COVERINGS OVER d-GONAL CURVES

By

Naonori ISHII

§ 1. Introduction.

Let M be a compact Riemann surface and f be a meromorphic function on M. Let (f) be the principal divisor associated to f and $(f)_{\infty}$ be the polar divisor of f. We call f a meromorphic function of degree d if $d=\operatorname{degree}(f)_{\infty}$. If d is the minimal integer in which a meromorphic function of degree d exists on M, then we call M a d-gonal curve.

Now we assume that M is d-gonal, and consider a covering map $\pi^{\prime}: M^{\prime} \rightarrow M$ that M^{\prime} still remains d-gonal. The purpose of this paper is to show how such π^{\prime} can be characterized.

The case that π^{\prime} is a normal covering and $d=2$ (i.e., M is hyperelliptic) has been already studied ([2], [3], [4] and [7]). In this case the existence of the hyperelliptic involution v^{\prime} on M^{\prime} plays an important role. More precisely, as v^{\prime} commutes with each element of the Galois group $G=\operatorname{Gal}\left(M^{\prime} / M\right), v^{\prime}$ induces the hyperelliptic involution v on M and we can reduce π^{\prime} to a normal covering $\pi: \boldsymbol{P}_{1}^{\prime} \rightarrow \boldsymbol{P}_{1}$ with Galois group G, where $\boldsymbol{P}_{1}^{\prime}$ and \boldsymbol{P}_{1} are Riemann spheres isomorphic to quotient Riemann surfaces $M^{\prime} /\left\langle v^{\prime}\right\rangle$ and $M /\langle v\rangle$ respectively. On the other hand it is known that finite subgroups of the linear transformation group are cyclic, dihedral, tetrahedral, octahedral and icosahedral. Horiuchi [3] decided all the different normal coverings $\pi^{\prime}: M^{\prime} \rightarrow M$ over a hyperelliptic curve M that M^{\prime} still remains a hyperelliptic curve by investigating each of above five types.

Let M be a d-gonal curve. In this paper we will show at first that a covering map $\pi^{\prime}: M^{\prime} \rightarrow M$ (not necessarily normal) with d-gonal M^{\prime} canonically induces some covering map $\pi: \boldsymbol{P}_{1}^{\prime} \rightarrow \boldsymbol{P}_{1}$ (Theorem $2.1 \S 2$). Moreover if both M and M^{\prime} have unique linear system g_{d}^{1} and π^{\prime} is normal, then we can see that π is also normal (Cor. 2.3).

In $\S 3, \S 4$ and $\S 5$ we assume that M is a cyclic p-gonal curve for a prime number p. We will determine all ramification types of normal coverings $\pi^{\prime}: M^{\prime} \rightarrow M$ with p-gonal M^{\prime} by the same way as Horiuchi did in case $p=2(\S 4)$,

Received May 13, 1991.
and we give some results about unramified coverings $\pi^{\prime}: M^{\prime} \rightarrow M$, where π^{\prime} is not necessarily normal (§5).

§ 2.

Let $\pi^{\prime}: M^{\prime} \rightarrow M$ be a covering over an arbitrary compact Riemann surface M. Let $\boldsymbol{C}(M)$ and $\boldsymbol{C}\left(M^{\prime}\right)$ be the function fields of M and M^{\prime} respectively and $N m_{\pi^{\prime}}=N m: \boldsymbol{C}\left(M^{\prime}\right) \rightarrow \boldsymbol{C}(M)$ be the norm map. For a divisor $D=\sum_{i=1} n_{i} Q_{i}\left(n_{i} \in \boldsymbol{Z}\right)$ on M^{\prime}, we define a divisor $N m_{\pi^{\prime}} D=N m D$ on M by

$$
N m_{\pi^{\prime}} D=\sum n_{i} \pi^{\prime}\left(Q_{i}\right)
$$

Then the following equation of principal divisors holds ([1] Appendix B):

$$
N m_{\pi^{\prime}}((f))=(N m f) .
$$

If two divisors D^{\prime} and E^{\prime} are linearly equivalent, write $D^{\prime} \sim E^{\prime}$, the above equation means that $N m D^{\prime} \sim N m E^{\prime}$.

Let $\pi^{\prime *} P$ denote a divisor on M^{\prime} obtained by the inverse image of a point $P \in M$ with ramification points counted according to multiplicity. For a divisor $D=\sum n_{i} P_{i}, \pi^{* *} D:=\sum n_{i} \pi^{\prime *} P_{i} . \quad|D|$ is the complete linear system of D and $\mathcal{L}(D)$ is the \boldsymbol{C}-vector space consisting of 0 and meromorphic functions f satisfying $(f)+D>0 . l(D)$ is the dimension of $\mathcal{L}(D)$ over C.

After this we assume that M is d-gonal. Then there exists a positive divisor D of degree d on M satisfying $l(D) \geqq 2$, and $l(E)=1$ for any positive divisor E of degree less than d. Actually on this D we can easily see that $l(D)=2$, and then the linear system $|D|$ defines a covering map of degree d;

$$
\psi_{|D|}=\psi: M \longrightarrow P_{1}
$$

where \boldsymbol{P}_{1} is a Riemann sphere. Explicitely $\psi(P)$ is defined by $\psi(P)=h(P) \in$ $C \cup(\infty)$ for $P \in M$, where h is a non-trivial meromorphic function in $\mathcal{L}(D) . \psi$ is defined uniquely up to linear transformations of \boldsymbol{P}_{1}. By the minimality of d, a divisor $\psi^{*} \psi(P)$ is uniquely determined not corresponding to the choice of h. For distinct points P and P^{\prime} on $M, \psi^{*} \psi(P)$ and $\psi^{*} \psi\left(P^{\prime}\right)$ are linearly equivalent and having no common point in their supports.

Let $\pi^{\prime}: M^{\prime} \rightarrow M$ be a covering of degree n over M that M^{\prime} still remains d-gonal. Let D^{\prime} be a positive divisor on M^{\prime} of degree d satisfying $l\left(D^{\prime}\right)=2$. Then we have;

Theorem 2.1. Put $D=N m_{\pi^{\prime}} D^{\prime}$. Then
i) There exists a covering map $\pi: \boldsymbol{P}_{1}^{\prime} \rightarrow \boldsymbol{P}_{1}$ satisfying the following diagram;

with deg $\pi^{\prime}=\operatorname{deg} \pi=n$ and $\operatorname{deg} \psi^{\prime}=\operatorname{deg} \psi=d$.
ii) Let $\boldsymbol{C}\left(M^{\prime}\right), \boldsymbol{C}(M), \boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right)$ and $\boldsymbol{C}\left(\boldsymbol{P}_{1}\right)$ be the function fields. Then $\boldsymbol{C}(M) \cap \boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right)=\boldsymbol{C}\left(\boldsymbol{P}_{1}\right)$ in $\boldsymbol{C}\left(M^{\prime}\right)$ and $\boldsymbol{C}(M) \otimes_{c\left(\boldsymbol{P}_{1}\right)} \boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right)=\boldsymbol{C}\left(M^{\prime}\right)$.

To prove this Theorem we prepare some lemmas. Put $D^{\prime}=\sum_{i=1}^{d} P_{i}$ (P_{i} are not necessarily distinct), and $\pi^{\prime *} \pi^{\prime} P_{i}=\sum_{k=1}^{d} P_{i}^{(k)}$.

Lemma 2.1.1. For each i,

$$
N m_{\pi^{\prime}} \psi^{\prime *} \psi^{\prime}\left(P_{i}^{(k)}\right)=N m_{\pi^{\prime}} \psi^{*} \phi^{\prime}\left(P_{i}\right)=N m_{\bar{\pi}^{\prime}} D^{\prime}, \quad k=1,2, \cdots, n
$$

Proof. $N m_{\pi^{\prime}} \psi^{\prime *} \psi^{\prime}\left(P_{i}^{(k)}\right)$ and $N m_{\pi^{\prime}} \psi^{*} \psi^{\prime}\left(P_{i}\right)$ are divisors of degree d on M, and they have a common point $\pi^{\prime}\left(P_{i}^{(k)}\right)=\pi^{\prime}\left(P_{i}\right)$. But they are linearly equivalent as $\psi^{*} \psi^{\prime}\left(P_{i}^{(k)}\right) \sim \psi^{\prime *} \psi^{\prime}\left(P_{i}\right)$. Then we have $N m_{\pi^{\prime}} \psi^{*} \psi^{\prime}\left(P_{i}^{(k)}\right)=N m_{\pi^{\prime}} \psi^{*} \psi^{\prime}\left(P_{i}\right)$ by the minimality of d.

As $l\left(D^{\prime}\right)>1$, we may assume that $D^{\prime}=\sum_{i=1}^{d} P_{i}\left(=\psi^{*} \psi^{\prime}\left(P_{1}\right)\right)$ satisfies the following conditions $*$);
*)
P_{i} are distinct, π^{\prime} is unramified over $\pi^{\prime}\left(P_{i}\right), 1 \leqq i \leqq d$,
and ψ^{\prime} is unramified over $\psi^{\prime}\left(P_{1}^{(k)}\right), 1 \leqq k \leqq n$.

Let $N m_{\pi^{\prime}} D^{\prime}=d_{1} R_{1}+d_{2} R_{2}+\cdots+d_{t} R_{t}, d_{1}+d_{2}+\cdots+d_{t}=d$, where R_{i} are distinct points in M and $\pi^{\prime}\left(P_{1}\right)=R_{1}$. Changing the indeces of P_{i}, we may assume that

$$
\begin{aligned}
& \pi^{\prime}\left(P_{1}\right)=\cdots=\pi^{\prime}\left(P_{d_{1}}\right)=R_{1}, \quad \pi^{\prime}\left(P_{d_{1}+1}\right)=\cdots=\pi^{\prime}\left(P_{d_{1}+d_{2}}\right)=R_{2}, \cdots, \\
& \pi^{\prime}\left(P_{d_{1}+d_{2}+\cdots+d_{t-1}+1}\right)=\cdots=\pi^{\prime}\left(P_{d_{1}+\cdots+d_{t}}\right)=R_{t}
\end{aligned}
$$

Lemma 2.1.2. $d_{1}\left|n, d_{1}\right| d$ and $d_{1}=d_{2}=\cdots=d_{t}$.
Proof. Put $\pi^{\prime *} R_{i}=\pi^{\prime *} \pi^{\prime}\left(P_{d_{1}+\cdots+d_{i-1}+s_{i}}\right)=A_{i}^{(1)}+\cdots+A_{i}^{(n)}, s_{i}=1, \cdots, d_{i}, i=$ $1, \cdots, t$. Then $A_{i}^{(k)}(k=1, \cdots, n)$ are distinct by $*$). By Lemma 2.1.1 $N m_{z^{\prime}} \psi^{\prime *} \psi^{\prime}\left(A_{i}^{(k)}\right)=d_{1} R_{1}+\cdots+d_{t} R_{t}$. For ψ^{\prime} is unramified over $\psi^{\prime}\left(A_{1}^{(k)}\right), \psi^{\prime *} \psi\left(A_{1}^{(1)}\right)$ also consists of distinct d points. Changing the induces k of $A_{j}^{(k)}$ for each j,
we may write;

$$
\phi^{\prime *} \psi^{\prime}\left(A_{1}^{(1)}\right)=\left(A_{1}^{(1)}+\cdots+A_{1}^{\left(d_{1}\right)}\right)+\left(A_{2}^{(1)}+\cdots+A_{2}^{\left(d_{2}\right)}\right)+\cdots+\left(A_{i}^{(1)}+\cdots+A_{i}^{\left(d_{t}\right)}\right) .
$$

Especially $d_{1} \leqq n$. By the minimality of $d, \phi^{\prime *} \psi^{\prime}\left(A_{1}^{(1)}\right)=\cdots=\phi^{*} \phi^{\prime}\left(A_{1}^{\left(d_{1}\right)}\right)$. If $d_{1}<n$, take a point over R_{1}, namely $A_{1}^{\left(d_{1}+1\right)}$, not equal to $A_{1}^{(k)}, 1 \leqq k \leqq d_{1}$. Then we may write;

$$
\psi^{\prime *} \psi^{\prime}\left(A_{1}^{\left(d_{1}+1\right)}\right)=\left(A_{1}^{\left(d_{1}+1\right)}+\cdots+A_{1}^{\left(2 d_{1}\right)}\right)+\cdots+\left(A_{t}^{\left(d_{t}+1\right)}+\cdots+A_{t}^{\left(2 d_{t}\right)}\right)
$$

and $\phi^{\prime *} \psi^{\prime}\left(A_{1}^{\left(d_{1}+1\right)}\right)=\cdots=\psi^{*} \psi^{\prime}\left(A_{1}^{\left(2 d_{1}\right)}\right)$. If still $2 d_{1}<n$, repeat the same manner as above and finally we have the following $s d_{1}+1$ equations of divisors;

$$
\begin{aligned}
& \left\{\begin{array}{cc}
\psi^{*} \psi^{\prime}\left(A_{1}^{(1)}\right)=\left(A_{1}^{(1)}+\cdots+A_{1}^{\left(d_{1}\right)}\right)+\cdots+\left(A_{t}^{(1)}+\cdots+A_{t}^{\left(d_{t}\right)}\right) & (1.1) \\
\cdots \cdots \cdots \cdots \\
\psi^{*} \psi^{\prime}\left(A_{1}^{\left(d_{1}\right)}\right)=\left(A_{1}^{(1)}+\cdots+A_{1}^{\left(d_{1}\right)}\right)+\cdots+\left(A_{i}^{(1)}+\cdots+A_{t}^{\left(d_{t}\right)}\right) & \left(1 . d_{1}\right)
\end{array}\right. \\
& \left\{\begin{array}{cc}
\phi^{* *} \psi^{\prime}\left(A_{1}^{\left(d_{1}+1\right)}\right)=\left(A_{1}^{\left(d_{1}+1\right)}+\cdots+A_{1}^{\left(2 d_{1}\right)}\right)+\cdots+\left(A_{t}^{\left(d_{t}+1\right)}+\cdots+A_{t}^{\left(2 d_{t}\right)}\right) & (2.1) \\
\cdots \cdots \cdots \\
\left.\psi^{* *} \psi^{\prime}\left(A_{1}^{\left(2 d_{1}\right)}\right)=\left(A_{1}^{\left(d_{1}+1\right)}+\cdots+A_{1}^{\left(2 d_{1}\right)}\right)+\cdots+\left(A_{t}^{\left(d_{t}+1\right)}\right)+\cdots A_{i}^{\left(2 d_{t}\right)}\right) & \left(2 . d_{1}\right)
\end{array}\right.
\end{aligned}
$$

$$
\left\{\begin{array}{c}
\psi^{\prime *} \psi^{\prime}\left(A_{1}^{\left.(s-1) d_{1}+1\right)}\right)=\left(A_{1}^{\left.(s s-1) d_{1}+1\right)}+\cdots+A_{1}^{\left(s d_{1}\right)}\right)+\cdots+\left(A_{t}^{\left.(s-1) d_{t}+1\right)}+\cdots+A_{t}^{\left(s d_{t}\right)}\right) \\
\quad \cdots \cdots \cdots \cdots \\
\psi^{*} \psi^{\prime}\left(A_{1}^{\left(s d_{1}\right)}\right)=\left(A_{1}^{\left.(s-1) d_{1}+1\right)}+\cdots+A_{1}^{\left(s d_{1}\right)}\right)+\cdots+\left(A_{t}^{\left.(s-1) d_{t}+1\right)}+\cdots+A_{t}^{\left(s d_{t}\right)}\right)
\end{array}\right.
$$

and

$$
\begin{equation*}
\pi^{\prime *} R_{1}=\left(A_{1}^{(1)}+\cdots+A_{1}^{\left(d_{1}\right)}\right)+\cdots+\left(A_{1}^{\left.(s-1) d_{1}+1\right)}+\cdots+A_{1}^{\left(s d_{1}\right)}\right) \tag{**}
\end{equation*}
$$

Then $n=d_{1} \cdot s$. If $d_{1}>d_{t}$, then $n=d_{1} \cdot s>d_{t} \cdot s$. There exists a point over R_{t}, namely $A_{i}^{(n)}$, never appears in the right hand sides of the above equations (1.1)~(s. $\left.d_{1}\right)$. On the other hand $\phi^{*} \psi^{\prime}\left(A_{t}^{(n)}\right)$ has $A_{1}^{(k)}$ for some k in its support by Lemma 2.1.1. For the minimality of $d, \psi^{*} \psi^{\prime}\left(A_{t}^{(n)}\right)=\phi^{\prime *} \psi^{\prime}\left(A_{t}^{(k)}\right)$. This is a contradiction. If $d_{1}<d_{t}$, then $n=d_{1} \cdot s<d_{t} s$. This also can not be happened.

By Lemma 2.1.2, and the above equations (1.1) $\sim\left(s . d_{1}\right), * *$, we have;
Lemma 2.1.3.

$$
\sum_{k=1}^{n} \psi^{\prime *} \psi^{\prime}\left(P_{1}^{(k)}\right)=\sum_{i=1}^{d} \pi^{\prime *} \pi^{\prime}\left(P_{i}\right)=\pi^{\prime *} N m\left(D^{\prime}\right)
$$

Proof of Theorem 2.1.
Let $E^{\prime}=\Sigma Q_{i}$ and $E^{\prime \prime}=\Sigma S_{i}$ be in $\left|D^{\prime}\right|$ satisfying the conditions $*$). Let h^{\prime} be a non-constant function in $\mathcal{L}\left(D^{\prime}\right)$ and $h=N m h^{\prime}$.

$$
\begin{aligned}
\operatorname{div}\left(h \circ \pi^{\prime}\right) & =\pi^{\prime *} N m E^{\prime}-\pi^{\prime *} N m E^{\prime \prime} \\
& =\sum_{k=1}^{n} \psi^{* *} \psi^{\prime}\left(Q_{1}^{(k)}\right)-\sum_{k=1}^{n} \phi^{* *} \phi^{\prime}\left(S_{1}^{(k)}\right) \quad \text { by Lemma 2.1.3 } \\
& =\sum_{k=1}^{n}\left[\left\{\psi^{\prime *} \psi^{\prime}\left(Q_{1}^{(k)}\right)-\psi^{\prime *} \psi^{\prime}\left(P_{1}\right)\right\}-\left\{\psi^{\prime *} \phi^{\prime}\left(S_{1}\right)-\psi^{\prime *} \phi^{\prime}\left(P_{1}\right)\right\}\right] \\
& =\sum_{k=1}^{n}\left[\left\{\psi^{*} \psi^{\prime}\left(Q_{1}\right)-D^{\prime}\right\}-\left\{\psi^{\prime *} \psi^{\prime}\left(S_{1}\right)-D^{\prime}\right\}\right] \\
& =\sum_{k=1}^{n}\left\{\left(a_{k} h^{\prime}+b_{k}\right)-\left(c_{k} h^{\prime}+d_{k}\right)\right\} \\
& \left(\prod_{k=1}^{n} \frac{a_{k} h^{\prime}+b_{k}}{c_{k} h^{\prime}+d_{k}}\right) .
\end{aligned}
$$

Then $h \circ \pi^{\prime}$ is in $\boldsymbol{C}\left(h^{\prime}\right)=\boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right)$ and we have

$$
\boldsymbol{C}\left(M^{\prime}\right) \supset \boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right)
$$

$$
U \quad U
$$

$\boldsymbol{C}(M) \supset \boldsymbol{C}\left(\boldsymbol{P}_{1}\right)$, with $\left[\boldsymbol{C}\left(M^{\prime}\right): \boldsymbol{C}(M)\right]=\left[\boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right): \boldsymbol{C}\left(\boldsymbol{P}_{1}\right)\right]=n$ and
$\left[\boldsymbol{C}(M): \boldsymbol{C}\left(\boldsymbol{P}_{1}\right)\right]=\left[\boldsymbol{C}\left(M^{\prime}\right): \boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right)\right]=d$.
As $\left[\boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right) \otimes_{C\left(\boldsymbol{P}_{1}\right)} \boldsymbol{C}(M): \boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right)\right]=\left[\boldsymbol{C}\left(M^{\prime}\right): \boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right)\right]$, we have ii).
Conversely we have;
REmark 2.2. Let $\psi: M \rightarrow \boldsymbol{P}_{1}$ be a d-gonal curve with a d-th coverinng ψ over a Riemann sphere \boldsymbol{P}_{1}. Let $\pi^{\prime}: \boldsymbol{P}_{1}^{\prime} \rightarrow \boldsymbol{P}_{1}$ be an arbitrary covering. Then function fields $\boldsymbol{C}(M)$ and $\boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right)$ are linearly disjoint over $\boldsymbol{C}\left(\boldsymbol{P}_{1}\right)$, and the Riemann surface M^{\prime} obtained from the function field $\boldsymbol{C}(M) \underset{C\left(\boldsymbol{P}_{1}\right)}{\otimes} \boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right)=\boldsymbol{C}(M) \cdot \boldsymbol{C}\left(\boldsymbol{P}_{1}\right)$ is d-gonal.

Proof. Consider the canonical surjective map $\boldsymbol{C}(M) \underset{C\left(\boldsymbol{P}_{1}\right)}{\otimes} \boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right) \rightarrow \boldsymbol{C}(M) \cdot \boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right)$. Put $d^{\prime}=\left[\boldsymbol{C}(M) \cdot \boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right): \boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right)\right]$. If $d^{\prime}<d$, then M should be $d^{\prime \prime}$-gonal for some $d^{\prime \prime} \leqq d^{\prime}$. This is a contradiction.

Concerning about the digram in Theorem 2.1, π is not necessarily normal even if π^{\prime} is normal. But we have;

Corollary 2.3. If M^{\prime} has unique linear system $g_{d}^{\frac{1}{d}}$ and π^{\prime} is normal, then π is normal and $\operatorname{Gal}\left(M^{\prime} / M\right) \cong \operatorname{Gal}\left(\boldsymbol{P}_{1}^{\prime} / \boldsymbol{P}_{1}\right)$.

Proof. Let σ be an automorphism on M^{\prime}. For the uniquness of g_{d}^{1} there is an automorphism $\tilde{\sigma}$ on P_{1}^{\prime} satisfying the following diagram:

As $\boldsymbol{C}(M) \cap \boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right)=\boldsymbol{C}\left(\boldsymbol{P}_{1}\right), \operatorname{Gal}\left(M^{\prime} / M\right) \cong \operatorname{Gal}\left(\boldsymbol{P}_{1}^{\prime} / \boldsymbol{P}_{1}\right)$.
Remark 2.4. Under the two assumptions of corollary 2.3, (i.e., π^{\prime} is normal and the uniqueness of g_{d}^{1}, we can prove Theorem 2.1. i) easier. In fact $\operatorname{Gal}\left(M^{\prime} / M\right)$ acts on $\boldsymbol{P}_{1}^{\prime}$ as the proof of the corollary 2.3, and the fixed subfield of $\boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right)$ by the action of $\operatorname{Gal}\left(M^{\prime} / M\right)$ is $\boldsymbol{C}(M) \cap \boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right)$. This field is a function field of genus 0 , and $\left[\boldsymbol{C}(M): \boldsymbol{C}(M) \cap \boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right)\right]=d$ for the minimality of d.

Remark 2.5. The condition that M^{\prime} has unique g_{d}^{1} is satisfied in the following case:
M^{\prime} is p-gonal of genus $\geqq(p-1)^{2}+1$ for a prime number p
([9], Cor. 2.4.5), especially M^{\prime} is defined by the equation
$D(u, y)=0(\S 3(1))$ with $m \geqq 2 p+1$ ([9], [8], [5]).
Remark 2.6. Let p be a prime number. We assume that M has a p-th covering over \boldsymbol{P}_{1}. Then the condition that M is p-gonal is satisfied when genus of $M>(p-1)(p-2)$ ([9], Cor. 2.4.5).
§ 3.
Let p be a prime number and M be a Riemann surface defined by the equation

$$
\begin{equation*}
D(u, y):=y^{p}-\left(u-\alpha_{1}\right)^{k_{1}} \cdots\left(u-\alpha_{m}\right)^{k_{m}}=0 \tag{1}
\end{equation*}
$$

where $\alpha_{i}(1 \leqq i \leqq m)$ are distinct and k_{i} are integers satisfying $1 \leqq k_{i} \leqq p-1$ and $\Sigma k_{i} \equiv 0 \bmod p$. Let $\psi: M \rightarrow \boldsymbol{P}_{1}$ be the cyclic normal covering of degree p over \boldsymbol{P}_{1} defined by $(u, y) \mapsto u$. The branch points of ψ are $\alpha_{i} \in \boldsymbol{P}_{1}$, and ψ is completely ramified over α_{i}. Put $S=\left\{\alpha_{i} \mid 1 \leqq i \leqq m\right\}$. The genus of M is $\frac{(p-1)(m-2)}{2}$. Sometimes we use another equation $D^{\prime}(u, y)$ for M

$$
\begin{equation*}
D^{\prime}(u, y):=y^{p}-\left(u-\beta_{1}\right)^{k_{1}} \cdots\left(u-\beta_{m-1}\right)^{k_{m-1}}=0 \tag{2}
\end{equation*}
$$

with $1 \leqq k_{i} \leqq p-1$ and $\Sigma k_{i} \not \equiv 0 \bmod p . \quad \psi$ is defined as above and the set S of the branch points of $\psi=\left\{\beta_{1}, \cdots, \beta_{m-1}, \infty\right\}$. In this case let $k_{m}>0$ denote a minimal integer satisfying $k_{m} \equiv-\sum_{i=1}^{m-1} k_{i} \bmod p$, then we can get an equation of type (1) birational equivalent to (2).

We call M a cyclic p-gonal if M is p-gonal and defined by (1) or (2). Hereafter we assume that M is cyclic p-gonal and having unique g_{p}^{1}. If $m \geqq 2 p-1$, M is p-gonal by Remark 2.6. If $m \geqq 2 p+1, M$ has unique g_{p}^{1} by Remark 2.5. $\pi^{\prime}: M^{\prime} \rightarrow M$ always means a covering map with p-gonal M^{\prime}. Then a covering $\pi^{\prime}: M^{\prime} \rightarrow M$ corresponds to a covering $\pi^{\prime}: \boldsymbol{P}_{1}^{\prime} \rightarrow \boldsymbol{P}_{1}$ by Theorem 2.1.

In this section we show the method how to get the equation of M^{\prime} and π^{\prime} explicitely from the equation of M and π. Put $\boldsymbol{P}_{1}=\operatorname{Proj} \boldsymbol{C}\left[z_{0}, z_{1}\right], \quad \boldsymbol{P}_{1}^{\prime}=$ $\operatorname{Proj} \boldsymbol{C}\left[u_{0}, u_{1}\right], z=z_{1} / z_{0}$ and $u=u_{1} / u_{0}$. Assume that π^{\prime} is defined by $\left(z_{0}, z_{1}\right) \mapsto$ $\left(F_{0}\left(z_{0} ; z_{1}\right): F_{1}\left(z_{0} ; z_{1}\right)\right)$, where $F_{i}(i=1,2)$ are relatively prime homogeneous polynomials of same degree $n . \quad V=\operatorname{Spec} \boldsymbol{C}[z]_{F_{0}(1 ; z)}$ and $U=\operatorname{Spec} \boldsymbol{C}[u]$ are affine open subsets of P_{1}^{\prime} and \boldsymbol{P}_{1} respectively. Then $\pi^{\prime}: V \rightarrow U$ is represented by $z \mapsto u=\frac{F_{1}(1: z)}{F_{0}(1: z)} \stackrel{\text { put }}{=} f$. Assume M is defined by the equation $D(u, y)=0$ with $\alpha_{i} \in$ $U=\boldsymbol{C}$ for all i. Put $A=\boldsymbol{C}[u, y] /(D(u, y))$. By Theorem 2.1,

$$
\begin{aligned}
\boldsymbol{C}\left(M^{\prime}\right) & =\boldsymbol{C}(M) \underset{C\left(\boldsymbol{P}_{1}\right)}{\otimes} \boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right) \\
& =A \underset{C_{[u]}}{\otimes} \boldsymbol{C}\left(\boldsymbol{P}_{1}^{\prime}\right) \\
& \supset A{\underset{C[u]}{ } \boldsymbol{Q}[z]_{\left(F_{0}(1: z)\right)}}=\boldsymbol{C}[z]_{\left(F_{0}(1: z)\right)}[y] /\left(D\left(\frac{F_{1}(1: z)}{F_{0}(1: z)}, y\right)\right) \\
& \stackrel{\text { put }}{=} B .
\end{aligned}
$$

Then Spec $B=V \times \underset{U}{\times p e c} A$. If we have factorizations;

$$
F_{1}(1: z)-F_{0}(1: z) \alpha_{i}=c_{i} \prod_{t=1}^{l(i)}\left(z-a_{i}^{(i)}\right)^{e_{i}^{(i)}}
$$

with some constants $c_{i}, a_{t}^{(i)} \in C$ and $e_{t}^{(i)} \in N$ satisfying $\sum_{t=1}^{L_{i}^{(i)}} e_{l}^{(i)} \leqq n$, then
Spec $A \times$ Spec $C[z]$ is defined by the equation

$$
F_{0}(1: z){ }_{i=1}^{\sum_{i=1}^{k_{i}}} y^{p}-\prod_{i=1}^{m}\left(c_{i} \prod_{t=1}^{i(i)}\left(z-a_{t}^{(i)}\right)^{e_{t}^{(i)}}\right)^{k_{i}}=0
$$

Put

$$
G(z)=F_{0}(1: z)^{\left(\sum_{i=1}^{m} k_{i}\right) / p} \cdot \prod_{i=1}^{m} \cdot \prod_{t=1}^{l(i)}\left(z-a_{t}^{(i)}\right)^{\left.-\left[e_{t}^{(i)}\right)_{k} / p\right]}\left(\prod_{i=1}^{m} c_{i}\right)^{\left(-\sum_{i=1}^{m} k_{i}\right) / p}
$$

where $[a / b]$ is Gauss symbol. Changing $G(z) y$ by y we have an equation of type (1) for M^{\prime}

$$
\begin{equation*}
y^{p}-\prod_{i=1}^{m} \prod_{i=1}^{l(i)}\left(z-a_{t}^{(i)}\right)^{f_{t}^{(i)}}=0 \tag{3}
\end{equation*}
$$

where $f_{t}^{(i)}$ are positive integers satisfying $0 \leqq f_{t}^{(i)}<p$ and $f_{t}^{(i)} \equiv e_{t}^{(i)} k_{i} \bmod p$. π^{\prime} is defined by

$$
(y, z) \longmapsto\left(G(z)^{-1} y, F_{1}(1, z) / F_{0}(1, z)\right) .
$$

Let f_{∞} be the integer satisfying $\sum_{i, 1} f_{l}^{(i)}+f_{\infty} \equiv 0 \bmod p$ and $0 \leqq f_{\infty}<p$. The set S^{\prime} of branch points of ψ^{\prime} consists of $a_{t}^{(i)}$ with $f_{t}^{(i)} \neq 0$ and ∞ if $f_{\infty} \neq 0$.

Next assume that M is defined by the equation $D^{\prime}(u, y)=0$ in (2) and we have factorizations;

$$
F_{1}(1: z)-\beta_{i} F_{0}(1: z)=c_{i} \prod_{t=1}^{i(i)}\left(z-b_{i}^{(i)}\right)^{e_{i}^{(i)}} \quad(1 \leqq i \leqq m-1)
$$

and

$$
F_{0}(1: z)=c_{m}\left(z-\gamma_{1}\right)^{r_{1}} \cdot \cdots \cdot\left(z-\gamma_{s}\right)^{r_{3}}, \quad r_{1}+\cdots+r_{s} \leqq n
$$

Let $f_{i}^{(i)}(1 \leqq i \leqq m-1)$ be numbers satisfying $e_{t}^{(i)} \cdot k_{i} \equiv f_{i}^{(i)} \bmod p$ and $0 \leqq f_{i}^{(i)}<p$. Let $g_{j}(1 \leqq j \leqq s)$ be numbers satisfying $r_{j} \cdot k_{m} \equiv g_{j} \bmod p$ and $0 \leqq g_{j}<p$, where k_{m} is defined as before. By the same way as above we have an equation of M^{\prime};

$$
\begin{equation*}
y^{p}-\left(\prod_{i=1}^{m-1} \prod_{t=1}^{l(i)}\left(z-b_{l}^{(i)}\right)^{f_{t}^{(i)}}\right)\left(z-\gamma_{1}\right)^{g_{1}} \cdots\left(z-\gamma_{s}\right)^{g_{s}}=0 \tag{4}
\end{equation*}
$$

π is defined by

$$
(y, z) \longmapsto\left(G^{\prime}(z)^{-1} y, F_{1}(1: z) / F_{0}(1: z)\right)
$$

where

$$
\begin{aligned}
G^{\prime}(z)=F_{0}(1: z)^{\left(\sum_{i=1}^{m} k_{i}\right) / p}\left(\prod_{i=1}^{m} c_{i}\right)^{-\sum_{i=1}^{m} k_{i} / p} & \cdot \prod_{i=1}^{m-1} \prod_{i=1}^{(i)}\left(z-b_{i}^{(i)}\right)^{-\left[e_{i}^{\left.(i) \cdot k_{i} / p\right]}\right.} \\
& \times \prod_{j=1}^{s}\left(z-\gamma_{j}\right)^{-\left[r_{j} \cdot k_{m} / p_{3}\right.}
\end{aligned}
$$

Let f_{∞} be the integer satisfying $\sum_{i, t} f_{t}^{(i)}+\sum_{j} g_{j}+f_{\infty} \equiv 0(\bmod p)$ and $0 \leqq f_{\infty}<p$. The set S^{\prime} of branch points of ψ^{\prime} consists of $b_{i}^{(i)}\left(f_{t}^{(i)} \neq 0\right), \gamma_{j}\left(g_{j} \neq 0\right)$ and ∞ if $f_{\infty} \neq 0$.

Lemma 3.1. For a point $P \in M^{\prime}$, put $\psi^{\prime}(P)=a$ and $\pi \circ \phi^{\prime}(P)=\alpha$. e (resp. e^{\prime}) denotes the ramification index of π (resp. π^{\prime}) at a (resp. P).
(1) Assume α is a branch point of ψ. Then $e^{\prime}=e / p$ if $p l e$, and $e=e^{\prime}$ if $p \neq e^{\prime}$.
(2) Assume α is not a branch point of ψ. Then $e=e^{\prime}$.

Proof. We may assume that M is defined by the equation (1). If α is a branch point of ψ, then $\alpha=\alpha_{i}, a=a_{t}^{(i)}$ and $e=e_{t}^{(i)}$ for some i and t. If $p \mid e$, then $f_{i}^{(i)}=0$ and a is not a branch point of ψ^{\prime} by (3). On the other hand the ramification index of ψ over α_{i} is p. As $\psi_{\circ} \pi^{\prime}=\pi \circ \psi^{\prime}, p \cdot e^{\prime}=e$. If $p \nless e$, then $f_{i}^{(i)} \neq 0$ and $a=a_{i}^{(i)}$ is a branch point of $\psi . \quad \therefore e=e^{\prime}$.
§ 4.
Let $\pi^{\prime}: M^{\prime} \rightarrow M$ be as in $\S 3$. Moreover we assume that π^{\prime} is normal with Galois group G. By Corollary 2.3 in $\S 2 \pi$ induced by π^{\prime} is also normal with Galois group G. Then we use the following lemma to determine π^{\prime};

Lemma 4.1. ([6], [3]) By choosing suitable coordinates z and u for $\boldsymbol{P}_{1}^{\prime}$ and \boldsymbol{P}_{1} respectively, any normal coverings $\pi^{\prime}: \boldsymbol{P}_{1}^{\prime} \rightarrow \boldsymbol{P}_{1}(z \mapsto u=f(z))$ are one of the following five types;

group		\#G	$u=f(x) \quad\left\{\begin{array}{l} \text { ramific } \\ \text { branch } \end{array}\right.$	tion indeces points
I cyclic	C_{n}	n	$u=z^{n}$	$\left\{\begin{array}{ll}n & n \\ 0 & \infty\end{array}\right\}$
II dihedral	D_{ν}	2ν	$u=\frac{\left(z^{\nu}+1\right)^{2}}{4 z^{\nu}}$	$\left\{\begin{array}{lll}2 & 2 & \nu \\ 0 & 1 & \infty\end{array}\right\}$
III tetrahedral	A_{4}	12	$u=\frac{\left(z^{4}-2 \sqrt{3} i z^{2}+1\right)^{3}}{-12 \sqrt{3 i z^{2}\left(z^{4}-1\right)^{2}}}$	$\left\{\begin{array}{lll}3 & 3 & 2 \\ 0 & 1 & \infty\end{array}\right\}$
IV octahedral	S_{4}	24	$u=\frac{\left(z^{8}+14 z^{4}+1\right)^{3}}{108 z^{4}\left(z^{4}-1\right)^{2}}$	$\left\{\begin{array}{lll}3 & 2 & 4 \\ 0 & 1 & \infty\end{array}\right\}$
V icosahedral	A_{5}	60	$u=\frac{\left(-\left(z^{20}+1\right)+228\left(z^{16}-z^{6}\right)-494 z^{10}\right)^{3}}{1728 z^{5}\left(z^{10}+11 z^{6}-1\right)^{5}}$	$\left\{\begin{array}{lll}3 & 2 & 5 \\ 0 & 1 & \infty\end{array}\right\}$

where the symbol $\left\{\begin{array}{lll}n_{1} & n_{2} & \cdots \\ \alpha_{1} & \alpha_{2} & \cdots\end{array}\right\}$ means that π^{\prime} is ramified over α_{i} with ramification index n_{i}.

Now we determine all ramification types of normal coverings $\pi^{\prime}: M^{\prime} \rightarrow M$ for an arbitrary prime number p as Horiuchi did in case $p=2$.

As notations we use $P, P^{\prime}, P^{\prime \prime}, \cdots$ for ramification points of ψ, and Q_{1}, Q_{2}, $\cdots, Q_{p}\left(Q_{1}^{\prime}, \cdots, Q_{p}^{\prime} ; Q_{1}^{\prime \prime}, \cdots, Q_{p}^{\prime \prime} ; \cdots\right)$ mean p distinct points with $\psi\left(Q_{1}\right)=\cdots$ $=\phi\left(Q_{p}\right)\left(\phi\left(Q_{1}^{\prime}\right)=\cdots=\psi\left(Q_{p}^{\prime}\right) ; \phi\left(Q_{1}^{\prime \prime}\right)=\cdots\right)$. The symbol $\left\{\begin{array}{ll}m & \cdots \\ R & \cdots\end{array}\right\}$ means that π^{\prime} is ramified over R with ramification index m.

PROPOSITION 4.2. All the ramification types of normal coverings π^{\prime} with Galois group $G \cong C_{n}$ are as follows;
i) If $p \nmid n$, then
a) $\left\{\begin{array}{cc}n & n \\ P & P^{\prime}\end{array}\right\}$
b) $\left\{\begin{array}{cccc}n & n & \cdots & n \\ P & Q_{1} & \cdots & Q_{p}\end{array}\right\}$
c) $\left\{\begin{array}{llllll}n & \cdots & n & n & \cdots & n \\ Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime}\end{array}\right\}$.
ii) If $p \mid n$ and $p \neq n$, then
a) $\left\{\begin{array}{cc}n / p & n / p \\ P & P^{\prime}\end{array}\right\}$
b) $\left\{\begin{array}{cccc}n / p & n & \cdots & n \\ P & Q_{1} & \cdots & Q_{p}\end{array}\right\}$
c) $\left\{\begin{array}{llllll}n & \cdots & n & n & \cdots & n \\ Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime}\end{array}\right\}$.
iii) If $p=n$, then
a) unramified
b) $\left\{\begin{array}{lll}n & \cdots & n \\ Q_{1} & \cdots & Q_{p}\end{array}\right\}$
c) $\left\{\begin{array}{llllll}n & \cdots & n & n & \cdots & n \\ Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime}\end{array}\right\}$.

Proof. We may assume that the ramification type of π is $\left\{\begin{array}{ll}n & n \\ 0 & \infty\end{array}\right\}$. Let S be the set of branchpo ints of $\psi: M \rightarrow \mathbb{P}_{1}$. When $S \cap\{0, \infty\}=\{0, \infty\}$, we have i, ii, iii- a) by Lemma 3.1. When $S \cap\{0, \infty\}=\{0\}$ or $\{\infty\}$, we have i, ii, iii- b). When $S \cap\{0, \infty\}=\varnothing$, we have i, ii, iii-c).

Proposition 4.3. All the ramification types of normal coverings π^{\prime} with Galois group $G \cong D_{\nu}$ are as follows;
i) If $p \npreceq 2 \nu$, then
a) $\left\{\begin{array}{lll}2 & 2 & \nu \\ P & P^{\prime} & P^{\prime \prime}\end{array}\right\}$
b) $\left\{\begin{array}{lllll}2 & 2 & \nu & \cdots & \nu \\ P & P^{\prime} & Q_{1} & \cdots & Q_{p}\end{array}\right\}$
c) $\left\{\begin{array}{llll}2 \cdots & 2 & 2 & \nu \\ Q_{1} \cdots & Q_{p} & P & P^{\prime}\end{array}\right\}$
d) $\left\{\begin{array}{lllllll}2 & 2 & \cdots & 2 & \nu & \cdots & \nu \\ P & Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime}\end{array}\right\}$
e) $\left\{\begin{array}{lllllll}2 & \cdots & 2 & 2 & \cdots & 2 & \nu \\ Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime} & P\end{array}\right\}$
f) $\left\{\begin{array}{llllllll}2 & \cdots & 2 & 2 & \cdots & 2 & \nu & \cdots\end{array}\right)$
ii) If $p \mid \nu, p \neq \nu$ and ν odd, then
a) $\left\{\begin{array}{lll}2 & 2 & \nu / p \\ P & P^{\prime} & P^{\prime \prime}\end{array}\right\}$
b) $\left\{\begin{array}{lllll}2 & 2 & \nu & \cdots & \nu \\ P & P^{\prime} & Q_{1} & \cdots & Q_{p}\end{array}\right\}$
c) $\left\{\begin{array}{lllll}2 & \cdots & 2 & 2 & \nu / p \\ Q_{1} & \cdots & Q_{p} & P & P^{\prime}\end{array}\right\}$
d) $\left\{\begin{array}{lllllll}2 & 2 & \cdots & 2 & \nu & \cdots & \nu \\ P & Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime}\end{array}\right\}$
e) $\left\{\begin{array}{lllllll}2 & \cdots & 2 & 2 & \cdots & 2 & \nu / p \\ Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime} & P\end{array}\right\}$
f) $\left\{\begin{array}{llllllll}2 & \cdots & 2 & 2 & \cdots & 2 & \nu & \cdots \\ Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime} & Q_{1}^{\prime \prime} & \cdots\end{array} Q_{p}^{\prime \prime}\right\}$,
iii) If $p=\nu$ and ν is oda, then
a) $\left\{\begin{array}{ll}2 & 2 \\ P & P^{\prime}\end{array}\right\}$
b) $\left\{\begin{array}{lllll}2 & 2 & \nu & \cdots & \nu \\ P & P^{\prime} & Q_{1} & \cdots & Q_{p}\end{array}\right\}$
c) $\left\{\begin{array}{llll}2 & \cdots & 2 & 2 \\ Q_{1} & \cdots & Q_{p} & P\end{array}\right\}$
d) $\left\{\begin{array}{lllllll}2 & 2 & \cdots & 2 & \nu & \cdots & \nu \\ P & Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime}\end{array}\right\}$
e) $\left\{\begin{array}{llllll}2 & \cdots & 2 & 2 & \cdots & 2 \\ Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime}\end{array}\right\}$
f) $\left\{\begin{array}{llllllll}2 & \cdots & 2 & 2 & \cdots & 2 & \nu & \cdots \\ \nu \\ Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime} & Q_{1}^{\prime \prime} & \cdots\end{array} Q_{p}^{\prime \prime}\right\}$
iv) If $p=2$ and ν is odd, then
a) $\left\{\begin{array}{l}\nu \\ P\end{array}\right\}$
b) $\left\{\begin{array}{ll}\nu & \nu \\ Q_{1} & Q_{2}\end{array}\right\}$
c) $\left\{\begin{array}{lll}2 & 2 & \nu \\ Q_{1} & Q_{2} & P\end{array}\right\}$
d) $\left\{\begin{array}{cccc}2 & 2 & \nu & \nu \\ Q_{1} & Q_{2} & Q_{1}^{\prime} & Q_{2}^{\prime}\end{array}\right\}$
e) $\left\{\begin{array}{lllll}2 & 2 & 2 & 2 & \nu \\ Q_{1} & Q_{2} & Q_{1}^{\prime} & Q_{2}^{\prime} & P\end{array}\right\}$
f) $\left\{\begin{array}{cccccc}2 & 2 & 2 & 2 & \nu & \nu \\ Q_{1} & Q_{2} & Q_{1}^{\prime} & Q_{2}^{\prime} & Q_{1}^{\prime \prime} & Q_{2}^{\prime \prime}\end{array}\right\}$
v) If $p=2$ and ν is even $\geqq 4$, then
a) $\left\{\begin{array}{l}\nu / 2 \\ P\end{array}\right\}$
b) $\left\{\begin{array}{ll}\nu & \nu \\ Q_{1} & Q_{2}\end{array}\right\}$
c) $\left\{\begin{array}{lll}2 & 2 & \nu / 2 \\ Q_{1} & Q_{2} & P\end{array}\right\}$
d) $\left\{\begin{array}{cccc}2 & 2 & \nu & \nu \\ Q_{1} & Q_{2} & Q_{1}^{\prime} & Q_{2}^{\prime}\end{array}\right\}$
e) $\left\{\begin{array}{lllll}2 & 2 & 2 & 2 & \nu / 2 \\ Q_{1} & Q_{2} & Q_{1}^{\prime} & Q_{2}^{\prime} & P\end{array}\right\}$
f) $\left\{\begin{array}{cccccc}2 & 2 & 2 & 2 & \nu & \nu \\ Q_{1} & Q_{2} & Q_{1}^{\prime} & Q_{2}^{\prime} & Q_{1}^{\prime \prime} & Q_{2}^{\prime \prime}\end{array}\right\}$
vi) If $p=v=2$ (Theorem 2^{\prime} [3], [4]),
a) unramified
b) $\left\{\begin{array}{ll}2 & 2 \\ Q_{1} & Q_{2}\end{array}\right\}$
c) $\left\{\begin{array}{lll}2 & 2 & 2\end{array} \quad 2 \begin{array}{l} \\ Q_{1} \\ Q_{2}\end{array} Q_{1}^{\prime} \quad Q_{2}^{\prime}\right\}$
d) $\left\{\begin{array}{llllll}2 & 2 & 2 & 2 & 2 & 2 \\ Q_{1} & Q_{2} & Q_{2}^{\prime} & Q_{2}^{\prime} & Q_{1}^{\prime \prime} & Q_{2}^{\prime \prime}\end{array}\right\}$.

Proof. The ramification type of π is $\left\{\begin{array}{lll}2 & 2 & \nu \\ 0 & 1 & \infty\end{array}\right\}$. The cases $\left.\mathrm{i} \sim \mathrm{v} a\right)$, $\mathrm{i} \sim \mathrm{v}$ b), $\mathrm{i} \sim \mathrm{v} c$), $\mathrm{i} \sim \mathrm{v} d), \mathrm{i} \sim \mathrm{v} e$) and $\mathrm{i} \sim \mathrm{v} f$) are corresponding to $S \cap\{0,1, \infty\}$ $\left.={ }^{a)}\{0,1, \infty\},{ }^{b}\{0,1\},{ }^{c}\right\}\{0, \infty\}$ or $\{1, \infty\},{ }^{d)}\{0\}$ or $\{1\},{ }^{e}\{\infty\}$ and ${ }^{f)} \varnothing$ respectively. In case vi), a),$b), c$) and d) are corresponding to $S \cap\{0,1, \infty\}=$ ${ }^{a}\{0,1, \infty\},{ }^{b)}\{0,1\}$ or $\{0, \infty\}$ or $\{1, \infty\},{ }^{c}\{0\}$ or $\{1\}$ or $\{\infty\}$ and ${ }^{d)} \varnothing$ respectively.

Proposin 4.4. All the ramification types of normal coverings π^{\prime} with $G \cong A_{A}$ are as follows;
i) If $p \geqq 5$, then
a) $\left\{\begin{array}{lll}3 & 3 & 2 \\ P & P^{\prime} & P^{\prime \prime}\end{array}\right\}$
b) $\left\{\begin{array}{lllll}3 & 3 & 2 & \cdots & 2 \\ P & P^{\prime} & Q_{1} & \cdots & Q_{p}\end{array}\right\}$
c) $\left\{\begin{array}{lllll}3 & \cdots & 3 & 3 & 2 \\ Q_{1} & \cdots & Q_{p} & & P \\ P^{\prime}\end{array}\right\}$
d) $\left\{\begin{array}{lllllll}3 & 3 & \cdots & 3 & 2 & \cdots & 2 \\ P & Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime}\end{array}\right\}$
e) $\left\{\begin{array}{lllllll}3 & \cdots & 3 & 3 & \cdots & 3 & 2 \\ Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime} & P\end{array}\right\}$
f) $\left\{\begin{array}{lllllllll}3 & \cdots & 3 & 3 & \cdots & 3 & 2 & \cdots & 2 \\ Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime} & Q_{1}^{\prime \prime} & \cdots & Q_{p}^{\prime \prime}\end{array}\right\}$
ii) If $p=3$, then
a) $\left\{\begin{array}{l}2 \\ P\end{array}\right\}$
b) $\left\{\begin{array}{lll}2 & 2 & 2 \\ Q_{1} & Q_{2} & Q_{3}\end{array}\right\}$
c) $\left\{\begin{array}{llll}3 & 3 & 3 & 2 \\ Q_{1} & Q_{2} & Q_{3} & P\end{array}\right\}$
d) $\left\{\begin{array}{llllll}3 & 3 & 3 & 2 & 2 & 2 \\ Q_{1} & Q_{2} & Q_{3} & Q_{1}^{\prime} & Q_{2}^{\prime} & Q_{3}^{\prime}\end{array}\right\}$
e) $\left\{\begin{array}{lllllll}3 & 3 & 3 & 3 & 3 & 3 & 2 \\ Q_{1} & Q_{2} & Q_{3} & Q_{1}^{\prime} & Q_{2}^{\prime} & Q_{3}^{\prime} & P\end{array}\right\}$
f) $\left\{\begin{array}{ccccccccc}3 & 3 & 3 & 3 & 3 & 3 & 2 & 2 & 2 \\ Q_{1} & Q_{2} & Q_{3} & Q_{1}^{\prime} & Q_{2}^{\prime} & Q_{3}^{\prime} & Q_{1}^{\prime \prime} & Q_{2}^{\prime \prime} & Q_{p}^{\prime \prime}\end{array}\right\}$
iii) If $p=2$, then
a) $\left\{\begin{array}{ll}3 & 3 \\ P & P^{\prime}\end{array}\right\}$
b) $\left\{\begin{array}{cccc}3 & 3 & 2 & 2 \\ P & P^{\prime} & Q_{1} & Q_{p}\end{array}\right\}$
c) $\left\{\begin{array}{lll}3 & 3 & 3 \\ P & Q_{1} & Q_{2}\end{array}\right\}$

$$
\begin{aligned}
& \text { d) }\left\{\begin{array}{ccccc}
3 & 3 & 3 & 2 & 2 \\
P & Q_{1} & Q_{2} & Q_{1}^{\prime} & Q_{2}^{\prime}
\end{array}\right\} \text { e) }\left\{\begin{array}{cccc}
3 & 3 & 3 & 3 \\
Q_{1} & Q_{2} & Q_{1}^{\prime} & Q_{2}^{\prime}
\end{array}\right\} \\
& \text { f) }\left\{\begin{array}{llllll}
3 & 3 & 3 & 3 & 2 & 2 \\
Q_{1} & Q_{2} & Q_{1}^{\prime} & Q_{2}^{\prime} & Q_{1}^{\prime \prime} & Q_{2}^{\prime \prime}
\end{array}\right\} .
\end{aligned}
$$

Proof. The ramification type of π is $\left\{\begin{array}{ccc}3 & 3 & 2 \\ 0 & 1 & \infty\end{array}\right\}$. The cases $\left.\mathrm{i} \sim \mathrm{iii} a\right)$, $\mathrm{i} \sim$ iii b), $\mathrm{i} \sim$ iii c), $\mathrm{i} \sim$ iii d), $\mathrm{i} \sim$ iii $e)$ and $\mathrm{i} \sim \mathrm{iii} f$) are corresponding to $S \cap\{0,1, \infty\}$ $={ }^{a)}\{0,1, \infty\},{ }^{b)}\{0,1\},{ }^{c}\{0, \infty\}$ or $\{1, \infty\},{ }^{d)}\{0\}$ or $\{1\},{ }^{e}\{\infty\}$ and ${ }^{f)} \varnothing$ respectively.

Proposition 4.5. All the ramification types of normal coverings π^{\prime} with $G \cong S_{4}$ are as follows;
i) If $p \geqq 5$, then
a) $\left\{\begin{array}{ccc}3 & 2 & 4 \\ P & P^{\prime} & P^{\prime \prime}\end{array}\right\}$
b) $\left\{\begin{array}{lllll}3 & 2 & 4 & \cdots & 4 \\ P & P^{\prime} & Q_{1} & \cdots & Q_{p}\end{array}\right\}$
c) $\left\{\begin{array}{lllll}3 & 2 & \cdots & 2 & 4 \\ P & Q_{1} & \cdots & Q_{p} & P^{\prime}\end{array}\right\}$
d) $\left\{\begin{array}{lllll}3 & \cdots & 3 & 2 & 4 \\ Q_{1} & \cdots & Q_{p} & P & P^{\prime}\end{array}\right\}$
e) $\left\{\begin{array}{lllllll}3 & 2 & \cdots & 2 & 4 & \cdots & 4 \\ P & Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime} p\end{array}\right\}$
f) $\left\{\begin{array}{lllllll}3 & \cdots & 3 & 2 & 4 & \cdots & 4 \\ Q_{1} & \cdots & Q_{p} & P & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime}\end{array}\right\}$
g) $\left\{\begin{array}{lllllll}3 & \cdots & 3 & 2 & \cdots & 2 & 4 \\ Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime} & P\end{array}\right\}$
h) $\left\{\begin{array}{lllllllll}3 & \cdots & 3 & 2 & \cdots & 2 & 4 & \cdots & 4 \\ Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime} & Q_{1}^{\prime \prime} & \cdots & Q_{p}^{\prime \prime}\end{array}\right\}$.
ii) If $p=3$, then
a) $\left\{\begin{array}{ll}2 & 4 \\ P & P^{\prime}\end{array}\right\}$
b) $\left\{\begin{array}{cccc}2 & 4 & 4 & 4 \\ P & Q_{1} & Q_{2} & Q_{3}\end{array}\right\}$
c) $\left\{\begin{array}{llll}2 & 2 & 2 & 4 \\ Q_{1} & Q_{2} & Q_{3} & P\end{array}\right\}$
d) $\left\{\begin{array}{lllll}3 & 3 & 3 & 2 & 4 \\ Q_{1} & Q_{2} & Q_{3} & P & P^{\prime}\end{array}\right\}$ e) $\left\{\begin{array}{llllll}2 & 2 & 2 & 4 & 4 & 4 \\ Q_{1} & Q_{2} & Q_{3} & Q_{1}^{\prime} & Q_{2}^{\prime} & Q_{3}^{\prime}\end{array}\right\}$
f) $\left\{\begin{array}{ccccccc}3 & 3 & 3 & 2 & 4 & 4 & 4 \\ Q_{1} & Q_{2} & Q_{3} & P & Q_{1}^{\prime} & Q_{2}^{\prime} & Q_{3}^{\prime}\end{array}\right\}$
g) $\left\{\begin{array}{lllllll}3 & 3 & 3 & 2 & 2 & 2 & 4 \\ Q_{1} & Q_{2} & Q_{3} & Q_{1}^{\prime} & Q_{2}^{\prime} & Q_{3}^{\prime} & P\end{array}\right\}$
h) $\left\{\begin{array}{lllllllll}3 & 3 & 3 & 2 & 2 & 2 & 4 & 4 & 4 \\ Q_{1} & Q_{2} & Q_{3} & Q_{1}^{\prime} & Q_{2}^{\prime} & Q_{3}^{\prime} & Q_{1}^{\prime \prime} & Q_{2}^{\prime \prime} & Q_{3}^{\prime \prime}\end{array}\right\}$.
iii) If $p=2$, then
a) $\left\{\begin{array}{ll}3 & 2 \\ P & P^{\prime}\end{array}\right\}$
b) $\left\{\begin{array}{ccc}3 & 4 & 4 \\ P & Q_{1} & Q_{2}\end{array}\right\}$
c) $\left\{\begin{array}{cccc}3 & 2 & 2 & 2 \\ P & Q_{1} & Q_{2} & P^{\prime}\end{array}\right\}$
d) $\left\{\begin{array}{lll}3 & 3 & 2 \\ Q_{1} & Q_{2} & P\end{array}\right\}$
e) $\left\{\begin{array}{ccccc}3 & 2 & 2 & 4 & 4 \\ P & Q_{1} & Q_{2} & Q_{1}^{\prime} & Q_{2}^{\prime}\end{array}\right\}$
f) $\left\{\begin{array}{llll}3 & 3 & 4 & 4 \\ Q_{1} & Q_{2} & Q_{1}^{\prime} & Q_{2}^{\prime}\end{array}\right\}$
g) $\left\{\begin{array}{lllll}3 & 3 & 2 & 2 & 2 \\ Q_{1} & Q_{2} & Q_{1}^{\prime} & Q_{2}^{\prime} & P\end{array}\right\}$
h) $\left\{\begin{array}{llllll}3 & 3 & 2 & 2 & 4 & 4 \\ Q_{1} & Q_{2} & Q_{1}^{\prime} & Q_{2}^{\prime} & Q_{1}^{\prime \prime} & Q_{2}^{\prime \prime}\end{array}\right\}$.

Proof. The ramification type of π is $\left\{\begin{array}{lll}3 & 2 & 4 \\ 0 & 1 & \infty\end{array}\right\}$. The cases i \sim iii a), $\mathrm{i} \sim \mathrm{iii} b$), $\mathrm{i} \sim \mathrm{iii} c$), $\mathrm{i} \sim \mathrm{iii} d$), $\mathrm{i} \sim \mathrm{iii} e$), $\mathrm{i} \sim \mathrm{iii} f$), $\mathrm{i} \sim \mathrm{iii} g$) and $\mathrm{i} \sim \mathrm{iii} h)$ are corresponding to $S \cap\{0,1, \infty\}={ }^{a}\{0,1, \infty\},{ }^{b}\{0,1\},{ }^{c}\{0, \infty\},{ }^{d}\{1, \infty\},{ }^{e)}\{0\},{ }^{f}\{1\}$, ${ }^{g}\{\infty\}$ and ${ }^{h)} \emptyset$ respectively.

Proposition 4.6. All the ramification types of normal coverings π^{\prime} with $G \cong A_{5}$ are as follows,
i) If $p \geqq 7$, then
a) $\left\{\begin{array}{ccc}3 & 2 & 5 \\ P & P^{\prime} & P^{\prime \prime}\end{array}\right\}$
b) $\left\{\begin{array}{ccccc}3 & 2 & 5 & \cdots & 5 \\ P & P^{\prime} & Q_{1} & \cdots & Q_{p}\end{array}\right\}$
c) $\left\{\begin{array}{lllll}3 & 2 & \cdots & 2 & 5 \\ P & Q_{1} & \cdots & Q_{p} & P^{\prime}\end{array}\right\}$
d) $\left\{\begin{array}{lllll}3 & \cdots & 3 & 2 & \\ Q_{1} & \cdots & Q_{p} & P & P^{\prime}\end{array}\right\}$
e) $\left\{\begin{array}{lllllll}3 & 2 & \cdots & 2 & 5 & \cdots & 5 \\ P & Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime}\end{array}\right\}$
f) $\left\{\begin{array}{lllllll}3 & \cdots & 3 & 2 & 5 & \cdots & 5 \\ Q_{1} & \cdots & Q_{p} & P & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime}\end{array}\right\}$
g) $\left\{\begin{array}{lllllll}3 & \cdots & 3 & 2 & \cdots & 2 & 5 \\ Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime} & P\end{array}\right\}$
h) $\left\{\begin{array}{llllllll}3 & \cdots & 3 & 2 & \cdots & 2 & 5 & \cdots \\ \hline Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime} & Q_{1}^{\prime \prime} & \cdots\end{array} Q_{p}^{\prime \prime}\right\}$
ii) If $p=5$, then
a) $\left\{\begin{array}{ll}3 & 2 \\ P & P^{\prime}\end{array}\right\}$
b) $\left\{\begin{array}{ccccc}3 & 2 & 5 & \cdots & 5 \\ P & P^{\prime} & Q_{1} & \cdots & Q_{p}\end{array}\right\}$
c) $\left\{\begin{array}{ccccc}3 & 2 & \cdots & 2 \\ P & Q_{1} & \cdots & Q_{p}\end{array}\right\}$
d) $\left\{\begin{array}{llll}3 \cdots & 3 & 2 \\ Q_{1} & \cdots & Q_{p} & P\end{array}\right\}$
e) $\left\{\begin{array}{lllllll}3 & 2 & \cdots & 2 & 5 & \cdots & 5 \\ P & Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime}\end{array}\right\}$

$$
\begin{aligned}
& \text { f) }\left\{\begin{array}{lllllll}
3 & \cdots & 3 & 2 & 5 & \cdots & 5 \\
Q_{1} & \cdots & Q_{p} & P & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime}
\end{array}\right\} \quad \text { g) }\left\{\begin{array}{llllll}
3 & \cdots & 3 & 2 & \cdots & 2 \\
Q_{1} & \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime}
\end{array}\right\} \\
& \text { h) }\left\{\begin{array}{lllllllll}
3 & \cdots & 3 & 2 & \cdots & 2 & 5 & \cdots & 5 \\
Q_{1} \cdots & Q_{p} & Q_{1}^{\prime} & \cdots & Q_{p}^{\prime} & Q_{1}^{\prime \prime} & \cdots & Q_{p}^{\prime \prime}
\end{array}\right\} \text {. }
\end{aligned}
$$

iii) If $p=3$, then
a) $\left\{\begin{array}{ll}2 & 5 \\ P & P^{\prime}\end{array}\right\}$
b) $\left\{\begin{array}{lccc}2 & 5 & 5 & 5 \\ P & Q_{1} & Q_{2} & Q_{3}\end{array}\right\}$
c) $\left\{\begin{array}{llll}2 & 2 & 2 & 5 \\ Q_{1} & Q_{2} & Q_{p} & P\end{array}\right\}$
d) $\left\{\begin{array}{lllll}3 & 3 & 3 & 2 & 5 \\ Q_{1} & Q_{2} & Q_{3} & P & P^{\prime}\end{array}\right\}$
e) $\left\{\begin{array}{llllll}2 & 2 & 2 & 5 & 5 & 5 \\ Q_{1} & Q_{2} & Q_{3} & Q_{1}^{\prime} & Q_{2}^{\prime} & Q_{3}^{\prime}\end{array}\right\}$
f) $\left\{\begin{array}{lllllcc}3 & 3 & 3 & 2 & 5 & 5 & 5 \\ Q_{1} & Q_{2} & Q_{3} & P & Q_{1}^{\prime} & Q_{2}^{\prime} & Q_{3}^{\prime}\end{array}\right\}$
$g)\left\{\begin{array}{lllllll}3 & 3 & 3 & 2 & 2 & 2 & 5 \\ Q_{1} & Q_{2} & Q_{3} & Q_{1}^{\prime} & Q_{2}^{\prime} & Q_{3}^{\prime} & P\end{array}\right\}$
h) $\left\{\begin{array}{ccccccccc}3 & 3 & 3 & 2 & 2 & 2 & 5 & 5 & 5 \\ Q_{1} & Q_{2} & Q_{3} & Q_{1}^{\prime} & Q_{2}^{\prime} & Q_{3}^{\prime} & Q_{1}^{\prime \prime} & Q_{2}^{\prime \prime} & Q_{3}^{\prime \prime}\end{array}\right\}$
iv) If $p=2$, then
a) $\left\{\begin{array}{cc}3 & 5 \\ P & P^{\prime}\end{array}\right\}$
b) $\left\{\begin{array}{lll}3 & 5 & 5 \\ P & Q_{1} & Q_{2}\end{array}\right\}$
c) $\left\{\begin{array}{llll}3 & 2 & 2 & 5 \\ P & Q_{1} & Q_{2} & P\end{array}\right\}$
d) $\left\{\begin{array}{lll}3 & 3 & 5 \\ Q_{1} & Q_{2} & P\end{array}\right\}$
e) $\left\{\begin{array}{ccccc}2 & 3 & 3 & 5 & 5 \\ P & Q_{1} & Q_{2} & Q_{1}^{\prime} & Q_{2}^{\prime}\end{array}\right\}$
f) $\left.\left\{\begin{array}{llll}3 & 3 & 5 & 5 \\ Q_{1} & Q_{2} & Q_{1}^{\prime} & Q_{2}^{\prime}\end{array}\right\} \quad g\right)\left\{\begin{array}{lllll}3 & 3 & 2 & 2 & 5 \\ Q_{1} & Q_{p} & Q_{1}^{\prime} & Q_{p}^{\prime} & P\end{array}\right\}$
h) $\left\{\begin{array}{llllll}3 & 3 & 2 & 2 & 5 & 5 \\ Q_{1} & Q_{2} & Q_{1}^{\prime} & Q_{2}^{\prime} & Q_{1}^{\prime \prime} & Q_{2}^{\prime \prime}\end{array}\right\}$.

Proof. The ramification type of π is $\left\{\begin{array}{lll}3 & 2 & 5 \\ 0 & 1 & \infty\end{array}\right\}$. The cases $\mathrm{i} \sim \mathrm{iv} a$), $\mathrm{i} \sim \mathrm{iv} b$), $\mathrm{i} \sim \mathrm{iv} c$), $\mathrm{i} \sim \mathrm{iv}(d), \mathrm{i} \sim \mathrm{iv} e$), $\mathrm{i} \sim \mathrm{iv} f$), $\mathrm{i} \sim \mathrm{iv} g$) and $\mathrm{i} \sim \mathrm{iv} h$) are corresponding to $S \cap\{0,1, \infty\}={ }^{a}\{0,1, \infty\},{ }^{b}\{0,1\},{ }^{c}\{0, \infty\},{ }^{d}\{1, \infty\},{ }^{e}\{0\},{ }^{f}\{1\}$, ${ }^{g)}\{\infty\}$ and ${ }^{h)} \varnothing$ respectively.

Remark 4.7. There exists unique covering π^{\prime} that attains each type in proposition $4.2 \sim 4.6$. If we appoints branch points $P, P^{\prime}, \cdots ; Q_{1}, Q_{2}, \cdots ; Q_{1}^{\prime}, \cdots$.

By Lemma 4.1, § 3.(4) and Proposition 4.2~4.6 we have;
Theorem 4.8. Let M be a cyclic p-gonal curve. All the unramified normal coverings $\pi^{\prime}: M^{\prime} \rightarrow M$ with a p-gonal curve M^{\prime} are obtained by the following manners;
i) Let p be an arbitrary prime number. Take two ramification points P, P^{\prime} of $\psi: M \rightarrow \boldsymbol{P}_{1}$. Let $\pi: \boldsymbol{P}_{1}^{\prime} \rightarrow \boldsymbol{P}_{1}$ be a normal covering with Gaiois group C_{p} ramified over $\psi(P)$ and $\psi\left(P^{\prime}\right)$. Then π^{\prime} as in Theorem 2.1 is unramified. Moreover if M and π are defined by $y^{p}-u^{m_{1}}\left(u-a_{2}\right)^{m_{2}} \cdots\left(u-a_{r-1}\right)^{m_{r-1}}=0\left(a_{i} \in\right.$ $\left.C-\{0\}, \Sigma m_{i} \neq 0 \bmod p\right)$ and $\pi: z \mapsto z^{p}$, then M^{\prime} and π^{\prime} are defined by

$$
y^{p}-\left(z^{p}-a_{2}\right)^{m_{2}} \cdots\left(z^{p}-a_{r-1}\right)^{m_{r-1}}=0 \quad \text { and } \quad \pi^{\prime}:(z, y) \longmapsto\left(z^{p}, z^{-m_{1}} y\right) .
$$

ii) $p=2$. ([3], [4]) Take three ramification points $P, P^{\prime}, P^{\prime \prime}$ of ψ and a normal covering π of degree 4 with Galois group D_{2} ramified over $\psi(P), \psi\left(P^{\prime}\right)$, $\psi\left(P^{\prime \prime}\right)$. Then π^{\prime} is unramified. Moreover if M and ψ are defined by $y^{2}-u(u-1)\left(u-a_{3}\right) \cdots\left(u-a_{r-1}\right)=0, r-1 \not \equiv 0 \bmod 2, a_{i} \in C-\{0\}$ and $\pi: z \mapsto u=$ $\left(z^{2}+1\right)^{2} / 4 z^{2}$, then M^{\prime} and ψ^{\prime} are defined by

$$
\begin{gathered}
y^{2}-\left\{\left(z^{2}+1\right)^{2}-4 a_{3} z^{2}\right\} \cdots\left\{\left(z^{2}+1\right)^{2}-4 a_{r-1} z^{2}\right\}=0 \quad \text { and } \\
\pi^{\prime}:(z, y) \longmapsto\left(\frac{\left(z^{2}+1\right)^{2}}{4 z^{2}}, \frac{\left(z^{2}+1\right)\left(z^{2}-1\right)}{(2 z)^{r-1}} y\right) .
\end{gathered}
$$

§ 5.

Let M be a cyclic p-gonal curve with $m \geqq 2 p+1$ and $\pi^{\prime}: M^{\prime} \rightarrow M$ be as before, but we do not assume that π^{\prime} is normal. We consider the condition that π^{\prime} is unramified (if π^{\prime} is normal, all umramified π^{\prime} are obtained by Theorem 4.8). By Lemma 3.1 we have:

Lemma 5.1. Let $\pi: \boldsymbol{P}_{1}^{\prime} \rightarrow \boldsymbol{P}_{1}$ and $\phi: M \rightarrow \boldsymbol{P}_{1}$ be as in Theorem 2.1. Then the followings are equivalent;
i) π^{\prime} is unramified.
ii) Any branch points of π are also branch points of ψ and any ramification indeces of π are equal to p.

Finally we give an example of an unramified covering π^{\prime} that is not normal.
Example 5.2. Let $\pi: \boldsymbol{P}_{1}^{\prime} \rightarrow \boldsymbol{P}_{1}$ be defined by

$$
z \longmapsto \frac{(z-1)^{2}(z-k)^{2}}{z^{2}}, \quad \text { where } k \neq 0, \pm 1
$$

Then the ramification points $\left(\in \boldsymbol{P}_{1}^{\prime}\right)$ of π are $1, k, 0, \infty$ and $\pm \sqrt{k}$ with ramification index p. $\quad \pi(1)=\pi(k)=0, \pi(0)=\pi(\infty)=\infty, \pi(\sqrt{k})=(1-\sqrt{k})^{4}$ and $\pi(-\sqrt{k})$ $=(1+\sqrt{k})^{4}$. Thus π is not normal. Let M be a hyperelliptive curve defined by

$$
y^{2}-u\left\{u-(1-\sqrt{k})^{4}\right\}\left\{u-(1+\sqrt{k})^{4}\right\}\left(u-a_{5}\right) \cdots\left(u-a_{2_{g+2}}\right)=0 .
$$

Then $\pi^{\prime}: M^{\prime} \rightarrow M$ as in Theorem 2.1 is unramified. Explicitely M^{\prime} and π^{\prime} are represented by

$$
\begin{aligned}
& y^{2}-\left\{z^{2}-(2-2 \sqrt{k}+2 k) z+k\right\}\left\{z^{2}-(2+2 \sqrt{k}+2 k) z+k\right\} \\
& \cdot\left\{(z-1)^{2}(z-k)^{2}-a_{5} z^{2}\right\} \times \cdots \times\left\{(z-1)^{2}(z-k)^{2}-a_{2 g+2} z^{2}\right\}=0
\end{aligned}
$$

and

$$
\pi^{\prime}:(z, y) \longmapsto\left(\frac{(z-1)^{2}(z-k)^{2}}{z^{2}}, z^{-(2 g+2)}(z+\sqrt{k})(z-\sqrt{k}) y\right) .
$$

References

[1] Arbarello, E., Cornalba, M., Griffiths, P.A. and Harris, J., Geometry of Algebraic Curves Vol. I Springer-Verlag 1985.
[2] Farkas, H. M., Unramified double coverings of hyperelliptic surfaces, J. Analyse Math. 20 (1976), 150-155.
[3] Horiuchi, R., Normal coverings of hyperelliptic Riemann surfaces, J. Math. Kyoto Univ. 19-3 (1979), 497-523.
[4] Kato, T., On the hyperellipticity of coverings of Riemann surfaces. (unpublished)
[5] Kato, T., Conformal equivalence of compact Riemann surfaces, Japan J. Math., 7-2 (1981), 281-289.
[6] Klein, F., Lectures on the icosahedron and the solution of equations of fifth degree, Dover (1956), (translation).
[7] Machlachlan, C., Smooth coverings of hyperelliptic surfaces, Qurt. J. Math. Oxford (2), 22 (1971), 117-123.
[8] Namba, M., Equivalence problem and automorphism groups of certain compact Riemann surfaces, Tsukuba J. Math. 5-2 (1981), 319-338.
[9] Namba, M., Families of meromorphic functions on compact Riemann surfaces, Lecture Notes in math., 767 (1979), Springer-Verlag.

Dokkyo Secondary Hight School 1-3, Sekiguchi, Bunkyo-ku, Tokyo
Japan

