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COVERINGS OVER d-GONAL CURVES

By

Naonori IsHII

§1. Introduction.

Let M be a compact Riemann surface and f be a meromorphic function on
M. Let (f) be the principal divisor associated to f and (f). be the polar
divisor of f. We call f a meromorphic function of degree d if d=degree (f).
If d is the minimal integer in which a meromorphic function of degree d
exists on M, then we call M a d-gonal curve.

Now we assume that M is d-gonal, and consider a covering map =’ : M'—M
that M’ still remains d-gonal. The purpose of this paper is to show how such
n’ can be characterized.

The case that =’ is a normal covering and d=2 (i.e., M is hyperelliptic)
has been already studied ([2], [3], [4] and [7]). In this case the existence of
the hyperelliptic involution v’ on M’ plays an important role. More precisely,
as v’ commutes with each element of the Galois group G=Gal(M'/M), v" in-
duces the hyperelliptic involution v on M and we can reduce =’ to a normal
covering m: P{—P, with Galois group G, where P;{ and P, are Riemann
spheres isomorphic to quotient Riemann surfaces M’/{v'> and M/{v) respec-
tively. On the other hand it is known that finite subgroups of the linear trans-
formation group are cyclic, dihedral, tetrahedral, octahedral and icosahedral.
Horiuchi [3] decided all the different normal coverings =’: M'—M over a
hyperelliptic curve M that M’ still remains a hyperelliptic curve by investigat-
ing each of above five types.

Let M be a d-gonal curve. In this paper we will show at first that a
covering map =’ : M’—M (not necessarily normal) with d-gonal M’ canonically
induces some covering map n: P{— P, (Theorem 2.1 §2). Moreover if both M
and M’ have unique linear system g§ and =’ is normal, then we can see that
# is also normal (Cor. 2.3).

In §3, §4 and §5 we assume that M is a cyclic p-gonal curve for a prime
number p. We will determine all ramification types of normal coverings
7' M'—>M with p-gonal M’ by the same way as Horiuchi did in case p=2(§ 4),
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and we give some results about unramified coverings =n’: M’—M, where z’ is
not necessarily normal (§5).

§2.

Let #’: M’—M be a covering over an arbitrary compact Riemann surface

M. Let C(M) and C(M’) be the function fields of M and M’ respectively and

Nmy=Nm: C(M')—C(M) be the norm map. For a divisor D= 3 n:Q; (n;€Z)
i=1

on M’, we define a divisor Nm,D=Nm D on M by

Nmy D=3n:x"(Q4).
Then the following equation of principal divisors holds ([1] Appendix B):
Nma ((f)=Nm f).

If two divisors [’ and E’ are linearly equivalent, write D'~E’, the above
equation means that Nm D'~ Nm E’.

Let #'*P denote a divisor on M’ obtained by the inverse image of a point
Pe M with ramification points counted according to multiplicity. For a divisor
D=Xn;P;, n'*D: = n;x'*P,. |D| is the complete linear system of D and
L(D) is the C-vector space consisting of 0 and meromorphic functions f satisfy-
ing (f)+D>0. I(D) is the dimension of .£(D) over C.

After this we assume that M is d-gonal. Then there exists a positive
divisor D of degree d on M satisfying ((D)=2, and [(E)=1 for any positive
divisor E of degree less than d. Actually on this D we can easily see that
{(D)=2, and then the linear system |D| defines a covering map of degree d;

¢'|D|=¢': M— P,

where P, is a Riemann sphere. Explicitely ¢(P) is defined by H(P)=h(P)=
CU(e0) for PEM, where h is a non-trivial meromorphic function in .£(D). ¢
is defined uniquely up to linear transformations of P,. By the minimality of
d, a divisor ¢*¢(P) is uniquely determined not corresponding to the choice of
h. For distinct points P and P’ on M, ¢*¢(P) and ¢*¢(P’) are linearly equi-
valent and having no common point in their supports.

Let =': M'—M be a covering of degree n over M that M’ still remains
d-gonal. Let D’ be a positive divisor on M’ of degree d satisfying {(D’)=2.
Then we have;

THEOREM 2.1. Put D=Nm_D’. Then
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i) There exists a covering map m: Pi— P, satisfying the following diagram;

w P2 py
n’l ln
M — > P1
dipi=¢

with deg m'=deg n=n and deg ¢'=deg ¢=d.
iiy Let C(M’), C(M), C(P{) and C(P,) be the function fields. Then
C(MINC(PH=C(P)) in C(M") ana C(M)C(ZPQ C(P)=C(M").
P

d
To prove this Theorem we prepare some lemmas. Put D'= ,E]Pi (P; are
&

d
not necessarily distinct), and z'*z’'P,= 3 P{®.
k=1

LEMMA 2.1.1. For each i,
N p"*Q'(P{#)=Nmz " *$'(P)=Nmo D",  k=1,2,,n.

PROOF. Nm.¢p'*¢'(P{*) and Nm,¢'*¢'(P;) are divisors of degree d on M,
and they have a common point z'(P{*>)=x'(P;). But they are linearly equivalent
as QP (PiF)~¢'*¢'(P;). Then we have Nm.¢'*¢'(P{*#)=Nm.¢'*¢'(P;) by
the minimality of d. ]

d
As I(D")>1, we may assume that D'= 3} P; (=¢'*¢/(P,) satisfies the fol-
lowing conditions #);

*) P, are distinct, z’ is unramified over n'(P;), 1<i<d,
and ¢’ is unramified over ¢’(P{¥’), 1<k<n.

Let NmyD'=d,R\+d;Ry+ - +dR,, di+ds+ - +d,=d, where R; are distinct
points in M and z'(P)=R,. Changing the indeces of P;, we may assume that

n’(-Pl): :n.,(Pdl):Rh ﬂ,(Pdl-H): :n,(PdH'dz):RZ’ )
ﬂ’(Pd1+‘i2+"‘+dL—l+l>: :”,<Pdl+‘”+dt): Rt .
LEMMA 2.1.2. d,in, dild and d,=d,= - =d,.

PROOF. Put n*Ri=a"*1'(Py sra;_yss)=ALP+ - +AM, s,=1, -, d;, i=
1,---,t. Then A{® (k=1, -, n) are distinct by x). By Lemma 2.1.1
Nma ' *¢'(Af¥)=d R+ --- +d,R,. For ¢’ is unramified over @' (AR, ¢"*P(AM)
also consists of distinct d points. Changing the induces £ of A{*> for each 7,
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we may write;

PFEP(AM)=(AP+ - +APO) (AP - 4+ ALY o (A F AL,
Especially d,<n. By the minimality of d, ¢"*¢(AP)= - =¢'*¢'(A{*?). If
d,<n, take a point over R,, namely A{%*", not equal to A{¥’, 1<k=d,. Then
we may write;

¢I*¢I(A£dl+1)):(A1(dl+l)+ +A1(2d1))+ +(A5(dt+l)+ _*__AéZd;))
and ¢'*Q'(A{NH)= ... = *P'(AP0). If still 2d,<n, repeat the same manner
as above and finally we have the following sd,-+1 equations of divisors;

[ PEY(APD) =(AP+ - A+ - (AP +A&0) (1.1)

GHGALD) (AP o H AL o FAPH - +AID) (Ldy)

[ ¢’*¢I<A{dl+l))=(/ll(dl+l)+ +A1(2d1))+ _|_(At(d[+1)_|_ +A;(2dt)) (2.1

@Y ALY =(ALFDE oo F ALY e (ALY ARI0) (2.4

[ ¢,*¢»(Al((s-1)dl+n)__:(Af(s-1>d1+x>_|_...+Altsdn)_;_...+(Ag(s-‘>dt+1>-1—---—}—Aé”t)) (s.1)

GHYACID)  =(ALDUD o ARID) o (AP L ABD) (5.dy)

and
T R=(A®+ - F ALY o (AU L L A0 (%)

Then n=d,-s. If d.>d;, then n=d,-s>d,-s. There exists a point over R,
namely A{®, never appears in the right hand sides of the above equations
(1.1)~(s.d,). On the other hand ¢’*¢'(Af*) has A{® for some k& in its support
by Lemma 2.1.1. For the minimality of d, ¢"*¢'(A{™)=¢'*¢'(A{*). This is a
contradiction. If d,<d,, then n=d,-s<d.;s. This also can not be happened. O

By Lemma 2.1.2, and the above equations (1.1)~(s.d,), **), we have;
LEMMA 2.1.3.

é ¢/*¢I(P1(k)): é TC,*TCI(Pi)Zﬂ’*Nm (D,) .
k=1 i=1

PrROOF OF THEOREM 2.1.

Let E'=3Q,; and E”=3S; be in |D’| satisfying the conditions *). Let A’
be a non-constant function in .£(D’) and h=Nm h’.
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div(hen'y=n"*Nm E'—n’*Nm E”

=3 P*P(QF)— 5 G"*P'(S#) by Lemma 2.1.3
k=1 k=1

I

31 g QD) — ¢ g/ (P} — {7/ (S)—¢"*¢'(Pr)}]

k=

-

[l
M=

Hg*¢(Qu—D"t —{¢"*¢'(S1)— D'} ]

k

It
-

fl

ki {(arh'+bp)—(crh'+d )}
=1

( ¥ ak@'i’?i)

E<t cph'-dy ’
Then hern’ is in C(h")=C(P}) and we have

C(M") D C(P))
U U
CM)D C(P,), with [C(M"): C(M)]=[C(P}): C(P,)]=n and

[C(M): C(P)]=[C(M"): C(P})]=d.
As [C(P) @ C(M): C(P)]=[C(M'): C(P}))], we have ii). dJ
CcP)

Conversely we have;

REMARK 2.2. Let ¢: M—P; be a d-gonal curve with a d-th coverinng ¢
over a Riemann sphere P,. Let z’: P{—P, be an arbitrary covering. Then
function fields C(M) and C(P;) are linearly disjoint over C(P,), and the Rie-
mann surface M’ obtained from the function field C(M)C((%)) C(PH=C(M)-C(P)

1

is d-gonal.

Proor. Consider the canonical surjective map C(M) & C(P{)—C(M)-C(P}).
CcPy

Put d’'=[C(M)- C(P{): C(P})]. If d'<d, then M should be d”-gonal for some
d”<d’. This is a contradiction. 0

Concerning about the digram in Theorem 2.1, = is not necessarily normal
even if n’ is normal. But we have;

COROLLARY 2.3. If M’ has unique linear system g} and =’ is normal, then
7 is normal and Gal(M'/M)=Gal (P]/P,).
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PROOF. Let ¢ be an automorphism on M’. For the uniquness of g; there

is an automorphism & on P; satisfying the following diagram:

M’

> P
0‘ X&
M’ —— P{

As C(MINC(P)H=C(Py), Gal(M'/M)=Gal (Pi/Py). O

REMARK 2.4. Under the two assumptions of corollary 2.3, (i.e., =’ is
normal and the uniqueness of gl, we can prove Theorem 2.1. i) easier. In
fact Gal(M'/M) acts on P; as the proof of the corollary 2.3, and the fixed
subfield of C(P!) by the action of Gal (M'/M) is C(M)NC(P;). This field is
a function field of genus 0, and [C(M): C(M)NC(P{)]=d for the minimality
of d.

REMARK 2.5. The condition that M’ has unique gj is satisfied in the fol-
lowing case:

M’ is p-gonal of genus=(p—1)*+1 for a prime number p
([9], Cor. 2.4.5), especially M’ is defined by the equation
D(u, y)=0 (§3(1)) with m=2p+1 ([9], [8], [5]).

REMARK 2.6. Let p be a prime number. We assume that M has a p-th
covering over P,. Then the condition that M is p-gonal is satisfied when
genus of M>(p—1(p—2) ([9], Cor. 2.4.5).

§ 3.

Let p be a prime number and M be a Riemann surface defined by the
equation

D(u, y):=y"—(u—a)* - (u—an) =0 ¢))

where a; (1<i<m) are distinct and k; are integers satisfying 1<k;<p—1 and
k=0 mod p. Let ¢: M—P, be the cyclic normal covering of degree p over
P, defined by (u, y)—u. The branch points of ¢ are a;& P, and ¢ is com-

(p—1)m—2)

pletely ramified over a;. Put S={a;|1=</<m}. The genus of M is —5

Sometimes we use another equation D'(u, y) for M

D'(u, ¥):=y?—(u—PB)* - (u—Bn-)tm-1=0 2)
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with 1=<k;<p—1 and X k;50 mod p. ¢ is defined as above and the set S of the
branch points of ¢={B,, -+, Bm-1, co}. In this case let k,>0 denote a minimal
integer satisfying kmz—li:ki mod p, then we can get an equation of type (1)
birational equivalent to (2).

We call M a cyclic p-gonal if M is p-gonal and defined by (1) or (2). Here-
after we assume that M is cyclic p-gonal and having unique g;. If m=2p—1,
M is p-gonal by Remark 2.6. If m=2p+1, M has unique g, by Remark 2.5.
n’ . M'—M always means a covering map with p-gonal M’. Then a covering
' M'—M corresponds to a covering =n’: P{— P, by Theorem 2.1.

In this section we show the method how to get the equation of M’ and «’
explicitely from the equation of M and n. Put P,=Proj C[z, z,], Pi=
Proj Cluo, u,], z=2z,/20 and u=u,/u,. Assume that n’ is defined by (z,, z;)—
(Fo(zo; 21): Fi(zo; z1)), where F; (1=1, 2) are relatively prime homogeneous poly-
nomials of same degree n. V=35pec C{z]r,u;» and U=Spec C[u] are affine

open subsets of P{ and P, respectively. Then =n':V—U 1is represented by

zwu:?%—f—%pét f. Assume M is defined by the equation D(u, y)=0 with a;&
0 . K

U=C for all ;. Put A=C[u, y1/(D(u, v)). By Theorem 2.1,
C(M"N=C(M) @ C(P))
C(Pyp

=A Q C(P))

Cruj

DA ® Clzliryaian

Cruj

=C [2]<Fn<1:z>>[y]/(D (%8 g , y))

put

Then Spec B:V%}<Spec A, If we have factorizations;

@ s
Fl: )= Fl: dae=c,T z—af) "
=1

) . . . 1<% X
with some constants ¢;, a{¥=C and ef< N satisfying 3 e{<n, then
t=1

Spec A;(Spec C[z] is defined by the equation
1

1A$2]

Ful: it yr— T (e T —atyi%) =0,
i=1 i=1
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Put
Glay=Fy(1: 2) &P ] T (o a gy tetPrm (ff ) CE07,
i=1 t=1 i=1

where [a/b] is Gauss symbol. Changing G(z)y by y we have an equation of
type (1) for M’

(€3]

()
I (—af)e"=0 ®

==

yp_

i=1

where f{® are positive integers satisfying 0<f{¥<p and f{¥=ef’k; mod p.
' is defined by

(v, 2)—(G() "y, Fi(, 2)/F(1, 2)).
Let f. be the integer satisfying §f5i>+fm20 mod p and 0Z f.<p. The set
S’ of branch points of ¢’ consists of ¢ with f{®#0 and oo if f.#0.

Next assume that M is defined by the equation D’(u, y)=0 in (2) and we
have factorizations;

(€3] )
Fu(l: 2)—BaFu(l: z):ci:g by (=ism—1)
and
F(l: 2)=cm(z—1)" 1 = (2=T"3,  1mit - +rs=n.

Let f{® (1<i<m—1) be numbers satisfying e{"-k;=f{" mod p and 0= f{><p.
Let g; (1<7<s) be numbers satisfying 7;-kn=g; mod p and 0<g;<p, where
k. is defined as before. By the same way as above we have an equation
of M’;

m-1 1) ) fu)
y7=(I IHG=bioY e Y= - (=10 )

m is defined by
(v, 2)—>(G'(2)"y, Fi(l: 2)/Fy(1: 2))
where

Tk, T -1 L@ .
G/(a)= Fll: 2B (T e &M T (e bgo)-cef hurm
t=1 i=1 t=1
8
X I (z=7,)7tr3kmiP2
j=1

Let f. be the integer satisfying Z} P+ g4+ f=0 (mod p) and 0= fu<p.
[ j

The set S’ of branch points of ¢’ consists of b{® (f{?+0), r; (g;#0) and oo if
fo#0.
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LEMMA 3.1. For a point P€M’, put ¢'(P)=a and mo¢’(P)=a. e (resp. e’)
denotes the ramification index of = (resp. wn’) at a (resp. P).

(1) Assume o is a branch point of ¢. Then e'=e/p if ple, ana e=e’ if
pre.

(2) Assume a is not a branch point of ¢. Then e=e’.

PrROOF. We may assume that M is defined by the equation (1). If a is a
branch point of ¢, then a=a;, a=a and e=ef for some 7 and ¢. If p|e,
then f{”=0 and a is not a branch point of ¢ by (3). On the other hand the
ramification index of ¢ over a; is p. As ¢en'=ne¢)’, p-e’=e. If p/e, then
fi?#0 and a=a{* is a branch point of ¢. .".e=e’. 0

§ 4.

Let #’: M'—M be as in §3. Moreover we assume that ' is normal with
Galois group G. By Corollary 2.3 in §2 = induced by =’ is also normal with
Galois group G. Then we use the following lemma to determine =’

LemMMA 4.1, ([6], [3]) By choosing suitable coordinates z and u for P} and
P, respectively, any normal coverings =n': P{—P, (z—u=f(2)) are one of the
following five types;

. _ ramification indeces
group #G  u=/f(x) {branch points }
n n
I cyclic C. n u=z" {
(o]
v 2 2 2
Il dihedral D, 2v u:(—zv-ﬁ-l)f { y}
4z*
0 1 o
o 3 3 2
It A _(z*=2V3iz"+1)°
etrahedral s 12 u 12V 32— 1) 0 1 o
_ P+ 14241y 3 2 4
IV octahedral S 24 u= 1082 —1)° {0 Lo
V icoshedral A, 60 u—CETDI2BE gy S 25
’ - 17282%(z"°+112°—1)° 0 1 oo
where the symbol {Z‘ ZZ } means that n' is ramified over a; with ramification
L@

index n;.
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Now we determine all ramification types of normal coverings =n’: M'—»M
for an arbitrary prime number p as Horiuchi did in case p=2.

As notations we use P, P’, P7, --- for ramification points of ¢, and Q,, @,

o, QuQ1, -, Qp; QY -+, Q4 -+) mean p distinct points with Q)=

) m o .

=(Q,) (YQD= - =d(Q3); $(Q7)= ). The symbol {R } means that ' is

ramified over R with ramification index m.

PROPOSITION 4.2. All the ramification types of normal coverings m' with
Galois group G=C, are as follows;
iy If pkn, then

o b e 9 :
P P P Ql"‘Qp Ql"'Qp Q;Q;
ity If pln and p+n, then
n/p n/p n/p nn n--mn n-on
o 0 o Y aled 9 :
P P P Qi Q, Qi @y Qi Q
a) unramified b) { } c) { }
Q. Qyp Qi Qp Qi Qy

it)yIf p=n, then
) moon
PrROOF. We may assume that the ramification type of = is { } Let

(o)

S be the set of branchpo ints of ¢p: M—P,. When SN{0, o}={0, o}, we have
i, ii, ili-a) by Lemma 3.1. When SN{0, «}={0} or {co}, we have i, ii, iii-b).
When SN{0, co}=¢@, we have i, ii, iii-c). O

PROPOSITION 4.3. All the ramification types of normal coverings =n' with
Galois group G=D, are as follows;
i) If pt2v, then

2 2 v 2 2 vy 22 2 v
o fpp ot | oo }

P pr pr PP Q- Q, Q. Q, PP
o {2 9 .2y oy } {2 22 L2y }

P Q- Qp Q1 Qp Q.- Qp Q1--Qp P

2 2 2.2 oy
n | |
Qi Qp Qi@ QU Qf



Coverings over d-gonal curves 183

ity If plyv, p#v and v odd, then

: {2 2 u/p} {2 2y oy {2 2 Zv/j)}
¢ P P’ P P P, Q1 Qp} C) Ql Qp P P’
-y 2 2 2 -2 y/p
oo aen) 1 }
P Ql Qp Ql Q Ql"'Qp Q;Q; P

2 2 Y
n i |
Qi Qp Q1 Qp Q- Q3
iii) If p=v and v is odd, then

2 2 2 2 vy 2 -2 2
L R PRI

P r P p Ql"'Qp Ql"‘Qp P

2 2 2 y oy 1 2 -2 92 .2
J R

PQiQp QL Q) Q- Qp QL Q)

2 2 2 2y oy
n |

Qi Qp QU Qp Q7 Qp
iv) If p=2 ana v is odd, then
{2 2 v}
Q. Q. P
2 2 v vy 2 2 2 2 vy
* loc ool | }
Q: Q. Q Q; Q. Q. Q1 Q3 P

) v v
RN R

P Q1 Q.

2 2 2 2 v
f>{ }

Q: Q: Q1 Q: Qf Q4
v) If p=2 and v is even=4, then

v/2 y oy 2 2 v/2
SRS TR A B

P Q: Q: O Q. P

2 2 v v 2 2 2 2 y/2
oo ad °1 }

Q: Q. Q1 Q; Q: Q. Q Q; P

f) {2 2 2 2 vy u}
Q: Q. Q1 Q; Q7 Q4

vi) If p=v=2 (Theorem 2' [3], [4]),
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2 2 2 2 2 2
a) unramified b) { } c) { }
Q. Q. Q:Q: 01 Q:

2 2 2 2 2 2
o | I
Q: Q. Q7 Q3 Q7 QF

ProOOF. The ramification type of = is {g ? O:} The cases i~v a), i~V

b), i~v ¢), i~v d), i~v e) and i~v f) are corresponding to SN {0, 1, oo}
=0, 1, o}, 2{0, 1}, ©{0, co} or {1, oo}, ¥{0} or {1}, ®{co} and 1@ respec-
tively. In case vi), a), b), ¢) and d) are corresponding to SN0, 1, oo}=
{0, 1, oo}, {0, 1} or {0, oo} or {1, oo}, {0} or {1} or {co} and D@ respec-

tively.

PROPOSIN 4.4. All the rami fication types of normal coverings @' with G=Ay4

are as follows;
i) If p=5, then

3 3 2 33 2.2 3 -3 3 2
o fomed ?brorel @ lomarr)
P P P PP Qi+ Qp Q.Q, PP
3 33 2 2 3 -3 3 -3 2
2| b oo }
p Q1"'Qp QIQ; Ql"'Qp Q;Q/p P

3 ..3 3 ..3 2 ..2
n | |
Qi Qp Q1+ Qp Q7 QF

il) If p=3, then
{2 2 2 } ) {3 3 3 2}
c
Ql QZ Q3 Ql QZ Q3 P

2
o )
P
3 3 3 2 2 2 3 3 3 3 3 3 2
| | oo }
Q. Q. Qs QF Qs Qs Q: Q: Qs Q1 Q: Q3 P
f){333333222}
Q: Q. Qs Q1 Q2 Q3 QF QF Q3
iii) If p=2, then

3 3 3 3 2 2 33 3
ool 2 lraa 2ol
pP P’ PP Q, Q, P Q, Q.
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3 3 3 2 2 3 3 3 3
° | R
P Q. Q. Q1 Q; @ Q: Q1 Q;
3 3 3 3 2 2
| ]

Q1 Q. Qf Q; Q7 Q¥

PROOF. The ramification type of z is {3 3 020} The cases i~iii a), i~

0 1
iii b), i~iii ¢), i~iii d), i~iii ¢) and i~iii f)are corresponding to SN0, 1, oo}
=210, 1, oo}, ©{0, 1}, ©{0, o} or {1, o}, {0} or {1}, ®{co} and 1@ respec-
tively. O

PROPOSITION 4.5. All the ramification types of normal coverings n’ with

G=S, are as follows;
{3 2.2 4 }
P Q,-Q, P

i) If p=5, then
3 324} ){32---2 4---4}
e
“Qp PP P Qi Q, Q1 Qp

3 2 4 32 4.4
: { |2 e ol
P P’ Pr PP Qi Q,
303 244 393 2.2 4
» { I o |
1 Qp P QL Q) Qi Qp Q1 Qp P

Q-
3 -3 2.2 4---4}
h)
Ql Qle QpQ”"‘ ?
ii) If p=3, then
2 4 2 4 4 4 2 2 2 4
S B P B A
PP P Q:, Q. Qs Q. Q: Qs P
33324} {222444}
d
: {Ql Q: Qs PP Qi Q. Qs Q7 Q: Qf
3 3 3 2 4 4 4 3 3 3 2 2 2 4
)| ) o |
Qi Q: Qs P Q) Q; Qs Q: Q. Qs QF Q; Q; P

{3 33 2 2 2 4 4 4 }
) .
@ Q. Q. Q7 Q: Q3 Q7 QF Q4
iii)y If p=2, then
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{ } {3 4 4} {3 2 2 2
c) }
P Q. Q. PQ Q. P
{3 3 2} {3 2 2 4 4}
e)
Q. Q. P P Q Q. Q Q;
3 3 4 4 3 3 2 2 2
ooaa © }
Q: o Q. Q: Q1 Q: P
3 3 2 2 4 4
2 { }
Q. Q1 Q: Q7 Q%

ProoF. The ramification type of =n is {

a)

d)

n

3 2
0 1

i~iii b), i~iii ¢), i~iii d), i~iii e), i~iii f), i~iii g) and i~iii k) are corre-
sponding to SN{0, 1, o}=2{0, 1, oo}, {0, 1}, ©{0, o}, {1, oo}, {0}, {1},
{0} and M@ respectively. O

4 .
}. The cases i~iii a),
(o]

PROPOSITION 4.6. All the ramification types of normal coverings m’' with

Gz A; are as follows,
iy If p=7, then
3 2 5 3 2 5.5 3 225
O opnd P | b oo }
P P’ pr P P/ Ql...Qp P Ql...Qp P’
{3 -3 2 5} ) {3 2 -2 5 5 }
e
~Qp, PP’ P Q,Qp Q1 Q5
3.3 2 55 3 -3 2 -2 5
nio I oo |
1° Qp P Qinp Ql Qp Q; le P

3.3 2 2 5 5
" lo. |
Qi Qp Qi Qp Q7 Q7

it) If p=5, then
3 2 3 2 5.5 3 2.2
o foot P lranal ©lronel
P P PP Q. Q, P Q. - Q,

3...3 2 3 2..2 §5 ..5
* ol 91 }
Qi Qp P P Qi Qp Qi Qp

2
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3 -3 2 5.5 3 -3 2 2
) { , } g) { , ,
Q. Qp P Q1 Qp Q. Qp Q1 Qp

" {3 .3 2 ..2 5 .5 }
h .
Qi Qp Qi Qp Q7 Q3

iif)y If p=3, then
2 5 2 5 5 5 2 2 2 5
ot v haad laar
PP P Qi Q. Qs Q: Q. Qp P
3 3 3 2 5 2 2 2 5 5 5
" | | oo }
Qi Q: Qs P P’ Qi Q. Q: Q1 Q2 Qs

f){3332555} ){3332225}
g
Q: Q. Qs P Q1 Q: Qs Q: Q. Qs Q1 Q2 Q5 P

/){333222555}
1
Qr Q: Qs QF Q2 Qs Q7 QF QF

iv) If p=2, then

3 5 355 32 2 5
oot v laa e
P P’ P Q. Q. PQ QP

3 3 5 2 3 3 5 5
T RIS
Q. Q. P PQ, Q. Q Q

f{3355} {33225}
)
Q: Q. Q1 Q2 Q. Qp, Q1 Qp P
3 3 2 2 5 5
h){ }
Q. Q. Q1 Q: QF Q%

3 2
0 1
i~iv b), i~iv ¢), i~iv d), i~iv e), i~iv f), i~iv g) and i~iv h) are corre-
sponding to SN {0, 1, «0}={0, 1, oo}, {0, 1}, {0, o}, #{1, o}, {0}, />{1},
2{co} and » @ respectively. O

. . . 5 .
ProoF. The ramification type of = is { oo}. The cases i~iv a),

REMARK 4.7. There exists unique covering =’ that attains each type in
proposition 4.2~4.6. If we appoints branch points P, P/, «--; Q1, @5, - ; Q1, ---.
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By Lemma 4.1, §3.(4) and Proposition 4.2~4.6 we have;

THEOREM 4.8. Let M be a cyclic p-gonal curve. All the unramified normal
coverings =’ : M'—M with a p-gonal curve M’ are obtained by the following
manners ;

i) Let p be an arbitrary prime number. Take two ramification points P, P’
of ¢: M—P,. Let w: Pi—P, be a normal covering with Gaiois group C,
ramified over ((P) and (P'). Then zn’ as in Theorem 2.1 is unramified.
Moreover if M and = are defined by y?—u™(u—az)™ - (u—a, ) "'=0 (g;€
C—{0}, Zm;=£0 moa p) and n: z—z?, then M’ and =’ are defined by

V=" —as)" - (2P —a,)"1=0 and =n':(z, y)—> (27, z7™1Y).

i) p=2. ([3], [4]) Take three ramification points P, P', P” of ¢ and a
normal covering m of degree 4 with Galois group D, ramified over (P), ¢(P),
G(P”).  Then =n' is unramified. Moreover if M and ¢ are defined by
YV:—u(u—1)(u—as) - (u—a,-)=0, r—1%0 mod 2, a; € C—{0} and r:z—u=
(+1)2/42%, then M’ and ¢’ are defined by

yV:—{(*+1)*—4da,z*} - {(z*+1)*—4a, 2%} =0 and

(@12 (Z+1)(z2—1)
42 7 (2o y)'

m': (2, y)%(

§ 5.

Let M be a cyclic p-gonal curve with m=2p+1 and z’: M'—M be as be-
fore, but we do not assume that =’ is normal. We consider the condition that
7

n’ is unramified (if =’ is normal, all umramified =’ are obtained by Theorem
4.8). By Lemma 3.1 we have:

LEMMA 5.1. Let n: Pi—P, and ¢: M—>P, be as in Theorem 2.1. Then

the followings are equivalent

1) =’ is unramified.

ii) Any branch points of m are also branch points of ¢ and any ramification
indeces of m are equal to p.

Finally we give an example of an unramified covering n’ that is not normal.

EXAMPLE 5.2. Let n: P{— P, be defined by
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1N\ b2
(2 D;;JL’ where k0, +1

Z —>

Then the ramification points (€ P}) of x are 1, &, 0, 0 and ++/k with ramifica-
tion index p. wn(l)=xn(k)=0, n(0)=n(w)=o, a(vk )=1—~'k )" and x(—vVE)
=(14++%)%. Thus = is not normal. Let M be a hyperelliptive curve defined

by

V—u{u—1—vE Y Hu—1+VE ) u—as) - (u—as,,,)=0.

Then z’: M’—M as in Theorem 2.1 is unramified. Explicitely M’ and z’ are

represented by

and

Y —{22—(2—2VEk +2k)z+k}{2*—2+2VEk +2k)z+k}

Alz—DXz— k) —asz?} X - X{(z—1D)*z— k)Y —a244+:2°}=0

278Dz B N z—E )Y).

w' i (z, y)—> (

(z—1)(z— k)"
z? ’
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