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§ 0. Introduction

The purpose of this paper is to give a direct proof of the Schwartz kernel
theorem for the Fourier hyperfunctions. The Schwartz kernel theorem for the
Fourier hyperfunctions means that with every Fourier hyperfunction K in
F(R™1 X R™) we can associate a linear map

K F(R™) —> F'(R™)
and vice versa, which is determined by
(Ko, $>=K(P&Ke), peF(R™M), pEF(R™).

For the proof we apply the representation of the Fourier hyperfunctions as the
initial values of the smooth solutions of the heat equation as in [3] which im-
plies that if a C=-solution U(x, ?) satisfies some growth condition then we can
assign a unique compactly supported Fourier hyperfunction u(x) to U(x, t) (see
Theorem 1.4). Also we make use of the following real characterizations of the
space F of test functions for the Fourier hyperfunctions in [1, 3, 51

[0%p(x)lexpk|x|
el

:’f:{goecw <o for some £, k>0}

sup
a,x

:{QJEC”IlSUDlsD(x)KCXDklx\<°°, Supl@(é)leXDh!E‘z<w
for some h, >0}

Also, we closely follow the direct proof of the Schwartz kernel theorem for
the distributions as in Hoérmander [2].

§ 1. Preliminaries

We denote by x=(x,, x,)R" for x,€R™ and x,R"™, and use the multi-
index notation; |a|=a,+ - +a,, 0%=0% -9 for a=(ay, -, a,)=N? where
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N is the set of nonnegative integers.
For feLR™) the Fourier transform / is defined by

f@=fetrax,  eeRrr.
We first give two equivalent definitions of the space ¢ of test functions for
the Fourier hyperfunctions in [1, 3, 5] as follows:
DEFINITION 1.1 ([3]). An infinitely differentiable function ¢ is in F(R") if
there are positive constants & and % such that QOEF,, x, Where

Ia“go(x)lex;)klel,@o}

gh,k:{goecwllgolh,k:iulp hiaigt

DEFINITION 1.2 ([1]). The space ¥ of test functions for the Fourier hyper-
functions consists of all C* functions such that for some h, k>0
sEpIgo(x)]exp klx|<co,
sup|G(€)lexp h|§] <oo .
We denote by E.(x) the n-dimensional heat kernel ;

(4nt) ™% exp (— | x |2/41), >0,

0, 1<0.

Et(x):{

We now need the following Proposition 1.3 and Theorem 1.5 to prove the
Main theorem in § 2.

PROPOSITION 1.3 ([4]). There are positive constants C and a such that
|0 B (x)] S 1wy e (a D2 exp (—a | x [*/4),

where a can be taken as close as desired to 1 and 0<a<1.
From Proposition 1.3 we can easily obtain the following

COROLLARY 1.4. There exist positive constants C, C'>0 such that for every
>0 and sufficiently small t>0

| Ed(x)|ge-12,. S C'e ™ exp [e(1/t+]x)] .

PrROOF. By Proposition 1.3 we can easily see that there exist positive con-
stants C, C’>0 such that for every >0

sup [03E(x—v)lexpe|y|

(Cenyaig) <(C’e"*exp(e/2t)exp (2e%) expe|x].
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In fact, we have
|05E (x—)]

SCiirpmerianzg it exp (—a | x—y |2/4t)

S Crurieriyaignirexp g /2t[(n+ | a|) 1] *a Y exp (—a | x—y |?/41)

S(V2Ce )| alC'alexp(—alx—y|%/4t).
Thus, we obtain that for every ¢>0 and small {>0

TE(x—)ce-1i2, . < Ce™ % exp [e(1/t+1x1])],

which completes the proof.

THEOREM 1.5 ([3]). Let usg’ and T>0. Then Ulx, )=u, (E(x—y, 1)) 1s
a C* function in R"x(0, T') and satisfies the following:

(i) (@/ot—AMU(x, H)=0 in R**(0, T).

(it) For every ¢>0 there exists a constant C>0 such that

U(x, ) ZCexp[el/t+]x])] in R*x(0, T).

(iif) lime,+ Ulx, t)=u in 9’ i.e.,
u(p)= lim gU(x, He(x)dx, =9 .
S0t J

Conversely, every C*= function U(x, t) in R*X(0, T) satisfying (1) and (1) can
be expressed in the form U(x, y=u,(E(x—y, 1)) with a unique element ueF’,

THEOREM 1.6 ([3]). If @& F(R™) then it follows that ¢*xE, converges to ¢
i F(R"™) when t—0%.

We shall prove the associativity for convolution in F(R™").

THEOREM 1.7. If ued’(R") and ¢, ¢=IF(R") then

(u *¢)*¢: u*(gp*g{;) .

The proof is an easy consequence of the following

THEOREM 1.8, If o&F, (B, ¢&4, 1, (R™), then the Riemann sum

(1.1 2 o(x—7s)s™(ss)
jiezn
converges to @x(x)in Fy » when s—0 for h>max{h,, hy, 24/2}, k<min {k,, k.}.

Before proving Theorem 1.8 we show the following refinement of Definition
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1.2 which is the main theorem in [1].

LEMMA 1.9. Let h>2+/2 and k>0. Then the following conditions are
equivalent :
(i) CETF s, v
(ii) sups [@(x)]exp k|x| <o
supe |0%(x)| < C(h/24/2)' " a .
(iii) There exists an integer a>2+/2 such that

(1.2) sgplgo(x)iexpklxkoo,

(L3) Slelplsﬁ(E)leXp(Z\/Zﬂ t&l/ah)<eo.

ProoF. It follows from Theorem 2.1 in [1] that (ii) is a sufficient condition
for p=F, ». So it suffices to prove the implications (i)=(iii) and (iii)=xii)
(i)=3(iii): It suffices to show (1.3). We obtain from (i) that

4@ =| [ gpxrax |
ZCoh1 ™ !Sexp(—le\xl)dx

<Cyah/2+/2)*al(24/2/a)*" for all «
where a>2+/2. Hence
S1/al@V2El/ah) §@)] < € 5 (2v2/a) " <oo

Therefore we obtain (1.3).
(iii)=(ii): By Holder’s inequality we have

B (2':1) ge"”‘f“sﬁ@)dsk““

1
(zn)ﬂln

[0%p(x)]*

1
=

fagnegermpeag((1g@reag)™

exp(2+/ 2 |§1/h)
g C/(h/z\/‘?)m)a}(a !)m.

A

Csu
Ep

Thus we obtain (ii).

LEMMA 1.10. Let £>0 and 7=y, -+, jr), JiEN,, and let 0<s<A for
some fixed A. Then
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S stexp(—ks|jH<C

N
JENY

where C is independent of s and |j| is a Euclidean norm.

ProOF. Note that +/n|j|=3)j; for J&eN? and that the function x/(1—
exp(—kx)) is strictly increasing for x>0. If 0<s<<A then

3 s"exp(—ks|ji)

jen?t
= 3 sexp(—ksji/v/n)X X 3 sexp(—hksj./v/n)
J1ENg JnENy

2 n
~(exp (/v

2A n
(eprarvm)

PROOF OF THEOREM 1.8. Choose A, k>0 such that A>max{h,, h, 242}
and k<min{k,, ks}. Let fi(x)=3; p(x—7s)s"d(js), s>0. By Lemma 1.9 we
shall show that for any >0 there exists a constant 6>>0 such that if s<é then

(1.4) sup| f(x)—@xd(x)lexp kx| <e,
A T ~
(1.5) ngfs(E)—<p*¢(§)\eXp(2\/2!EE/ah)<s

where a>2+/2. From now on we take a=4+/2. Choose £’ such that k<k'<
min {&,, k,}.
If s<A then f,€%F, , by Lemma 1.10. In fact,

|0“p(x—7s)|s"|p(js) !

fsln e ::};; AT TP k'|x—jslexp k’|7s]
= CZsmexp(—(ke—k")Issi)
J
< M,

1

where M, is independent of s<A. Similarly we obtain ¢x¢&F, .. For any
¢>0 choose R=FR.>0 such that

exp(—(k'—)R)<e, exp(—=(7—5 )R )<e.
Thus for all s<A we obtain

(L.6) ‘ililgRl fslx)—@xd(x)lexp kx| = f}l}%(ifs(ﬂ [+ lpxd(x)exp kx|

<Csupexp(—Fk/ix|)expkix
1zI12R
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<Cexp(—(k'—Rk)R)
=Ce.

Note that for any s>0 the function f,x) is continuous on the compact set
{x| /x| <R} and the sequence {f;|0<s<A} is bounded and equicontinuous. In
fact, for |x| <R we have

1.7 ol =C Zexp(—kylx—jsl)s" exp (—kqlssi)
LCe* B exp(—(kitk)|ss|)s™
J
=M,

where M, is independent of s<A. The last inequality is also obtained by
Lemma 1.10. Also, for any &>0 there exists 6,>0 such that if |x,—x,| <0,
then

(1.8) | fo(x)—Fs(x)| = Zlp(x1—78)—@(x2—78) | s™ (7 s)]
=XV |2, —x2{s™[(7s)]

< M| xi—x,|

where the second inequality is obtained from (1.7). Thus, by Arzela-Ascoli’s
theorem we obtamn that for |x|<R the sequence {f} converges uniformly to
*d(x), i.e., for any ¢>0 there exists 6,>0 such that if s<(d, then

(1.9) sup | fs(x)—p*d(x)|exp kx| <e

1Z1=R

If 6=min {4, J;} then (1.4) is obtained from (1.6) and (1.9). On the other hand,
if gs(&)=33;s™exp (—i(ss)-&)¢(ss) we obtain for some B>0 the sequence {g,{0<s
< B} is bounded and equicontinuous as (1.7) and (1.8). Thus for |£§|<R the
sequence {g;} converges uniformly to (&), i.e., for any ¢>0 there exists d,>0
such that if s<d; then

(1.10) sup lgs(6)—¢(&) | <e.
From the above fact we obtain (1.5). In fact, Vif s<0=min {0;, B} then
~ T
(1.1D) sup [ fs(&)—p*d(&)|exp (1€]/2h)
= Sl;p |23 o) exp(—i(7s-8))s"P(1s)— pE)P(E) lexp (&1 /2h)

= sup|g(&) lexp ([€1/2h)1g4(&)— (&)
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=cgupexs (—5 ()€ lee—4©

1€1sR 2
+Cupexn(— (= )€1 1@+ 1@

éC’lgluégzlgs(S)“s@(E) |+C eXP(‘%(%—_bR)
<M.,

which completes the proof.
THEOREM 1.11. If uc 9’ (R™) then uxE, converges to u in 9'(R") as i—0".

PrOOF. We note that u(d)=uxd(0) if ¢=F(R™) and $(x)=¢(—x). This
gives
(uxE)P)=(u*E )xH(0)=ux(E xH)0)=u(E *¢) .
By Theorem 1.6 E.x¢ converges to ¢ in F(R*) as t—0". So it follows that
(uxE.)(¢p) converges to u(¢) as claimed.

§2. Main Theorem

We are now in a position to state and prove the Schwartz kernel theorem
for the space F’.

THEOREM 2.1. If KF'(R" X R") then a linear map KX determined bv
(2.1) (Ko, PO=K(PR¢), PeF(R™), peTF(R")

is continuous in the sense that K¢; converges to 0in F'(R™) if ¢; converges to 0
in F(R™). Conversely, for every such linear map K there is one and only one
Fourier hyperfunction K such that (2.1) s valid.

Proor. If KeJ/(R*1XR") then (2.1) deflnes a Fourier hyperfunction F¢,
since the map ¢—K (¢&¢) is continuous. Also X is continuous, since the map ¢—
K(pQg) is continuous.

Let us now prove the converse. We flrst prove the uniqueness, i.e., if

u(pRep)=0 for g=F(R™), p=F(R"),

then =0 in F'(R™XR").

It follows from Theorem 1.11 that uxE, converges to u in F'(R™) as {—0".
However, uxE,;=0, since E.(x,—y,, x,—»,) is the product of a function of vy,
and one of y,. Hence u=0 in 9’.
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We now prove the existence. Since X is continuous, the bilinear form on
Ty o (BP)X T py o (B72)
(@, @) ——> <Ko, ¢

is separately continuous, therefore continuous, since ¥, ; is a Fréchet space for
all &, £>0. Hence we obtain that there is a constant C(hy, k,, /., k,) such that

(2.2) KJCQD, ¢>‘§CI¢‘hl,kll¢§hz,k2-
Set for (x,, x,)eR™ <X R™ and small t>0
2.3) Ki(xy, x9)=C(HE o(x:—"), Et (x,—)>

where E, ;j(x;) is the nj,-dimensional heat kernel.

We now show that K, has a limit in /(R*"1 X R"?) as {—0, and then show
that (2.1) is also satisfied by the limit. It follows from (2.2) and Corollary 1.4
that for every £>0 there exists a constant C.>0 such that

[Ki(x,, )| < C.expe(l/t+]x]).
Since
0E./0t=AE,, >0
we have
0K,/0t=A.K, .
It follows from Theorem 1.5 that there exists a limit K, %’ such that K, con-
verges to K, in F'(R"1 X R"2).
Let ¢, (R"), j=1, 2 and form

(K., (,Dx®902> ZS}KL(xh xz)ﬂDl(xl)@z(xz)dxldxz .
We have

SSKt(x" X)X 1)pa(x2)dx1d %,

:SgucEz,z(-ﬂg)goz(xg), Eoa(—x2)pi(x)pdx,d s .

Approximating the above integral by the Riemann sum we obtamn from Lemma
1.8 that
(Ke, 01 Q2> ={ K (@2#Ey+,3), oixE D

Since ¢+E,. ; converges to ¢; in F(R®/) as t—0, it follows from (2.2) that the
right hand side converges to {K¢., ¢,> as t—0. Thus

<Ko, 901®§02>:<J{§02, §01>

which completes the proof.
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