(9)

Table 3

3. Proof of the Main Theorem

By the universalcoefficienttheorem, we have an exact sequence

0 ―> Ext{Hx(M, Z), Z2) ―> H＼M, Z2) ―> Hom(H2(M, Z), Z2) ―* 0.

Since M is simply connected,we have Hr{M, Z)=0. Hence we have

H＼M, Z2)= Hom(H2(M, Z), Z2).

Since M is 1-connected,by Hurewicz Theorem (cf. Whitehead [9], p. 169),we

have

H2(M, Z) = x2(M).
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So, in order to prove our Main Theorem, we have only to calculate the second

homotopy group 7C2(M).

The homotopy exact sequence of the principal /f-bundle (G, K, M = G/K)

is as follows:

/ h
(3-1) tt2(G)―* n2(G/K) ―> jtxC/O―> Tc.iG)―^ ^(G/K) -^ 7to(K).

Let G and Z{G) be the universal covering group of G and the center of G,

respectively. Then G is isomorphic to the quotient group G/Z(G). Since the

second homotopy group of a simply connected compact simple Lie group G is

trivialand 7T2(G)S7r2(G), the homomorphism / is injective and 7t2(G/K) = lmf=

ker h. So we shall calculate the kernel of the homomorphism h.

Now we shall express 7:1(G)= Z(G) in terms of the roots of G. Let T and

1 be a maximal torus of G and the Lie algebra of T, respectively. We denote

by W={alf ･■■,exi＼the simple root system of 9 with respect to i, and by exp:

q~^G the exponential map. The central lattice Ax and the unit lattice A(G) of

G are defined by

J1(G)=exp-1(Z(G)),

respectively,where e denotes the identityelement of G. We choose an Ad(G)-

invariantinner product ( , ) on g. For each linear form flGi*, the element

aGt is definedby

(a, v)=a(v) for any veEt,

and for each root a, we definea*et by

(1) Z(G)~A i(G)/A(G).

a*
2a

(a, a)

where the inner product {a, b) of two linear forms a and b is defined by (a, b)=

(a, b). Then we have the following proposition (cf. [4] p. 479).

Proposition 3.1. Let G be a compact semisimple Lie group and ＼=

{au ･･･,at＼the simple root system of G with respect to a maximal torus T of

G. Then

(2) A1(G)= {v^i＼aj(v)^Z, for any j=l, ･･･,/}.

(3) Furthermore,if G is simply connected,then A(G)=Za1*Jr ･･･+Zai*

By a straightforward calculation,we have
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Proposition 3.2. The centers of SU(n), Spin(n), Sp(n), G2> Fis E6, E7 and

Es are given as follows;

Z{SU{n))= {exp

Z(Spin(2n + l))=Z(Spin

(J-'lliai*)＼j=O, 1, -, n-ll

＼n t=i / J

(2n))

=Mi

Z{Sp{n))={e)

Z(G2)={e}

Z{Fi)={e]

+
k(n-

2~

"l}iai*+-?7-(nan-i*+(n-2)an*)

i=i 4

―(aB_i* + aB*))|/=O, 1, 2, 3, k=0, l}

Z(£6)={exp(-^(a1*+2as* + aB*+2a8*))|/=0, 1, 2}

Z(£7)={exp(-^-(≪1*+ a8* + ≪7*))iy=0, l},

Z(E8)={e}.

In the case where G is a classical Lie group or Z{G) ―1, then we may

calculate 7tz(G/K). So we shall deal with the case where G = E6 or E-,.

First we shall show the following lemma.

Lemma 3.3. Let t be the Lie algebra of a connected Lie group K. Suppose

f is a direct sum fi0!2 of two ideals fx and i2. We denote by Kt the connected

Lie subgroup of K of Lie algebra tt(i=l, 2). Then Kis isomorphic to the quotient

group RlxKs/R1nRt.

Proof. For any X^tlt Fef2,

expF exp^ (expF) ~1=exp (A d(expF )X)

=exp(ead(Y'X)

―expX.

Hence we have k1k2~k2ku for any k^Ku k2^K2. We consider the homomor-

phism tc: KiX K2-^K defined by 7t(ku k2)= k1k2. Since

kern={(klt k2)^K1xK2＼k1k2=e}

= {(k, k-^K.xK.lk^K.nK,}
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we obtain the lemma.

In the sequel, we shall adopt the following notation. Let p: G-^G be the

universal covering group of compact Lie group G, and K (resp. K) the con-

nected Lie subgroup of G (resp. G) generated by the Lie subalgebra !. We

denote by tc: K~^K the universal covering group of K. Let f: I-+K be a path

with f(l)^(p≫K)~＼e).We define a loop j at e in K by y=p°iz°j. By the

unique lifting property, the curve f:=n<>Y is the lifting of j starting at the

identity of K.

Put

Case (E6-1) g=e6, x=(l/3)vi.

Take a direct sum decomposition of I by the following two ideals;

f1=[f, !] = §o(lO),

Vi = ■7r(as* + at*)

y2=4a1*+3a2*+5a3*+6≪4*+4a5*+2≪6*.

Then {wt} forms a basis of Ai(Ki). We have

Z(R1)={exp(kw1)＼k=O, 1, 2, 3}=Z4,

Kx=Spin (10).

Since the intersection ^xn^2 is equal to {exp(k/4)v2＼k=0, 1, 2, 3}, we have

K= {Spin(lO) X 50(2)} /Z4.

If we put r = Z(G)r＼K, then K is isomorphic to K/F. In our case,

^= {.[S/wn(10)XSO(2)]/Z4}/Z8

= {S/≫'n(10)X[SO(2)/ZS]}/Z4

= {S/wn(10)XSO(2)}/Z4.

Thus we have ^(/()=Z3XZ4XZ. We define paths f/y=l, 2, 3)in K=Spin(W)

XR by

?i(t)=(e,yy2)
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f8(0=(exp(fu>i), 0),

7s(t)=(e, tv2),

so that the corresponding paths flt f2 and f3 represent the generators (1, 0, 0),

(0, 1, 0) and (0, 0, 1) of iCi{K) respectively. It is easily seen that y2 and y3 are

null-homotopic and jl is not. Therefore we have 7Z2(G/K)=ker h―ZiXZ.

Case (E6-2) g=e6, x=(2/3)v9.

Take a direct sum decomposition of I by the following two ideals;

!!=[!, !]ssu(2)c8u(5),

f2=JR(5ai*+6≪2*+10a3* + 12a4* +8a5*+4a6*).

Put

wx― ― (4a2*+3a,*+2a5* + a6*),
o

V2= 5a1*+6a2*+10a8* + 12a4*+8aB*+4a6*.

Then {^i, u^} forms a basis of Ai(K{). We have

Z(^)={exp(yvi)|y=0, 1} X {expC&^OI^O, l, 2, 3, 4}

= Z% X X^5

^Z(SU(2)XSU(5)),

K1^SU(2)XSU(5).

Since the intersection Kx D K2 is equal to {exp(£/10)v2| k = 0, 1, ･･･, 9} =

{exp(y/5)v8|y=0, 1, 2, 3, 4} X {exp(fe/2)i;2|* = 0, 1}, we have

K^ {SU(2)X[SU(5)xU(i)yZ&}/Z2

= {SU(2) X S(U(5) X £7(1))}/Z2.

If we put r=Z(G)nK, then if is isomorphic to K/F. In our case,

K^{[_SU(2)XS(U(5)XU(im/Z2}/Z3

= {SC7(2) X [S(L7(5) X £7(1))/Z8]}/Z2.

Thus we have 7:1(K)=ZSXZ2XZ5XZ. We define paths f>(; = l, 2, 3, 4) in /T-

{5f7(2)xS£7(5)}Xi2 by

fi(O=(e, -3-V2)..
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ft(f)=(exp-^v2, -g-^)

f8(f)=(exp-g-v8,-5-V2)

ft(t)=(e, tv≫),

so that the corresponding paths fx, f2, f3 and f4 represent the generators (1, 0,

0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1) of izx{K) respectively. It is easily

seen that y2, Tz and y4 are null-homotopic and j1 is not. Therefore we have

7:2(G/K) = ker h=Z2XZ5XZ.

Case (E6-3) g=e6, x=(2/3)v2.

Take a directsum decompositionof I by the followingtwo ideals:

f1=[f,f]s8u(6),

Put

Vl= _(5ai*+4a8*+3a4*+2a;B*+ae*)ef1,
D

V2=ai*+2a2*+2a3*+3aA*+2a5* + ae*tEf2.

Then {vi＼forms a basisof A^K^. We have

Z(/Q=expA(Ai)

= {exp(;Vl)|y=0,1, -,5}

sZ,sZ(Sl/(6)),

K^SUtf).

Since the intersectionK^Kz is equal to {exp((//2)v2)|/=0,1}=Z2, we have

J^={S/7(6)XT1}/Z2.

If we put r=Z(G)nK, then /Cis isomorphic to X/F. In our case,

K^itSlKV/ZaxT^/Zt.

Thus we have tt1(K)=ZxZ3XZ2. We definepaths f,(/=l, 2, 3)in K=SU(6)

XR by

fi(O=(e,^2),

f2(0=(exp(2^1),0),

fs(t)=(exp―v2, --g-va)
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so that the corresponding paths fu f2 and f8 represent the generators (1, 0, 0),

(0, 1, 0) and (0, 0, 1) of tz^K) respectively. It is easily seen that ft and ys are

null-homotopic and j2 is not. Therefore we have 7t2(G/K)=ker h=ZxZ2.

Case (E6-4) g=e6, x=v4.

The center of I is 0, and f is semisimple. We denote by cco=―pi the

negative of the maximal root. Then we have

Z(#) = {exp-ika1*+2a,*)|/=0, 1, 2}x{ exp ―(a&*+2a6*)＼k=0,

= Z% X Z% ,

#= [SU{3) X SU(3)X SU(3)}/Z,,

If we put F=Z(G)r＼K, then /C is isomorphic to K/F. In our case

K = {SU(3) X SU(3)X S£/(3)}/{Z3 X Zs}.

Thus we have tt1(K)=ZsxZ3. We definepathsf,(/=l, 2) in K=SU(3>)xSU(2)

XSU(3) by

f,(0=(exp|-(a;1*+2a8*), exp|-(≪0*+2a:2*), exp-y(≪5*+2a6*))

f2(0=(exp|-(≪1*+2a3*), e,exp|-(a5*+2a6*)),

so that the corresponding paths fx and f2 represent the generators (1, 0) and

(0, 1) of Xi(K) respectively. It is easily seen that yl is null-homotopic and jz

is not. Therefore we have 7t2(G/K)=kerh=Z3.

Put

Case (E6-5) g=e6, x=(l/3)(v1+ve).

Take a direct sum decomposition of f by the following two ideals:

f1=[f, !]sso(8),

f2=JR(4a1* + a2*+3a3*+2a4*-2a6*)

cig(-2≪1*-a3*+tf5*+2a6*).

Vi =

W2 =

-^-(aa^+as*),

4a1*+a2*+3a8*+2a4*-2ae*

―2≪i*―a3*-＼-a5*-Jr2ae*.
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Then {vx, wx} forms a basis of Ax(Ki). We have

Z(fo={exp(;i;1)|y=O, l}X{exp(kw1)＼k=Of 1}

==i&2X i&2

sZ(S/wn(8)),

Kx = Spirit).

Since the intersection K^Ki is equal to {exp(;72)y2|y=0, 1} X {exp(k/2)(vz+w2)＼k

=0, 1}, we have

K^{[Spin(8)XSO(2)yZ2xSO(2)}/Z2.

If we put F=Z(G)r＼K, then /T is isomorphic to K/F. In our case,

Ksz{{iSpin(&)XSO(2)yZsXSO(2)}/Zt}/Zt

= {[S/w'n(8)XSO(2)]/Z2X [SO(2)/Z3]}/Z2

= {[S/≫n(8)XSO(2)]/Z,xSO(2)}/Z2.

Thus we have 7r1(K)=Z3XZ2xZ2xZxZ. We define paths f/; = l, ･･･jS) in

K=Spin(8)XRxR by

fi(O=(exp(i;1+u;i), 0, --rw2)

f2(0=(expi;1, --g-^, o),

r8(O=^expu;1, --^vt, -~2W^)

Ut)=(e, tv2> 0),

?i(t)=(e, 0, twi),

so that the corresponding paths fu f2, f3, f4 and fB represent the generators

(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0) and (0, 0, 0, 0, 1) of iz^K)

respectively. It is easily seen that yit y3, y4 and yb are null-homotopic and yx

is not. Therefore we have nJG/K)=kerh=ZoXZ9.xZxZ.

Put

Case (E7-1) g=e7, *=(l/3)i>i.

Take a direct sum decomposition of ! by the following two ideals:

li=[!f qsc.,

fz=R(3a1*+4a2*+5as*+6ai*+4a5*+2ae*+3ai*).
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Vi= -^-(a2*+2a3*+aB*+2a6*),

v2=(3a1*+4a8*+5a,*+6a4*+4a6*+2ae*+3a7*).

Then {vx＼forms a basisof A(^i). We have

Z(Ai)={exp(yi;1)|y=O,1, 2}~Z3 = Z(Ee),

Since the intersectionKiC^K2 is equal to {exp(^/3)y2|^=0, 1,2}, we have

K={E,XT1}/ZZ.

If we put F―Z{G)r＼K, then /C is isomorphic to K/F. In our case,

= {£.X[TVZ,]}/Z,

Thus we have ^(if )^Z2XZ3XZ. We definedpaths f/y=l, 2,3) in K=E6X

R bv

f≫(0=(expj(a8*+2a8*+a8*+2a6*), ~jvt)

fs(O=(e, tva),

so that the corresponding paths ft, f2 and fs represent the generators (1, 0, 0),

(0, 1, 0) and (0, 0, 1) of nx{K) respectively. If is easily seen that ft and ft are

nuli-homotopic and ft is not. Therefore we have 7v2(G/K)=kerh=Z3XZ.

Case (E7-2) g=e7, x=(2/3)v2.

Take a direct sum decomposition of f by the following two ideals:

I1=[f, !]sSu(2)0So(lO),

f2=i2(2a1*+4a2*+5as*+6a4*+4aB*+2a6-i:+3≪7*).

Put

1 *

Wl= j(a,*+2ai*+2at*+Za1*),

V2=2a,*+4a8*+5aa*+6a4*+4a,*+2ae*+3a7*
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Then {vu u>J forms a basis of yfi(/Q. We have

Z(£1)={exp(/v1)|/=0, 1} X {exp(kw1)＼k=0, 1, 2, 3}

==^2X Jj4

^Z(S£/(2)XS/≪n(10)),

^1^S£7(2)XS/≫m(10).

Since the intersection Kxr＼Kt is equal to {exp(£/4)v2|k=0, 1, 2, 3}, we have

/Cs {[Sf/(2)x5/>m(10)]XT1}/Z4

s {Sf/(2)X[S/)m(10)xr1]/Z2}/Z2.

If we put r―Z{G)r＼K, then K is isomorphic to .K/i~'.In our case,

K={ [5/7(2)x(S/>m(10)XSO(2))/Z2]/Z2}/Z2.

Thus we have 7r1(/C)sZ2xZ4xZ. We define paths r//=l, 2, 3) in K=SU(2)

xSpin(lO)xR by

fi(O= (exp(i>,),yW)

f2(O=(exp(ui+u/i), --jV2)

Jz{t)=(e, tvs),

so that the corresponding paths fx, f2 and f3 represent the generators (1, 0, 0),

(0, 1, 0) and (0, 0, 1) of nx(K) respectively. It is easily seen that y2 and y3 are

null-homotopic and jx is not. Therefore we have 7T2(G//O=kerh=Z4XZ.

Case (E7-3) g=e7, x=(2/3)y6.

Take a direct sum decomposition of f by the following two ideals:

i1==[f, i]sbo(12),

f2=i2(a1*+2a2*+3a3*+4a4*+3a5*+2ae*+2a7*).

Put

i>!= y (ai*+3a3*+3a5*)

y2=≪1*+2≪2*+3a3*+4a4*+3a6*+2a6*+2≪7*

Then {vu w^) forms a basis of Ai{Ki). We have

Z(^1)={exp(;y1)iy:=0, l}x{&x.v{kw1)＼k=Q, 1}
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-Z(S/>m(12)),

Kx^SpinQZ).

Since the intersectionKxr＼K2is equal to {expO/2)v2|&=0, 1}, we have

K={Spin(12)XT1}/Z2.

If we put r=Z(G)nK, then K is isomorphic to K/F. In our case,

if= {[S/≪n(12)XSO(2)]/Z8}/Z8.

Thus we have ti1(K)^Z2XZ2xZ. We definepathsf/y=l, 2, 3)in K=Sptn(12)

XR by

fi(0=(exp-|(a1*+a8*+a7*), o)

f2(0=(exp―vs, --2V^)>

?*(!)=(e, tvt),

so that the corresponding paths f1, f2 and f3 represent the generators (1, 0, 0),

(0, 1, 0) and (0, 0, 1) of n^K) respectively. It is easily seen that j2 and j3 are

null-homotopic and yx is not. Therefore we have 7i2(G/K)^kerh―Z2XZ.

Case (E7-4) g=e7, x=(2/3)v7.

Take a direct sum decomposition of i by the following two ideals:

!i=P,qs 8u(7)f

t2=R(3a1*+6a2*+9a3*+l2ai*+8a!i*+4ae*+7a1*).

Put-

v,= y(a1*+2a2*+3a3*+4a4*+5aB*+6ae*)

v8=(3ai*+6a2*+9as*+12a4*+8aB*+4a6*+7a7*).

Then {vi} forms a basis of Ai(Kx). We have

Z(^1)={exp(yi;1)|j=0, 1,■-, 6}sZ7sZ(S£/(7)),

Since the intersection Kxr＼K2 is equal to {exp(&/7)v2|&:=0, 1,■･･,6}, we have

K= {SU(7)XT1} /Z^S {U(7)XU(1)＼.

If we put r=Z(G)r＼K, then K is isomorphic to K/F. In our case,
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AsS(£/(7)x£/(l))/Za.

Thus we have tt1(K)^Z2XZ1XZ. We define paths f//=l, 2,3) in K=SU(7)

XR by

fi(t)=(e, jv2y

fz(0= (exp(3vi), ~yv2)

Ut)=(e, tv2),

so that the corresponding paths fu f2 and f3 represent the generators (1, 0, 0),

(0, 1, 0) and (0, 0, 1) of Ki(K) respectively. It is easily seen that y2 and y3 are

null-homotopic and "jfiis not. Therefore we have 7i2(G/K)^kerh=Z2XZ.

Case (E7-5) g=e7, x=vs.

The center of f is 0, and ! is semisimple. We denote by ^=―a0 the

maximal root a1Jr2a2+3a3+^aA+3a5+2ae+2a7 of g. Put

u/1= ―(ao*+2a6*+3a6*+4a4*+5≪7*)
b

= ■7r(-al*-2a2*-3ai*-＼-3a,*).
o

Then {wx} forms a basis of AX{K). We have

Z(K)^={exp(kw1)＼k=0> 1, -, 5}sZ6)

ife{S£/(3)xS£/(6)}/Z3,

If we put F―Z{G)C＼K, then /C is isomrphic to K/F. In our case,

A"s {[S£/(3)xS£/(6)]/Z,}/Z2

= {S£7(3)X[Sf/(6)/Z,]}/Z,.

Thus we have ?r1(A:)sZ2xZ3. We define paths f//=l, 2) in K=SU(3)XSU(6)

by

fi(0=(e, expCS^O),

fa(0=(exp(ft;1),exp(2^x)),

so that the corresponding paths fx the f2 represent the generators (1, 0) and

(0, 1) of nx(K) respectively. It is easily seen that y2 is null-homotopic and yx

is not. Therefore we have 7i2(G/K)=ker h―Z3.
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