ON DEDEKIND SUMS AND ANALOGS

By

Don Redmond, R. Sitaramachandra Rao and R. Sivaramakrishanan

Abstract

The purpose of this paper is to point out a connection between an identity due to Subrahmanyam and the Peterson-Knopp identity for the classical Dedekind sum. We then consider the same connection with regard to the Apostol-Vu generalization of the Dedekind sum. We also consider some sums related to the classical Dedekind sum.

1. Introduction.

We define the function $((x))$ by

$$
((x))=\left\{\begin{array}{cl}
x-[x]-1 / 2 & \text { if } x \text { is not an integer } \\
0 & \text { otherwise. }
\end{array}\right.
$$

Let h and k be positive integers. The Dedekind sum $S(h, k)$ is defined as

$$
\begin{equation*}
S(h, k)=\sum_{n(\bmod k)}\left(\left(\frac{n}{k}\right)\right)\left(\left(\frac{n h}{k}\right)\right) . \tag{1.1}
\end{equation*}
$$

In [9] H. Rademacher and E. Grosswald have given a survey of the properties of $S(h, k)$. P. Subrahmanyam in [10] has shown that

$$
\begin{equation*}
\sum_{o(\bmod n)} S(h+b k, n k)=\sum_{d \backslash n} \mu(d) S(h d, k) \boldsymbol{\sigma}(n / d), \tag{1.2}
\end{equation*}
$$

where $\mu(n)$ is the Möbius function and $\sigma(n)$ is the sum of divisors function. In [5] M.I. Knopp proved the following identity for $S(a, h)$:

$$
\begin{equation*}
\sum_{\substack{a d=n \\ d>0}} \sum_{\substack{ \\\text { mod d }}} S(a h+b k, d k) \sigma(n) S(h, k) . \tag{1.3}
\end{equation*}
$$

This generalized an older identity of Petersson. Proots of (1.3) have been given by Goldberg in [4] using the identity (1.2) and Parson in [7] using Hecke operators. In [8] Parson and Rosen have extended Knopp's identity to generalized Dedekind sums.

Suppose $A(x)$ and $B(x)$ are given functions which are defined on the rationals and satisfy a relation of the form

[^0]$$
\sum_{b(\bmod q)} F(x+b / q)=q^{\iota(F)} F(q x)
$$
for every positive integer q, every rational number x and some constant $\nu(F)$ depending only on F. In [1] Apostol and Vu define a class of functions
$$
f(h, k)=\sum_{n(\bmod k)} A(n / k) B(h n / k)
$$
which are called Dedekind sums of type $(\nu(A), \nu(B))$. It may be observed that the classical Dedekind sum $S(h, k)$, defined by (1.1), is of type (0,0) and is obtained by taking $A(x)=B(x)=((x))$.

In [1] Apostol and Vu generalize (1.2) and (1.3). Let $f(h, k)$ be a Dedekind sum of type $(\nu(A), \nu(B))$. Let $\lambda=1-\nu(A)-\nu(B)$ and

$$
\sigma_{\lambda}(n)=\sum_{d \mid n} d^{\lambda}
$$

They prove the following results. If k is a given integer, then

$$
\begin{equation*}
\sum_{b(\bmod n)} f(h+b k, n k)=n^{1-\lambda} \sum_{d \mid n} \mu(d) d^{-\nu(\lambda)} f(h d, k) \sigma_{\lambda}(n / d) \tag{1.5}
\end{equation*}
$$

and if n is a positive integer, then

$$
\begin{equation*}
\sum_{a d=n}^{d>0} d^{-\nu(B)} \sum_{b(\bmod d)} f(a h+b k, d k)=n^{\nu(A)} \sigma_{\lambda}(n) f(h, k) . \tag{1.6}
\end{equation*}
$$

The purpose of the paper is to point out the intrinsic connection between Subrahmanyan's identity and Knopp's identity as well as qetween Apostol and Vu's generalizations of these identities via a basic inversion principle. Incidentally, we derive a few analogues of Knopp's identity. In this connection, we also introduced two sums $T(h, k)$ and $S^{\prime}(h, k)$ which are related to $S(h, k)$.

2. An Inversion Principle.

Let $f(m, n)$ and $g(m, n)$ be complex valued functions defined for all positive in tegers m and n. Define the two arithmetic functions $e_{0}(n)$ and $e(n)$ by $e_{0}(n)$ $=[1 / n]$ and $e(n)=1$ for all positive integers n. Let $\varepsilon(n)$ and $\eta(n)$ be two arithmetic functions related by the identity

$$
\begin{equation*}
\sum_{d \backslash n} \varepsilon(n / d) \eta(d)=e_{0}(n) \tag{2.1}
\end{equation*}
$$

We say that ε and η are Dirichlet inverses of each other.
Theorem 1. With ε and η as above we have

$$
f(m, n)=\sum_{d \backslash n} g(m d, n / d) \varepsilon(d)
$$

if and only if

$$
g(m, n)=\sum_{d, n} f(m d, n / d) \eta(d)
$$

Proof. We have

$$
\begin{aligned}
\sum_{d \backslash n} \eta(d) f(m d, n / d) & =\sum_{d \backslash n} \eta(d) \sum_{t s=n / d} \varepsilon(t) g(m d t, s) \\
& =\sum_{d t s=n} \eta(d) \varepsilon(t) g(m d t, s) \\
& =\sum_{s i n} g(m n / s, s) \sum_{d t=n / s} \eta(d) \varepsilon(t) \\
& =\sum_{s i n} g(m n / s, s) e_{0}(n / s) \\
& =g(m, n),
\end{aligned}
$$

by (2.1) and the definition of e_{0}.
This proves that

$$
\sum_{d i n} g(m d, n / d) \varepsilon(d)=f(m, n) \quad \text { implies } \sum_{d i n} f(m d, n / d) \eta(d)=g(m, n)
$$

The proof of the reverse implication is similar and is omitted. This completes the proof of Theorem 1.

Corollary 1.1. We have

$$
f(m, n)=\sum_{d \mid n} g(m d, n / d)
$$

if and only if

$$
g(m, n)=\sum_{d, n} \mu(d) f(m d, n / d) .
$$

Proof. The result follows immediately from Theorem 1 if we take $\varepsilon(n)=$ $e(n)=1$ and $\eta(u)=\mu(n)$, since it is known (see [6, Theorem 4.6]) that (2.1) is valid for this choice of ε and η.

Theorem 2. Suppose $f(m, n)$ and $g(m, n)$ are related by

$$
\begin{equation*}
f(m, n)=\sum_{d, n} g(m d, n / d) . \tag{2.2}
\end{equation*}
$$

If G and H are arithmetic functions which are related by

$$
\begin{equation*}
G(n)=\sum_{d \backslash n} H(d), \tag{2.3}
\end{equation*}
$$

then

$$
\sum_{a=n} G(a) g(a h, d)=\sum_{d \mid n} H(d) f(h d, n / d) .
$$

Proof. By Theorem 4.7 of [6], we have, from (2.3),

$$
\begin{equation*}
H(n)=\sum_{d \backslash n} \mu(d) G(n / d) \tag{2.4}
\end{equation*}
$$

By (2.2) and Corollary 1.1, we have

$$
\begin{aligned}
\sum_{a d=n} G(a) g(a h, d) & =\sum_{a d=n} G(a) \sum_{s t=d} \mu(s) f(a h s, t) \\
& =\sum_{a s t=n} G(a) \mu(s) f(a h s, t) \\
& =\sum_{t \backslash n} f(h t, n / t) \sum_{a s=n} G(a) \mu(s) \\
& =\sum_{t \backslash n} H(t) f(h t, n / t)
\end{aligned}
$$

by (2.4). This completes the proof of Theorem 2.
Theorem 3. The two identities (1.2) and (1.3) are equivalent.
Proof. We have only to appeal to Corollary 1.1 with appropriate choices of $f(m, n)$ and $g(m, n)$. We take

$$
f(m, n)=\sigma(n) S(m, n)
$$

and

$$
g(m, n)=\sum_{b(\bmod n)} S(m+b n, m n)
$$

Then (1.2) is equivalent to

$$
g(m, n)=\sum_{d \backslash n} \mu(d) f(m d, n / d),
$$

which, by Corollary 1.1, is equivalent to

$$
f(m, n)=\sum_{d \mid n} g(m d, n / d) .
$$

This establishes the equivalence and completes the proof.
Theorem 4. Let G and H be arithmetic functions which are related by (2.3). Then

$$
\begin{equation*}
\sum_{a d=n} G(a) \sum_{b(\bmod d)} S(a h+b k, d k)=\sum_{d \backslash n} H(d) S(h d, k) \boldsymbol{\sigma}(n / d) . \tag{2.5}
\end{equation*}
$$

Proof. Denote the left hand side of (2.5) by L. Then, by (1.2), we have

$$
L=\sum_{a d=n} G(a) \sum_{c i d} \mu(c) S(a h c, k) \sigma(d / c)
$$

If we let $m=a c$, we have

$$
\begin{aligned}
L & =\sum_{\substack{m \mid n \\
m d=c n}} \sum_{c \mid m} G(m / c) \mu(c) S(m h, k) \sigma(n / m) \\
& \left.=\sum_{\substack{m \mid n}}^{m \in d}\right\}(m h, k) \boldsymbol{\sigma}(n / m) \sum_{c \mid m} G(m / c) \mu(c) \\
& =\sum_{m ; n} H(m) S(m h, k) \boldsymbol{\sigma}(n / m),
\end{aligned}
$$

by (2.4). This completes the proof of the theorem.
Corollary 4.1. We have

$$
\begin{equation*}
\sum_{\substack{a d=n \\(a, m)=1}} \sum_{\substack{\bmod d)}} S(a h+b k, d k)=\sum_{d \backslash(m, n)} \mu(d) S(h d, k) \sigma(n / d), \tag{1}
\end{equation*}
$$

for any positive integer m,

$$
\begin{equation*}
\sum_{a^{2} d=n} \sum_{b(\bmod d)} S\left(a^{2} h+b k, d k\right)=\sum_{d \backslash n} \lambda(d) S(h d, k) \sigma(n / d), \tag{2}
\end{equation*}
$$

where λ is Liouville's function,

$$
\begin{equation*}
\sum_{\substack{a d=n \\ a 1 m}} a \sum_{b(\bmod d)} S(a h+b k, d k)=\sum_{d \backslash n} c(m, d) S(h d, k) \sigma(n / d), \tag{3}
\end{equation*}
$$

where $c(m, n)$ is Ramanujan's trigonometric sum defined by

$$
\begin{equation*}
c(m, n)=\sum_{\substack{K_{(\text {mod }}(k)=1 \\(k, n)=1}} \exp (2 \pi i k m / n), \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{a d=n} a \sum_{b(\bmod d)} S(a h+b k, d k k)=\sum_{d i n} \varphi(d) S(h d, k) \sigma(n / d), \tag{4}
\end{equation*}
$$

where φ denotes Euler's quotent function, and

$$
\begin{equation*}
\sum_{a d=n} \log a \sum_{b(\bmod d)} S(a h+b k, d k)=\sum_{d \backslash n} \Lambda(d) S(h d, k) \sigma(u / d), \tag{5}
\end{equation*}
$$

where A is the von-Mangoldt function defined by

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n \text { is a power of the prime } p \\ 0 & \text { otherwise. }\end{cases}
$$

PrRF OF (1). If we take $G(n)=e_{0}((m, n))$, then, by $(2.4), H(n)=\mu(n)$. The result follows from Theorem 4.

Proof of (2). Recall that $\lambda(n)$ is defined by $\lambda(n)=(-1)^{2(n)}$, where $\Omega(n)$ counts the total number of prime factors of n. Then, we have

$$
\sum_{d \backslash n} \lambda(d)= \begin{cases}1 & \text { if } n \text { is a perfect square } \\ 0 & \text { otherwise }\end{cases}
$$

(see [4, p. 111]). The result follows from Theorem 4 if we take $H(n)=\lambda(n)$ and

$$
G(n)= \begin{cases}1 & \text { if } n \text { is a perfect square } \\ 0 & \text { otherwise }\end{cases}
$$

Proof of (3). From (2.6) we have

$$
\sum_{d \backslash n} c(m, d)= \begin{cases}n & \text { if } n \mid m \\ 0 & \text { otherwise }\end{cases}
$$

Thus, if we take $H(n)=c(m, n)$ and

$$
G(n)= \begin{cases}n & \text { if } n \mid m \\ 0 & \text { otherwise }\end{cases}
$$

then the result follows from Theorem 4.
Proof of (4). Here we take $H(n)=\varphi(n)$ and $G(n)=n$. Then for this choice of G and H we see that (2.3) holds by Theorem 2.17 of [4]. The result then follows from Theorem 4.

Proof of (5). By the definition of $\Lambda(n)$ and unique factorization we see that

$$
\sum_{d \backslash n} A(d)=\log n .
$$

Thus, if we take $H(n)=\Lambda(n)$ and $G(n)=\log n$ in Theorem 4, then the result follows from Theorem 4.

This completes the proof of the corollary.
Note that (1) of Corollary 4.1 is a generalization of the Petersson-Knopp identity (1.3), which is the case $m=1$.

Theorem 5. The two identities (1.5) and (1.6) are equivalent.
Proof. Let $f(h, k)$ be a Dedekind sum of type $(\nu(A), \nu(B))$. Let
and

$$
F(h, n)=n^{\nu(\Lambda)} \sigma_{\lambda}(n) f(h, k)
$$

$$
G(h, n)=n^{-\nu(B)} \sum_{b(\bmod n)} f(h+b k, n k),
$$

where $\lambda=1-\nu(A)-\nu(B)$.
The identity (1.5) then states that

$$
\begin{aligned}
\sum_{b(\bmod n)} f(h+b k, n k) & =n^{1-\lambda} \sum_{d \backslash n} \mu(d) d^{-\nu(A)} f(h d, k) \sigma_{\lambda}(n / d) \\
& =n^{\nu(A)+\nu(B)} \sum_{d \backslash n} \mu(d) d^{-\nu(A)} f(h d, k) \sigma_{\lambda}(n / d) \\
& =n^{\mu(B)} \sum_{d \backslash n} \mu(d)(n / d)^{\nu(A)} f(h d, k) \sigma_{\lambda}(n / d) \\
& =n^{\nu(B)} \sum_{d \backslash n} \mu(d) F(h d, n / d)
\end{aligned}
$$

or

$$
\begin{equation*}
G(h, n)=\sum_{d \mid n} \mu(d) F(h d, n / d) . \tag{2.7}
\end{equation*}
$$

By Theorem 2, (2.7) is equivalent to

$$
F(h, n)=\sum_{d, n} G(h d, n / d)
$$

or

$$
n^{\nu(A)} \boldsymbol{\sigma}_{\lambda}(n) f(h, k)=\sum_{d \backslash n} d^{-\nu(B)} \sum_{b(\bmod d)} f(h d+b k, d k),
$$

which is (1.6).
Thus (1.5) implies (1.6). The reverse implication is obtained by taking the above steps in reverse order. This completes the proof of the theorem.

Theorem 6. Let G and H be arithmetical functions related by

$$
G(n)=n^{\nu(B)} \sum_{d \backslash n} H(d) .
$$

Then

$$
\sum_{a d=n} G(a) \sum_{b(\bmod d)} f(a h+b k, d k)=n^{1-\lambda} \sum_{d \mid n} H(d) d^{-\nu(A)} f(h d, k) \sigma_{\lambda}(n / d),
$$

where f is a Dedekind sum of type $(\nu(A), \nu(B))$ and $\lambda=1-\nu(A)-\nu(B)$.
This result generalizes (1.6). The proof is similar to that of Theorem 4 and so we omit it.

3. Analogues of Knopp's Identity.

Theorem 7. If $(h, k)=1$, then

$$
\sum_{a=n} \sum_{b(\bmod d)} \mu((b, d)) S(a h(b, d), k)=\varphi(n) S(h, k) .
$$

Proof. We have

$$
\begin{aligned}
\sum_{a d=n} \sum_{b(\bmod d)} \mu((b, d)) S(a h(b, d), k) & =\sum_{a d=n} \sum_{c \mid d} \mu(c) S(a h c, k) \varphi(d / c) \\
& =\sum_{\substack{m_{d}, n \\
m_{d=c n}}} S(m h, k) \varphi(n / m) \sum_{c \mid m} \mu(c) \\
& =\varphi(n) S(h, k),
\end{aligned}
$$

by Theorem 4.6 of [4]. This completes the proof of Theorem 7.
Theorem 8. If f is an arithmetic function, then

$$
\begin{align*}
& \sum_{a(\bmod n)} f((a, n)){ }_{b(\bmod \operatorname{m}} \sum_{n /(a, n))} S((a, n) h+b k, n k /(a, n)) \tag{3.1}\\
& =\sum_{r s=n} S(r h, k) \sigma(s) \sum_{c \mid r} \mu(c) \varphi(c s) f(r / c) .
\end{align*}
$$

Proof. If we denote by L the left hand side of (3.1), we have, by (1.2),

$$
\begin{aligned}
L & =\sum_{d l=n} \varphi(t) f(d) \sum_{c i t} \mu(c) S(h d c, k) \boldsymbol{\sigma}(t / c) \\
& =\sum_{\substack{m i n \\
m_{d=n}}} \sum_{c \mid m} \mu(c) S(m h, k) \boldsymbol{\sigma}(n / m) f(m / c) \varphi(c n / m) \\
& =\sum_{r s=n} S(r h, k) \boldsymbol{\sigma}(s) \sum_{c \mid r} \mu(c) f(r / c) \varphi(c s),
\end{aligned}
$$

which gives the right hand side of (3.1) and completes the proof of Theorem 8.
Corollary 8.1. If n is square-free, then

$$
\begin{aligned}
& \sum_{a(\bmod n)} \mu((a, n)){ }_{b\left(\bmod \sum_{n /(a, n))} S((a, n) h+b k, n k /(a, n))\right.} \quad=\sum_{r s=n} r \mu(r) S(r h, k) \sigma(s) \varphi(s) .
\end{aligned}
$$

Proof. Let $f(n)=\mu(n)$ in Theorem 8. Since n is square-free and $r \mid n$ we see that r is square-free. Thus

$$
\mu(c) \mu(r / c)=\mu(r)
$$

for all $c \mid r$. Thus, if $f(n)=\mu(n)$, then the right hand side of (3.1) is equal to

$$
\begin{equation*}
\sum_{r s=n} S(r h, k) \sigma(s) \sum_{c \mid r} \mu(c) \mu(r / c) \varphi(c s)=\sum_{r s=n} S(r h, k) \sigma(s) \mu(r) \sum_{c \mid r} \varphi(c s) . \tag{3.2}
\end{equation*}
$$

Again n square-free and $r s=n$ implies that $(r, s)=1$. Since $c \mid r$ in the inner sum we see that $(c, s)=1$ and since φ is a multiplicative function [4, Theorem 2.15], we see that the inner sum in (3.2) is equal to

$$
\sum_{c \mid r} \varphi(c s)=\varphi(s) \sum_{c \mid r} \varphi(c)=r \varphi(s),
$$

by Theorem 2.17 of [4]. If we combine these results we get the result of the corollary and complete the proof.

Before giving our next analogue of the Petersson-Knopp identity (1.3) we prove some lemmas.

Lemma 9.1. If x is any real number, we have

$$
\sum_{\substack{n(\bmod) k \\(n, k)=1}}\left(\left(\frac{n}{k}+x\right)\right)=\mu(d)((k x / d)) .
$$

Proof. We have

$$
\begin{aligned}
\sum_{\substack{\left(\sum_{\bmod k}(n, k)=1\right.}}\left(\left(\frac{n}{k}+x\right)\right) & =\sum_{n(\mathrm{mod} k)}\left(\left(\frac{n}{k}+x\right)\right) \sum_{\substack{d \backslash n \\
d \mid k}} \mu(d) \\
& =\sum_{d \backslash k} \mu(d) \sum_{n\left(\text { mod }_{d i n}\right)}\left(\left(\frac{n}{k}+x\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{d \backslash k} \mu(d) \sum_{m(\bmod k / d)}\left(\left(\frac{m}{k d}+x\right)\right) \\
& =\sum_{d \backslash k} \mu(d)((k x / d)),
\end{aligned}
$$

by Lemma 1 of [9]. This completes the proof.
Lemma 9.2. If x is any real number, then

$$
\sum_{m(\bmod k)}\left(\left(x+\frac{a m}{k}\right)\right)=(a, k)\left(\left(\frac{k x}{(k, a)}\right)\right)
$$

Proof. Let $g=(a, k)$ and define a^{\prime} and k^{\prime} by $k^{\prime}=k / g$ and $a^{\prime}=a / g$. It follows from the definition of $((x))$ that it is periodic of period 1 . Thus, for any integer n, we have $((x+n))=((x))$. Thus

$$
\begin{aligned}
\sum_{m(\bmod k)}\left(\left(x+\frac{a m}{k}\right)\right) & =\sum_{m\left(\bmod g^{\left.k^{\prime}\right)}\right.}\left(\left(x+\frac{a^{\prime} m}{k^{\prime}}\right)\right) \\
& =\sum_{n=0}^{k^{\prime}-1} \sum_{m=0}^{g-1}\left(\left(x+\frac{a^{\prime}\left(k^{\prime} m+n\right)}{k^{\prime}}\right)\right) \\
& =\sum_{n=0}^{k^{\prime}-1} \sum_{m=0}^{g-1}\left(\left(x+a^{\prime} m+\frac{a^{\prime} n}{k^{\prime}}\right)\right) \\
& =g \sum_{n\left(\bmod k^{\prime}\right)}\left(\left(x+a^{\prime} m+\frac{a^{\prime} n}{k^{\prime}}\right)\right) \\
& =g \sum_{n\left(\bmod k^{\prime}\right)}\left(\left(x+\frac{a^{\prime} n}{k^{\prime}}\right)\right) \\
& =g \sum_{m\left(\bmod k^{\prime}\right)}\left(\left(x+\frac{m}{k^{\prime}}\right)\right) \\
& =g\left(\left(k^{\prime} x\right)\right),
\end{aligned}
$$

by Lemma 1 of [9] and the fact that since $\left(a^{\prime}, k^{\prime}\right)=1$ as n runs through a complete residue system modulo k^{\prime} so does $a^{\prime} n$. This completes the proof.

Lemma 9.3. For any real number x and integers a and k we have

$$
\sum_{\substack{n(\bmod k, k \\(n, k)=1}}\left(\left(x+\frac{a n}{k}\right)\right)=\sum_{d \backslash k} \frac{\mu(d)}{d}(k, a d)\left(\left(\frac{k x}{(k, a d)}\right)\right) .
$$

Proof. By Lemma 9.2, we have

$$
\begin{aligned}
\sum_{\substack{n(\bmod b \\
(n, k)=1}}\left(\left(x+\frac{a n}{k}\right)\right) & =\sum_{n(\bmod k)}\left(\left(x+\frac{a n}{k}\right)\right) \sum_{\substack{d \cap n \\
d \not k}} \mu(d) \\
& =\sum_{d \backslash k} \mu(d) \sum_{n(\bmod k / d)}\left(\left(x+\frac{a m}{k / d}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{d \backslash k} \mu(d)(a, k / d)\left(\left(\frac{k x / d}{(a, k / d)}\right)\right) \\
& =\sum_{d \backslash k} \frac{\mu(d)}{d}(k, a d)\left(\left(\frac{k x}{(k, a d)}\right)\right),
\end{aligned}
$$

which proves the result.
Theorem 9. We have

$$
\sum_{\substack{(\text { modon } n) \\(b, n)=1}} S(h+b k, n k)=\sum_{d \mid n} \frac{\mu(d)}{d} \sum_{r s \mid n} \mu(s) r S(h s, k(r s, d)),
$$

Proof. By Lemma 9.3, we have

$$
\begin{aligned}
& \sum_{\substack{b(\bmod n \\
(b, n)=1}} S(h+b k, n k)=\sum_{\substack{b(\bmod \\
(b, n)=1}} \sum_{m(\bmod n)} \sum_{n k}\left(\left(\frac{m}{n k}\right)\right)\left(\left(\frac{(h+b k) m}{n k}\right)\right) \\
& =\sum_{m(\bmod n k)}\left(\left(\frac{m}{n k}\right)\right) \sum_{\substack{b(\cos , n \\
(b, n)=1}}\left(\left(\frac{m h}{n k}+\frac{b m}{n}\right)\right) \\
& =\sum_{m(\bmod n k)}\left(\left(\frac{m}{n k}\right)\right) \sum_{d i n} \frac{\mu(d)}{d}(n, m d)\left(\left(\frac{m h}{k(n, m d)}\right)\right) \\
& =\sum_{d \backslash n} \frac{\mu(d)}{d} \sum_{m(\bmod n k)}\left(\left(\frac{m}{n k}\right)\right)(n, m d)\left(\left(\frac{m h}{k(n, m d)}\right)\right) \\
& =\sum_{d \backslash n} \frac{\mu(d)}{d} \sum_{r i n} r \sum_{\substack{(m \bmod n k \\
n, m)=r}}\left(\left(\frac{m}{n k}\right)\right)\left(\left(\frac{m h}{k r}\right)\right) \\
& =\sum_{d \backslash n} \frac{\mu(d)}{d} \sum_{r s t=n} \mu(s) r S(h s t, k(r s, d) t) \\
& =\sum_{d \backslash n} \frac{\mu(d)}{d} \sum_{r s \mid n} \mu(s) r S(h s, k(r s, d)),
\end{aligned}
$$

since by (5) of [1], we have

$$
\begin{equation*}
S(q h, q k)=S(h, k) \tag{3.3}
\end{equation*}
$$

for any positive integer q, since the classical Dedekind sum is a Dedekind sum of type of $(0,0)$. This completes the proof.

4. Carlitz's sum $b_{r}(h, k)$.

Let $B_{r}(x)$ denote the r th Bernoulli polynomial and let $\bar{B}_{r}(x)=B_{r}(x-[x])$. In [2] Carlitz defined, for $(h, k)=1$,

$$
\begin{equation*}
C_{r}(h, k)=\sum_{n(\bmod k)} \bar{B}_{p+1-r}(n / k) \bar{B}_{r}(h n / k) . \tag{4.1}
\end{equation*}
$$

In [1] it is stated that $C_{r}(h, k)$ is a Dedekind sum of type $(r-p, 1-r)$. Thus, by Theorem 1 of [1], we have

$$
\begin{equation*}
\sum_{b(\bmod d)} C_{r}(h+b k, d k)=d^{1-p} \sum_{t \backslash d} \mu(t) t^{p-r} C_{r}(h t, k) \boldsymbol{\sigma}_{p}(d / t) . \tag{4.2}
\end{equation*}
$$

Further, in [2], Carlitz defines the sums

$$
\begin{equation*}
b_{r}(h, k)=\sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s} h^{r-s} C_{s}(h, k) . \tag{4.3}
\end{equation*}
$$

In [2] Carlitz proves (4.2) in the case when d is a prime q and then remarks that it does not seem possible a similar result for the sums in (4.3). We now state such a result, which is an analog of Subrahmanyam's identity.

Theorem 10. We have

$$
\sum_{m(\bmod n)} b_{r}(h+m k, n k)=n^{1-p} \sum_{d \backslash n} d^{p-r} \mu(d) \boldsymbol{\sigma}_{p}(u / d) b_{r}(h d, k) .
$$

Proof. This follows immediately from (4.2) and (4.3) and so we omit the details.

We can also give an analog of the Petersson-Knopp identity.
Theorem 11. We have

$$
\sum_{=a d x}^{d>0} \sum_{m(\bmod d)} d^{r-1} \sum_{r}(a h+m k, d k)=n^{r-p} \sigma_{p}(n) b_{r}(n, k) .
$$

Proof. If in Corollary 1.1 we take

$$
f(m, n)=n^{r-p} \sigma_{p}(n) b_{r}(m, n) \text { and } g(m, n)=n^{r-1} \sum_{b(\bmod n)} b_{r}(m+b k, n k),
$$

then the result follows immediately.

5. The Sum $T(h, k)$.

For $x \geqq 0$ we define the fractional part of x by

$$
\{x\}=x-[x] .
$$

It is known [3] that

$$
\sum_{b(\bmod d)}\left\{x+\frac{b}{q}\right\}=\frac{1}{2}(q-1)+\{q x\}
$$

Thus, if $q>1$, then

$$
\sum_{o(\bmod d)}\left\{x+\frac{n}{q}\right\} \neq\{q x\}
$$

for all x. Therefore, the sum defined for relatively prime integers h and k by

$$
\begin{equation*}
T(h, k)=\sum_{n(\bmod k)}\left\{\frac{n}{k}\right\}\left\{\frac{n h}{k}\right\} \tag{5.1}
\end{equation*}
$$

is not a sum of Dedekind type. However, $T(h, k)$ and $S(h, k)$ are closely related
to one another.
Theorem 12. We have

$$
\begin{equation*}
T(h, k)=S(h, k)+k / 4 . \tag{5.2}
\end{equation*}
$$

Proof. From [9] we have

$$
\sum_{n(\bmod k)}\left(\left(\frac{n}{k}\right)\right)=0
$$

and if $(h, k)=1$, then

$$
\sum_{n(\bmod k)}\left(\left(\frac{n h}{k}\right)\right)=0
$$

Thus

$$
\begin{aligned}
T(h, k)= & \sum_{n(\bmod k)}\left(\left(\left(\frac{n}{k}\right)\right)+\frac{1}{2}\right)\left(\left(\left(\frac{n h}{k}\right)\right)+\frac{1}{2}\right) \\
= & \sum_{n(\bmod k)}\left(\left(\frac{n}{k}\right)\right)\left(\left(\frac{n h}{k}\right)\right)+\frac{1}{2} \sum_{n(\bmod k)}\left(\left(\frac{n}{k}\right)\right) \\
& +\frac{1}{2} \sum_{n(\bmod k)}\left(\left(\frac{n}{k}\right)\right)+\frac{k}{4} \\
= & \sum_{n(\bmod k)}\left(\left(\frac{n}{k}\right)\right)\left(\left(\frac{n h}{k}\right)\right)+\frac{k}{4},
\end{aligned}
$$

which completes the proof.
Theorem 13. If $(h, k)=1$, then

$$
\begin{equation*}
T(h, k)+T(k, h)=\frac{1}{4}(h+k-1)+\frac{1}{12}\left(\frac{h}{k}+\frac{k}{h}+\frac{1}{h k}\right) . \tag{5.3}
\end{equation*}
$$

Proof. The reciprocity law for $S(h, k)$ is given by

$$
\begin{equation*}
S(h, k)+S(k, h)=-\frac{1}{4}(1 / 2)\left(h / k+k / h+\frac{1}{h k}\right) \tag{5.4}
\end{equation*}
$$

(see [9]). Thus

$$
T(h, k)+T(k, h)=S(h, k)+S(k, h)+(h+k) / 4
$$

and the result follows from (5.4) and completes the proof.

6. The Sum $S^{\prime}(n, k)$.

We define the sum

$$
\begin{equation*}
S^{\prime}(h, k)=\sum_{\substack{n(\bmod k, k) \\(n, k)=1}}\left(\left(\frac{n}{k}\right)\right)\left(\left(\frac{n h}{k}\right)\right) . \tag{6.1}
\end{equation*}
$$

Our first result is a relatiinship between the two sums $S(h, k)$ and $S^{\prime}(h, k)$,
which, unfortunately, is not symmetric in h and k.
Theorem 14. We have

$$
S^{\prime}(h, k)=\sum_{d \backslash k} \mu(d) S(h, k / d) .
$$

Proof. We have

$$
\begin{aligned}
S^{\prime}(h, k) & =\sum_{n(\bmod k)}\left(\left(\frac{n}{k}\right)\right)\left(\left(\frac{n h}{k}\right)\right) \sum_{\substack{d \cap n \\
d i k}} \mu(d) \\
& =\sum_{d \backslash k} \mu(d) \sum_{n \substack{n\left(\sum_{d i d}, k\right)}}\left(\left(\frac{n}{k}\right)\right)\left(\left(\frac{n h}{k}\right)\right) \\
& =\sum_{d \backslash k} \mu(d) \sum_{n\left(\mathrm{~m}_{\mathrm{od}} k / d\right)}\left(\left(\frac{n}{k / d}\right)\right)\left(\left(\frac{h n}{k / d}\right)\right) \\
& =\sum_{d \backslash k} \mu(d) S(h, k / d),
\end{aligned}
$$

which proves the result.
The next theorem gives three results that are the exact analogues of the corresponding results for the classical Dedekind sum.

Theorem 15. (1) If $h^{\prime} \equiv \pm h(\bmod k)$, then $S^{\prime}\left(h^{\prime}, k\right)= \pm S^{\prime}(h, k)$.
(2) $h \bar{h} \equiv \pm 1(\bmod k)$, then $S^{\prime}(\bar{h}, k)= \pm S^{\prime}(h, k)$.
(3) If $h^{2}+1 \equiv 0(\bmod k)$, then $S^{\prime}(h, k)=0$.

Proof of (1). By Theorem 4.1 of [6] we see that ($(x))$ satisfies $((\pm x))=$ $\pm((x))$ and recall that $((x))$ is periodic of period 1 so that for all integers m, n and q we have

$$
\left(\left(\frac{m+q n}{n}\right)\right)=\left(\left(\frac{m}{n}\right)\right) .
$$

Thus

$$
\begin{aligned}
& S^{\prime}\left(h^{\prime}, k\right)=\sum_{\substack{n\left(m_{0} \operatorname{cod}_{k} k \\
(n, k)=1\right.}}\left(\left(\frac{n}{k}\right)\right)\left(\left(\frac{h^{\prime} n}{k}\right)\right) \\
& =\sum_{\substack{n(m, d) k \\
(n, k)=1}}\left(\left(\frac{n}{k}\right)\right)\left(\left(\pm \frac{h n}{k}\right)\right) \\
& = \pm \sum_{\substack{n(m \text { ond } b=1 \\
(n, k)=1}}\left(\left(\frac{n}{k}\right)\right)\left(\left(\frac{h n}{k}\right)\right) \\
& = \pm S^{\prime}(h, k) \text {. }
\end{aligned}
$$

Proof of (2). By part (1), we need only prove the case $h \bar{h} \equiv 1(\bmod k)$ since $h \bar{h} \equiv-1(\bmod k)$ implies $h(-\bar{h}) \equiv 1(\bmod k)$. Also $h \bar{h} \equiv 1(\bmod k)$ implies that $(h, k)=1$. Thus $h n$ covers a reduced residue system modulo k if n does.

Thus, by part (1),

$$
\begin{aligned}
& S^{\prime}(\bar{h}, k)=\sum_{\substack{\left(\sum_{\text {mod }} b \\
(n, k)=1\right.}}\left(\left(\frac{n}{k}\right)\right)\left(\left(\frac{\bar{h} n}{k}\right)\right) \\
& =\sum_{\substack{n(\bmod k) \\
(n, k)=1}}\left(\left(\frac{h n}{k}\right)\right)\left(\left(\frac{\bar{h} h n}{k}\right)\right) \\
& =\sum_{\substack{n(\bmod , \underline{d}) \\
(n, h)=1}}\left(\left(\frac{n h}{k}\right)\right)\left(\left(\frac{n}{k}\right)\right) \\
& =S^{\prime}(h, k) \text {. }
\end{aligned}
$$

Proof of (3). If $h^{2}+1 \equiv 0(\bmod k)$, then $h h \equiv-1(\bmod k)$. Thus, by part (2), $S^{\prime}(h, k)=-S^{\prime}(h, k)$ or $S^{\prime}(h, k)=0$.

This completes the proof.
Theorem 16. If $\omega(k)$ counts the number of distinct prime factors of k and $\gamma(k)$ equals their product, then

$$
S^{\prime}(1, k)=\frac{\varphi(k)}{12}+\frac{(-1)^{\omega(k)}}{6 k^{2}} \varphi(k) \gamma(k) .
$$

Proof. We have

$$
\begin{align*}
S^{\prime}(1, k) & =\sum_{\substack{n=1 \\
(n, k=1 \\
k}}^{k}\left(\left(\frac{n}{k}\right)\right)^{2} \tag{6.2}\\
& =\sum_{\substack{n=1 \\
(n, k)=1}}^{k-1}\left(\frac{n}{k}-\frac{1}{2}\right)^{2} \\
& =\frac{1}{k^{2}} \sum_{\substack{n=1 \\
n-1}}^{k-1} n^{2}-\frac{1}{k} \sum_{(n, k=1}^{k-1} n+\frac{1}{4} \sum_{(n, k=1}^{k-1} 1 \\
& =\frac{1}{k^{2}} S_{2}(k)-\frac{1}{k} S_{1}(k)+\frac{1}{4} S_{0}(k),
\end{align*}
$$

say. By definition we see that $S_{0}(k)=\varphi(k)$. The values of $S_{1}(k)$ and $S_{2}(k)$ are reasonably well-known (see [6, pp. 51 and 114]). For future reference we give them explicitly:

$$
\begin{equation*}
S_{1}(k)=\frac{k \varphi(k)}{2} \tag{6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{2}(k)=\frac{k^{2} \varphi(k)}{3}+(-1)^{\omega(k)} \frac{\varphi(k) \gamma(k)}{6} . \tag{6.4}
\end{equation*}
$$

If we combine (6.2), (6.3) and (6.4) we obtain the result of the theorem and complete the proof.

Theorem 17. If $\zeta=\exp (2 \pi i / k)$, then

$$
S^{\prime}(h, k)=\frac{1}{4 k^{2}} \sum_{m=1}^{k-1} \frac{1+\zeta^{m}}{1-\zeta^{m}} \sum_{n=1}^{k-1} \frac{1+\zeta^{n}}{1-\zeta^{n}} c(h m+n, k),
$$

where $c(m, n)$ is Ramanujan's sum (2.6).
Proof. On p. 114 of [9] the following identity is given

$$
\begin{align*}
\left(\left(\frac{n}{k}\right)\right) & =\frac{1}{k} \sum_{m=1}^{k-1}\left(\frac{\zeta^{m}}{1-\zeta^{m}}+\frac{1}{2}\right) \zeta^{m n} \tag{6.5}\\
& =\frac{1}{2 k} \sum_{m=1}^{k-1} \frac{1+\zeta^{m}}{1-\zeta^{m}} \zeta^{m n}
\end{align*}
$$

Thus, by (6.1) and (6.5), we have

$$
\begin{aligned}
S^{\prime}(h, k) & =\sum_{\substack{n(m, d b k \\
(n, k)=1}} \frac{1}{2 k} \sum_{r=1}^{k-1} \frac{1+\zeta^{r}}{1-\zeta^{r}} \frac{1}{2 k} \sum_{s=1}^{k-1} \frac{1+\zeta^{s}}{1-\zeta^{s}} \zeta^{n r+h s n} \\
& =\frac{1}{4 k^{2}} \sum_{r=1}^{k-1} \frac{1+\zeta^{r}}{1-\zeta^{r}} \sum_{s=1}^{k-1} \frac{1+\zeta^{s}}{1-\zeta^{s}} \sum_{\substack{n(m, o d k)}} \zeta^{n(r+h s)} \\
& =\frac{1}{4 k^{2}} \sum_{r=1}^{k-1} \frac{1+\zeta^{r}}{1-\zeta^{r}} \sum_{s=1}^{k-1} \frac{1+\zeta^{s}}{1-\zeta^{s}} c(r+h s, k),
\end{aligned}
$$

which proves the result.
Corollary 17.1. We have

$$
S^{\prime}(h, k)=\frac{1}{4 k^{2}} \sum_{r=1}^{k-1} \sum_{s=1}^{k-1} \cot \left(\frac{\pi s}{k}\right) \cot \left(\frac{\pi s}{k}\right) c(r+h s, k) .
$$

Proof. This follows immediately from Theorem 17 since

$$
\cot \left(\frac{\pi r}{k}\right)=\frac{\zeta^{r}+1}{\zeta^{r}-1} \quad \text { and } \quad \cot \left(\frac{\pi s}{k}\right)=\frac{\zeta^{s}+1}{\zeta^{s}-1} .
$$

The original aim in deriving the identities of Theorems 16 and 17 was to follow along the lines of various proofs of the reciprocity theorem for $S(h, k)$, (5.4), to prove a reciprocity theorem for $S^{\prime}(h, k)$. Unfortunately, we have not succeeded in this goal. As seems to be indicated by the above results on $S^{\prime}(h, k)$, as well as those that follow, the results for $S^{\prime}(h, k)$ correspond closely to those for $S(h, k)$. Thus, a reciprocity theorem like (5.4) does not seem totally out of the question.

As another indication of how closely related $S(h, k)$ and $S^{\prime}(h, k)$ we give the following congruence satisfied by the sum $S^{\prime}(h, k)$.

Theorem 18. If $k \geqq 3$ and $(h, k)=1$, then

$$
\begin{equation*}
6 k S^{\prime}(h, k) \equiv 2 h k \varphi(k)+(-1)^{\omega(k)} h \varphi(\gamma(k))-3 k \varphi(k) / 2(\bmod 6) . \tag{6.6}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
& S^{\prime}(h, k)=\sum_{\substack{n \text { (mod } b k \\
(n, k)=1}}\left(\left(\frac{n}{k}\right)\right)\left(\left(\frac{n h}{k}\right)\right) \\
& =\sum_{\substack{n=1 \\
(n, k)=1}}^{k-1}\left(\left(\frac{n}{k}\right)\right)\left(\left(\frac{n h}{k}\right)\right) \\
& =\sum_{\substack{n=1 \\
(n, k)=1 \\
k-1}}\left(\left(\frac{n}{k}-\frac{1}{2}\right)\right)\left(\left(\frac{n h}{k}\right)\right) \\
& =\sum_{\sum_{n, k=1}^{k-1}}^{(n, k)=1} k=\frac{n}{k}\left(\left(\frac{n h}{k}\right)\right)-\frac{1}{2} \sum_{(n, k)=1}^{k-1}\left(\left(\frac{n h}{k}\right)\right) .
\end{aligned}
$$

Since $((x))$ is periodic of period 1 and also an odd function and since $(n, k)=1$ if and only if $(k-n, k)=1$ we see that

$$
\sum_{\substack{n=1 \\(n, k)=1}}^{k-1}\left(\left(\frac{n h}{k}\right)\right)=0 .
$$

Thus

$$
\begin{aligned}
S^{\prime}(h, k) & =\sum_{\substack{n=1 \\
(n, k)=1}}^{k-1} \frac{n}{k}\left(\frac{h n}{k}-\left(\frac{h n}{k}\right)-\frac{1}{2}\right) \\
& =h \sum_{(n, k)=1}^{k-1} \frac{n^{2}}{k^{2}}-\frac{1}{2} \sum_{(n, k)=1}^{k-1} \frac{n}{k} \sum_{(n, k)=1}^{k-1} \frac{n}{k}\left(\frac{h n}{k}\right),
\end{aligned}
$$

and so, using the notation above,

$$
6 k^{2} S^{\prime}(h, k)=6 h S_{2}(k)-3 k S_{1}(k)-6 k \sum_{\substack{n=1 \\(n, k)=1}}^{k-1} n\left(\frac{n h}{k}\right) .
$$

Since

$$
\sum_{\substack{n=1 \\(n, k)=1}}^{k-1} n\left(\frac{h k}{k}\right)
$$

is an integer we see that

$$
6 k^{2} S^{\prime}(h, k) \equiv 6 h S_{2}(k)-3 k S_{1}(k)(\bmod 6 k) .
$$

Thus, by (6.3) and (6.4), we have
(6.7) $\quad 6 k^{2} S^{\prime}(h, k) \equiv 2 h k^{2} \varphi(k)+(-1)^{\omega(k)} h \varphi(k) \gamma(k)-3 k^{2} \varphi(k) / 2(\bmod 6 k)$.

Note that

$$
\begin{equation*}
\varphi(k) \gamma(k)=k \prod_{p, k}\left(1-\frac{1}{p}\right) \prod_{p \mid k} p=k \prod_{p \backslash k}(p-1)=k \varphi(\gamma(k)) . \tag{6.8}
\end{equation*}
$$

Thus, by (6.7) and (6.8), we have

$$
6 k^{2} S^{\prime}(h, k) \equiv 2 h k^{2} \varphi(k)+(-1)^{\omega(k)} k h \varphi(\gamma(k))-3 k^{2} \varphi(k) / 2(\bmod 6 k),
$$

or, dividing by k,

$$
6 k S^{\prime}(h, k) \equiv 2 h k \varphi(k)+(-1)^{\omega(k)} h \varphi(\gamma(k))-3 k \varphi(k) / 2(\bmod 6),
$$

which proves our result.
Corollary 18.1. If $k \geqq 3$ and $(h, k)=1$, then

1) $6 k S^{\prime}(h, k)$ is an integer, and
2) if $3 \mid h$, then $6 k S^{\prime}(h, k) \equiv 0(\bmod 3)$, and so $2 k S^{\prime}(h, k)$ is an integer.

Proof. 1) Since $k \geqq 3$ implies that $\varphi(k)$ is an even integer we see that the right hand side of (6.6) is an integer and then so is the left hand side, which is $6 k S^{\prime}(h, k)$.
2) If $3 \mid h$, then 3 divides the right hand side of (6.6) and so 3 divides the left hand side of (6.6). Thus, since the left hand side of (6.6) is 3 times some integer we see that we must have that $2 k S^{\prime}(h, k)$ is an integer.

This completes the proof of the corollary.
As a final indication of the close correspondence between the two sums $S(h, k)$ and $S^{\prime}(h, k)$ we give the S^{\prime}-analogues for the identities (1.2) and (1.3).

We begin with the analogue of Subrahmanyam's identity. First we prove a lemma about the classical Dedekind sum.

Lemma 19.1. If l is a positive integer, then

$$
\sum_{b(\bmod d)} S(h+b l k, d k)=\sum_{r s \mid d} r \mu(s) S(h s, k(l, s r)),
$$

Proof. We have, by Lemma 9.2,

$$
\begin{aligned}
& \sum_{b(\bmod d)} S(h+b l k, d k k)=\sum_{b(\bmod d)} \sum_{n(\bmod d k)}\left(\left(\frac{n}{d k}\right)\right)\left(\left(\frac{(h+b l k) n}{d k}\right)\right) \\
& \left.=\sum_{n(\bmod d k)}\left(\left(\frac{n}{d k}\right)\right)\right)_{b(\bmod d)} \sum_{d k}\left(\left(\frac{h n}{d k}+\frac{(n l) b}{d}\right)\right) \\
& =\sum_{n(\bmod d k)}\left(\left(\frac{n}{d k}\right)\right)(d, n l)\left(\left(\frac{d}{(d, n l)} \cdot \frac{n h}{d k}\right)\right) \\
& =\sum_{r \mid d} r \sum_{\substack{n(d, n d d \\
(d, n)=r}} \sum_{\substack{d, k}}\left(\left(\frac{n}{d k}\right)\right)\left(\left(\frac{n h}{z k}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{r s t=d} r \mu(s) \sum_{\substack{n(\bmod d k\} \\
s r r(k, s r)\}}}\left(\left(\frac{n}{d k}\right)\right)\left(\left(\frac{n h}{r k}\right)\right) \\
& =\sum_{r s t=d} r \mu(s) \sum_{v r s /(l, r s)(\bmod r s t k)}\left(\left(\frac{v}{(l, s r) t k}\right)\right)\left(\left(\frac{u s h}{(l, r s) k}\right)\right) \\
& =\sum_{r s t=d} r \mu(s){ }_{v(\bmod } \sum_{t k(l, r s))}\left(\left(\frac{v}{t k(l, s r)}\right)\right)\left(\left(\frac{s t h v}{t k(l, s r)}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{r s t=d} r \mu(s) S(h t s, t k(l, s r)) \\
& =\sum_{r s \mid d} r \mu(s) S(h s, k(l, s r)),
\end{aligned}
$$

by (3.3). This completes the proof.
Theorem 19. If d is square-free and $(d, k)=1$, then

$$
\sum_{b(\bmod d)} S^{\prime}(h+b k, d k)=\sum_{t \mid d k} \mu(t) \sum_{s \mid d} \mu(s) S(h s t, k) \boldsymbol{\sigma}(d / s),
$$

Proof. We have, by Theorem 14 and (3.3),

$$
\begin{aligned}
\sum_{b(\bmod d)} S^{\prime}(h+b k, d k) & =\sum_{b(\bmod d)} \sum_{m \mid d k} \mu(m) S(h+b k, d k / m) \\
& =\sum_{m \mid d k} \mu(m) \sum_{b(\bmod d)} S(h m+b m k, d k) \\
& =\sum_{m \mid d k} \mu(m) \sum_{s r \mid d} r \mu(s) S(h m s, k(m, s r)),
\end{aligned}
$$

by Lemma 19.1. If $m \mid d k$, we see that since $(d, k)=1$ we can write $m=m_{1} m_{2}$, where $m_{1} \mid d$ and $m_{2} \mid k$. Then $(m, s r)=\left(m_{1} m_{2}, s r\right)=\left(m_{1}, s r\right)$ since $s r \mid d$ and $\left(m_{2}, d\right)$ $=1$. Since d is square, free we have $\left(m_{1}, s r\right)=1$. Thus

$$
\begin{aligned}
\sum_{o(\mathrm{mod} d)} S^{\prime}(h+b k, d k) & =\sum_{m_{1} m_{2} \mid d k} \mu\left(m_{1} m_{2}\right) \sum_{r s \mid d} r \mu(s) S\left(h s m_{1} m_{2}, k\right) \\
& =\sum_{m_{1 d} k} \mu(m) \sum_{s i d} \mu(s) S(h s, m k) \sigma(d / s)
\end{aligned}
$$

which completes the proof.
We now give the S^{\prime}-analogue of the Petersson-Knopp identity (1.3).
Theorem 20. If n is square-free and $(n, k)=1$, then

$$
\sum_{\substack{a d=n \\ d>0}} \sum_{b(\bmod d)} S^{\prime}(a h+b k, d k)=\sigma(n) S^{\prime}(n h, n k) .
$$

Proof. We have, by Theorem 19,

$$
\sum_{\substack{a=n \\ d>0}} \sum_{b(\bmod q)} S^{\prime}(a h+b k, d k)=\sum_{\substack{a \\ d=n \\ d>0}} \sum_{i \mid d k} \mu(t) \sum_{s \mid d} \mu(s) S(a h s t, k) \sigma(d / s) .
$$

If we let $m=a s$, then we have

$$
\begin{align*}
& \sum_{\substack{a=n \\
d>0}} \sum_{b(\bmod d)} S^{\prime}(a h+b k, d k)=\sum_{\substack{m+n \\
m d=n s}} \sum_{t, d k} \mu(t) \sum_{s \mid m} \mu(s) S(m h t, k) \sigma(n / m) \tag{6.9}\\
& =\sum_{\substack{m, n \\
m, n \\
m>n}} \sum_{\substack{d d k}} \mu(t) S(m h t, k) \boldsymbol{\sigma}(n / m) \sum_{s \mid m} \mu(s) \\
& =\sum_{t \mid n k} \mu(t) S(h t, k) \sigma(n),
\end{align*}
$$

by Theorem 4.6 of [6].

By (3.3) we have

$$
\begin{align*}
\sum_{t i n k} \mu(t) S(h t, k) & =\sum_{t \mid n k} \mu(t) S(n h, n k / t) \tag{6.10}\\
& =S^{\prime}(n h, n k),
\end{align*}
$$

by Theorem 14. If we combine (6.9) and (6.10) we obtain the result and complete the proof of the theorem.

References

[1] Apostol, T. M, and Vu, T.H., Identities for sums of Dedekind type, J. Number Theory 14 (1982), 319-396.
[2] Carlitz, C., Some theorems on generalized Dedekind sums, Pac. J. Math. 3 (1953), 513-522.
[3] Gandhi, J.M. and Williams, K. S., On certain sums of fractional parts, Arch. Math. 25 (1974), 41-44.
[4] Goldberg, L. A., An elementary proof of Knopp's theorem on Dedekind sums, J. Number Theory 12 (1980), 541-542.
[5] Knopp, M.I., Hecke operators and an identity for Dedekind sums, J. Number Theory 12 (1980), 2-9.
[6] Niven, I. and Zuckerman, H. S., An Introduction to the Theory of Numbers, 4 th ed., Wiley, New York, 1980.
[7] Parson, L.A., Dedekind sums and Hecke operators, Math. Proc. Cambridge Phil. Soc. 88 (1980), 11-14.
[8] Parson, L.A. and Rosen, K., Hecke operators and Lambert series, Math. Scand. 49 (1981), 5-14.
[9] Rademacher, H. and Grosswald, E., Dedekind Sums, Math. Assn. America, 1971.
[10] Subrahmanyam, P., On sums involving the integer part of x, Math. Student 45 (1977), 8-12.

Don Redmond	R. Sitaramachandra Rao
Southern Ill. Univ.	Univ. of Toledo
Carbondale, IL 62901	Toledo, OH 43606
USA	USA
R. Sivaramakrishnan	
Univ. of Calicut	
Calicut 673635	
INDIA	

[^0]: Received July 13, 1987.

