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0. Introduction

Viewing a G-graded &-coalgebra over the fieldk as a right &G-comodule

coalgebra it is possible to use a Hopf algebraic approach to the study of coalge-

bras graded by an arbitrary group that was started in [NT].

Let C = 0^eG Ce be a G-graded coalgebra. The graded C-comodules may

be viewed as comodules over the smash product CxkG, the general definition

of which was given in [M]. Coalgebras graded by an arbitrary group have

been considered in [FM] in order to introduce the notion of G-graded Hopf

algebras. On the other hand, M. Takeuchi introduced in [T] the sets of pre-

equivalence data connecting categories of comodules over two coalgebras (we

callsuch a set a Morita-Takeuchi context). The main result of this note is a

coalgebra version of a result established by M. Cohen, S. Montgomery in [CM]

for group-graded rings: for a graded coalgebra C the coalgebras Ci and CxkG

are connected by a Morita-Takeuchi context in which one of the structure maps

is injective. Most of the results in this note are consequences of the foregoing.

As a firstapplication we find that a coalgebra C is strongly graded if and only

if the other structure map of the context is also injective. The finalsection

provides analogues of the Cohen-Montgomery duality theorems: if C is a co-

algebra graded by the finite group G of order n, then G acts on the smash

coproduct as a group of automorphisms of coalgebras and (C x k G) x k G* is

coalgebra isomorphic to the comatrix coalgebra Mc(n, C). If G is a finitegroup

of order n, acting on the coalgebra D as a group of coalgebra automorphisms,

then the smash coproduct DxkG* is strongly graded by G and moreover:

(DxkG*)>ikG = Mc(n, D). The second duality theorem is again a direct con-

sequence of the Morita-Takeuchi context mentioned above.
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1. Graded Coalgebras and the Smash Coprodtict

Throughout this paper k is a field. We use Sweedler's "sigma" notation

[S] and further notation and conventions in [T], [D]. Let G be a group with

identity element 1. Recall that a &-coalgebra (C, A, s) is graded by G if C is

a direct sum of £-subspaces, C = (&a(=GCa, such that A(Cff)cSX2/=(7Cx(g)Cy, for

all (?£G, and s(Ca)=0 for a^l. A right C-comodule M with structure map

p: M-+M(g)C is a graded C-comodule if M=Q)aeG Ma as &-subspaces, such that

p(Ma)<z'£Xy=aMx<g)Cy for all <;gG. For graded right C-comodules M and N a

graded comodule morphism is a C-comodule morphism /: M^N such that f(Ma)

dNa for ueG. The category of graded right C-comodules, denoted by grc, is

a Grothendieck category, cf. [NT]. The main purpose of this section is to

develop a Hopf algebraic approach to the graded theory. First we recall, see

[S] or [A], some definitions.

1.1. Definition. Let H be a bialgebra over the field k, A a ^-algebra and

(C, Ac, sc) a £-coalgebra. Then :
i

A is said to be a (right) //-module algebra if A is a right //-module

such that (ab)-h = J}(a-h1)(b-h2) and lA-h = e(h)lA for any Ii<bH, and

a, b^A.

C is a right //-comodule coalgebra

(8>C(d such that we have:

if C is an i/-comodule by c>―>2C(o)

S Ci(o)(^C2(o)Q9Cl(l)C2(l)― S C(o)l(^C(o)2$$Ci(1),

Sfic(C(o))C(i)= ec(c)lff for all cgC

iii. C is a (left) //-module coalgebra if C is a left //-module such that:

Ac(h-c)=^h1-c1<S>hz-cZf £c(h-c)=eH(h)ec(c) for c&C, h(=H.

In the sequel we shall not refer to "right" of "left" as in the above definitions,

the choice of "sides" shall remain fixed throughout.

For any group G the group algebra kG has a bialgebra structure defined

by A(g)=g<g)g and e(g)= l for allg^G. The next result establishesthe con-

nection between G-graded coalgebrasand & G-comodule coalgebras.

1.2.Proposition. A coalgebra C graded by G many in a natural way be

viewed as a kG-comodule coalgebra; converselyevery kG-comodule coalgebrais

a G-graded coalgebra.

Proof. For a G-graded C the map p: C―>C(&kG, c^c^o for alla^G,
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ceCff, defines a &G-comodule coalgebra structure on C. Conversely, if C is a

&G-comodule coalgebra then any c e C has a unique presentation p(c) ―

Zlgee cg(g)g. Put Cg = {ce, cgC}, g<=G;Cg is a &-subspace of C. From

(/(><D£)|O(c):=cCx)lwe derive that c= J}gGGcg and C = S≪eG C^. For cgC, ^gG

we have that cgeC? if and only if p(c)=c(g)g. If SgeeC^O for some qgC^

then by applying p we obtain J]cg(g)g=0 or cg=0 for all g^G. Therefore

C = (Be<=G Cg. Consider cgC and A(c)=S Cj0c2 with homogeneous c/s and

c2's. From 1.1 we retain that S c^c^a equals S Cj^Ca^deg Ci-deg c2, or in

other words A(c) is the sum of all terms with a=deg c^deg c2,establishing that

C is a G-graded coalgebra. □

We say that the group G acts on the coalgebra D whenever there is a

group morphism cp:G-^-Aut (D), the latter denoting the set of all coalgebra

automorphisms of D with group structure defined as follows: if /, geAut (D),

f'8=f°g-

1.3. Proposition. // G acts on the coalgebra D then D has the structure

of a kG-module coalgebra; conversely any kG-module coalgebra has a natural G-

action.

Proof. Suppose that (p: G―>Aut (D) determines that G acts on D then

the map kG(£)D^D, g<S>d^><p(g)(d) defines a £G-module structure on D as

desired. Conversely, if D is a &G-module coalgebra then we may define a en-

action on D by <p: G-^Aut(D), <p(g)(d)=g-d for g^G, d<=D. □

1.4. Remark. Let, for a finite group G, kG* be the dual bialgebra for the

finitedimensional bialgebra kG. If the finite group G acts on the coalgebra D

then D is also a &G*-comodule coalgebra. If ＼pg,g^G} is the dual basis of

{g, g^G] then {pg, g<E:G) is a system of orthogonal idempotents of &G*. The

coalgebra structure of kG* is given in the usual way by: A(pg) = ^Xy=g px<g>py,

The right comodule structure of D is given by p: D^D&kG*, p(d) ―

H^o(g-d)^pg.

In the sequel, the smash coproduct plays a central part. For a bialgebra

H and an //-module coalgebra C the smash-coproduct C x H is defined as the

&-space C<g)H with A: C xi/->(C x//)(g)(C x//) given by A(cxifc)= 2(ci xic2(1)-A2)

(X)(c2(0)xi/ij),and s: CxH―^k given by e(cxh)=ec(c)£H(h).
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1.5. Proposition. Cxi// with A and s as above is a coalgebra

Proof. This is just the right hand version of Theorem 2.11 of [M], a

proof is given in Proposition 2.3 of [FM]. □

The smash coproduct is useful in general but has particularinterest in some

special cases frequently considered:

i. Graded smash coproduct

If the coalgebra C is graded by G then the coalgebra structure of CxkG

is given by: A(cxg)=S(ci x deg c2･g)(g)(c2(g)g),for any homogeneous c<e.C and

g<BG (where we assumed, as we will always do in the sequel, that we have

used the homogeneous decomposition Sc1(S>c2), whereas for all ceC, g£G we

have that s(cxg)=ec(c).

ii. If the finitegroup G acts on the coalgebra D, i.e. D is a &G*-comodule

coalgebra, then the coalgebra structure of DxkG* is given by:

A(dxpB)= 2 (diXp^vdiXpu),

and

£(.dxpg)=£D(d)dgil, for all d^D, g^G .

Note that the graded smash coproduct appears in a natural way when one

studies graded comodules. Recall that a &-Abelian category is ^-equivalent to

a category of comodules Mc over some coalgebra C if and only it it is of finite

type (Theorem 5.1 of [T]). The coalgebra giving the category as a category

of comodules may, in general, be a somewhat mystical object. However for a

G-graded coalgebra C the £-Abelian category of graded comodules, say grc, is

of finite type and it is therefore, equivalent to a category of comodules over

the coalgebra given in the following.

Theorem 1.6. // C is a coalgebra graded by G then the categories grc and

and ,'M.c>ikGare isomnrhhic.

Proof. Take Megrc with p:M->MRC, p(m)=2}mo(g)m1. We make M

into a right C x &G-comodule by defining p': M-≫ M0(C xKg), m^SwoR

(m^Cdegm)"1) for homogeneous m^M. Amorphism/: M-^N of G-graded C-

comodules is also a morphism of C xi/feG-comodulesand we have defineda

functor T: grc-*Mc"kG.

Conversely, startingfrom an MgJw'g we obtainon M a right C-comodule
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structure and a right &G-comodule structure because the linear maps a: CxkG

―>C, c>ig>―>c,and fi＼CxkG-^kG, exg<-^sc(c)g~1for c^C, g^G, are coalgebra

morphisms. As in the proof of Proposition 1.2 it follows that M=0geG Mg and

a straightforward verification learns that M becomes a graded C-comodule.

Now, for M, N<=<3Ac*bG and a morphism of C x ^G-comodules /: M-^N it fol-

lows that / is also a morphism of G-graded C-comodules when M and N are

viewed as such. This defines the functors S: JMCxkG-^grc and it is easily seen

that T and S are isomorphisms of categories and inverse to each other.

1.7.Remarks. 1. If the coalgebra C is graded by a finitegroup G, then

the dual algebra C* is graded by G with C*={/eC*, /(C*)=0 for allxj-g}.

Hence C* is a &G*-module algebra and we may constructthe smash product

C*#kG* with multiplicationgiven by: (c*#h*)(d*#g*)=^l(c*(d*-ht)#g*h:$, for

allc*,d*<^C- and h*, g*e£G*. It is easy to see that the algebra C*#kG* is

algebra-isomorphicto the dual algebra of CxkG.

2. If G acts on the coalgebra D via <p:G^Aut (D), then the group mor-

phism <p:G-^Aut (D*) given by <p(g)(d*)=d*(p(g)for g^G, ^gD*, definesan

action of G on the algebra D*. Note that Aut (D*) is a group with respect to

g-t=t°<7for a, reAut(D*). Thus D is a &G-module coalgebraand D* is a

&G-module algebra. If G is finitethen D is a &G*-comodule coalgebraand the

dual algebra of the smash coproduct Dx&G* is isomorphic to the skew group

ring D*#kG.

2. The Morita-TakeiicM Context Associated to a Graded Coalgebra

The Morita-theorems for categoriesof comodules have been proved by M.

Takeuchi in [T] ; we call a set of pre-equivalencedata as in [T] a Morita-

Takeuchi context.

2.1. Definition. A Morita-Takeuchi context (C, D, CPD, DQC, f, g) consists

of coalgebras C and D, bicomodules cPd, dQc and bicolinear maps /: C-^PDdQ,

g: D-^QUcP making the following diagrams commute:

p

i ~~

PUnD Q > QUcC

!
ing =

I

v v
IIUf

V

CDcP―*PnDQncP DOvQ―>QUcPuDQ
/□/ gUI

The context is called strict if f and s are iniective, hence isomorphisms. In
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this case the categories JAC and JAD of comodules over C, resp. D, are equi-

valent categories.

The following remark extends a corresponding one for Morita contexts

given in fCRWl.

2.2. Proposition.

such that f is infective

Let (C, D, cPd, dQc, f, g) be a Morita-Takeuchi context

Then 3lc is equivalent to a quotient category of 3iD.

Proof. Theorem 2.5 of [T] yields that / is an isomorphism and the exact

functor 5=-Dzj<?: MD-^ Mc, has a right adjoint T = -DeP: 3f -> MD such

that the natural transformation f~l:ST ―>/<iis an isomorphism. By a result

of P. Gabriel (cf. [G] or Proposition 15.18 of [F]) we have: kerS=(X£JiD,

XOdQ=0} is a localizing subcategory of 3iD and S induces an equivalence

from the quotient category J#/KerS to JHC. D

2.3. Corollary. Let (C, D, cPd, dQc, f, g) be a Morita-Takeuchi context

such that f is injective then g is injective(i.e. the context is strict)if and only

if dQ is faithfully coflat. □

Proof. By Proposition 2.2 the injectivity of g is equivalent to S being an

equivalence, again equivalent to KerS={0} or DQ being faithfully coflat. □

Before establishing the main result of this section let us point out that there

is a natural way to associate a graded coalgebra to a given Morita-Takeuchi

context. Indeed, if we have a Morita-Takeuchi context (C, D, cPd, dQc, f, g)

let x^->]>j*-iC8)*o, resp. x>―>2*(o)(8>#(i)> be the left, resp. right, comodule struc-

ture of P, resp. Q. The image of meC (resp. D) under / (resp. g) in P＼JDQ

(resp. QUCP) will be denoted by S/(≪)i0/(M)a- (resp. J}g(u)1Rg(u)2).

Put Hq
d)={C

*)■
^c- ^D- ^p- ^＼

We make F into a coalgebraby definingA: F^F^F as follows:

il 0/ ^VO I)<
./O 0＼ _,/0 0

<
orHo

><

)<
0

0

./O 0＼ _/0 0
＼

o)=s(o -,

K

0/

<

(

o/+2Ao

/(c)lW° °^

oMo o)

0>＼

0/

0/ ＼O(0) 0/

<"'
o°)



Graded coalgebrasand Morita-Takeuchi contexts

for c(EC, d(E:D, p<=P, q<=Q, and extended linearly, s: F-+k

ec(c) + eD(d).

and r,=
Vo

Moreover F is Z-graded by putting Fo―

P＼
Fk=0 for k^-l, 0, 1.

given by s(

(C On _/O

401

d)

°)

0/

Let C = 0*eGC(T be a coalgebra, graded by G. Recall from [NT] that d

is a coalgebra with comultiplication Ax: d―≫dC8)d given by Ai(c)= Sff(Ci)<8>

^(c2)―S^(ci)(8)c2= Sc1(S)^(c2) for all ced, where tt: C―>d is the natural

projection. The co-unit of d is just ec restricted to d- Since ?ris a coalge-

bra map, C becomes a left Ci-comodule via the structure map p[: C ―>d<S>d

c―>2 7r(ci)0c2(c homogeneous) and it becomes a right Ci-comodule via ^J: C―*

C0Ci, c^->S Ci0^(c2) (c homogeneous). Now C is a graded right C-comodule,

so by Theorem 1.6 C is a right C x &G-comodule via the map

p£: C->CR(CxkG), c^Sd^CaXCdegc)"1)

for c homogeneous. For any homogeneous cgC, we have (I<S>pl)pli(c)= (pi<S>I)

pl(c) = S^(ci)(8)c2(X)(c3Xi(degc)"1);thus C becomes a left d, right CxkG-

bicomodule. In a similar way C becomes a left C~AkG, right d-bicomodule

where the left C xi&G-comodule-structure of C is given by
jO2(c)=S (ci

xdeg c2)

(x)c2,for any homogeneous cgC.

Define f: d~^ CO oikaC, c^->Sc1Rc2=Ae(c). Observe that for any ceC＼

we obtain:

P2＼Ci)Yy('2―2j c1^c2vueg Ci) vciegC＼) v^t^

2j CiW62VVaeK tsW3

= SCi0/Ol(C2)

so the definitionof / above is satisfactory. Moreover, / is a morphism of left

and right Ci-comodules as is easily verified. Note also that / is injective be-

cause it is the restriction of the comultiplication of C to C.

Next define g: C xkG^C＼JClC, cxx^'2lc1<S>7ix_1(c2) for xgG and homo-

geneous c^C, where izx denotes the projection from C to Cx. In order to have

that g is well-defined it is necessary that: ^(ci)i(g>7r((c1)2)<S)7rx_1(c2)='2iC1(g)

x(xx-i((c2)i))<S)kx-i{(c2)2).However the left hand side is obtained from Sc^^

0c3 by collecting the terms with degc2=l and degCs^x"1; on the other hand

the right hand sum is an expression of the same thing. Moreover g is a mor-

phism of right (and left) C x&G-comodules; this follows from: Sdegc2=.z-i(ciC>>)
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(c2)i)<8>((c2)2^x)=Sdeg(ei)a=x-i(degc8)-i((ci)i0(Ci)2)0(c2>4A:) because both members

are actually equal to: Tidegc2<iegc3=x-i(ci<g>C2)<g)(c<ixx). The other assertion (left)

follows in a similar way.

2.4. Theorem. With notation as above: (Cu C~xkG, c1Cc>ikG,cxkGCcv f, g)

is a Morita-Takeuchi context. The map f is injective hence an isomorphism.

Proof. The only thing left to be proved is that / and g do satisfy the

compatibility conditions, i.e. the following diagrams are commutative:

c

-I'

0

CDcxkGCxikG

fUI

c

0'

cnClc

(CxkG)nCxkGc ―> cnClcnc≫kGC
gUI

Now for ceCx we have: (/n£)0(c)=(/ng)(2ciR(e2>4*~1))=2c1Rc2R7rx(c8)=

Sdegc,.-^!R^R^, and also (/n/)(^(c))=(/D/)(S^(c1)(g)c2)=(/n/)(Sdegc1=i c,

(g)C2)=(/n/)(SdegC2=x C10C2)=SdegC3=x CiRC8RCs.

That proves commutativity of the first diagram. For the second diagram

we just compute: (/n/)^/(c)=(/D/)(Sc1(g)7i:(c2))=(/n/X2]degci!=i c10c2)=(/D/)

(SdegCl=xCi<8)c≪)=Sdegc1=zC10c80cs and also (gn/)^/(c)=(£rn/)(I3(c1xdegc2)

(8)C2) = Sdegc2=(degc3)-i C1<g>C2(S><::3= I]degC2deg<-3=l CiRC2<g)Cs = Sdeg c^x Cx(g)C2(g)C3. D

2.5. Corollary. // C = 0ffGG Ca is a graded coalgebra then JHci is equi-

valent to a quotient category of grc.

Proof. A consequence of Theorem 1.6, Theorem 2.4 and Proposition 2.2. □

Recall that a G-graded coalgebra C = (&aGG Ca is said to be strongly graded

if the canonical k-linear map yUtV: CM>11―>CMRC,., c->Snv,(ci)(£)7cv(c2),is injective

for all u, yeG (see [NT]). The next result establishes that strongly graded

coalgebras may be characterized using the Morita-Takeuchi context from Theo-

rem 2.4 just like in the case of group-graded rings (see [CM]).

2.6. Corollary. Let C = Q)aeG Ca be a G-graded coalgebra, then the follow

ing assertions are equivalent:

1. C is strongly G-graded

2. The context given in Theorem 2.4. is strict

3. C is faithfully coflat as a left C~AkG-comodule.
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Proof. 2.=)1. Take u, v^G and ceCKl, such that we have: yu>v(c)=

H^u(c1)<S)7iv(c2)=0. Then gicxv'1) =^lc1<S)7i:v(c2)= ^7ru(c1)<^7tu(c2)=0! hence

cxv~1=Q and c=0.

l.=)2. Let a=^Ci xixfeC x &G with c* homogeneous of degree <7*. Sup-

pose that for i-^j we have (oi} xt)-£(<Tj,Xj). If g(a)―0 then Si,
(^(CfX^

ffx?i((Ci)g)=0, therefore 5}t,iei)7cOiXi((ci)1)R7cXJ.1((ct)i)=0. On the other hand:

ntext(.(ct)1)R7cxjl(Ci)t)&C<riXtRCxjl. Since C0C = 0u,teG C^fglC^ we obtain for

fixed i, the relation: 2cCi) 7r(,ixi((ci)i)(8)^r_i((ci)2)=0.The latter yields ^iXi, z-i(Ci)

=0 and therefore Cj=0 for every choice of /, i.e. ≪=0 follows.

2.<^>3. Follows from Corollary 2.3. □

As a further application we reobtain Theorem 5.3 of [NT] which is a co-

algebra version of a well-known result of E. Dade.

2.7. Corollary. The graded coalgebra C is strongly graded if and only if

the induced functor ―D^C: 3ic^―>grcis an equivalence of categories.

2.8. Remark. The functor (―)i: grc-*JMci, M<->Mlf is naturally isomorphic

to the functor ―UcxkaG since they are both left adjoints of the induced

functor -nClC (see [NT] Proposition 4.1, [T] Remark 2.4). Therefore the

localizing category implicit in Corollary 2.5 is just Ker(―),=Ker(― OcxkaC).

As a finalapplication of these techniques let us include a short proof of

Corollary 6.4 in [NT].

2.9. Corollary. // C is a strongly graded coalgebra for the group G then

G is a finitegroup.

Proof. If G is infinitewe could selecta non-zero homogeneous c^C and

x<=G such that x^deg(c2)"1 for allc2. Then g(cxx)=0, but that would con-

tradictinjectivityof g. □

3. Duality.

For a quasi-finiteright C-comodule M, the so-called coalgebra of "co-endo-

morphisms" of M has been defined in [T., 1.17] and it is denoted by e.c(M).

Unfortunately this coalgebra is not easy to use because of the rather complex

comultiplication, so it will be useful to give a nicer description of e_c(M) in

some particular situation, e.g. in case M is a finitelycogenerated free-comodule

(that is, M^X<g>C, for some finitedimensional &-vectorspace X, with the obvious
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comodule structure).

Let C be a coalgebra, X an n-dimensional &-space with basis {xu ･■■,xn}.

Consider the nXn comatrix coalgebra Mc(n, k) which is a £-space with basis

{xtj,l^i, j<n) and A, s given as follows: A(xo-)=Sp xip<S>xpj,$(xij)=dij.

The nXn comatrix coalgebras over C, denoted by Mc{n, C) is defined to

be the tensor product of coalgebra C<g>Mc(n, k). We endow C(g)X with a left

C-and a right Mc(n, C)-bicomodule structure as follows. The left C-comodule

structure is given by by the map: p＼:CRX ―>C<g)C<g>X, c<g)x･->Sci0c20:*;.

The right Mc(n, C)-comodule structure is given by the map: pi: C&)X-^C<S)X

(g>Mc(n, C), ctgJXj^Sp c1<S>xp<S>C2<S>xpi.

In a similar way C(g)X is a left Mc(n, C)-right C-bicomodule via the structure

maps:

pi: C<g)X ― C&X&C, cRx h->2 c&xQct

p＼: CRX^Mc(n, C)RCRX, c0xi->Sc10jctl,(8)cB(8)Xp
p

Define /: C -*(CRX)nMc<,n,c){C(&X), c･->Sip (c)(cf(g)xf)0(c2(8)A;<),which is ob-

viously injective and C-bicolinear. Define ^: Mc(n, C)->(C0^)Dc(C0-Y), c0

^ti'->S(c1(S'^i)(8)(c20^i)which is also injective and Mc(n, C)-bicolinear. One

easily verifiesthe following relations:

(inf)pi(cRxt)=(gni)pli<cRXi)= s ci<S)Xi0c2(g)xp(g)C3(8)xp
p

(/D/)/oi(c0j;<)=(/n^)|Oj(c0a;<)= 21 c,(g)xp(8)c2(g)%p(g)C3(8)%i
V

According to results of [T] we immediately obtain:

3.1. Proposition. (C, Mc{n, C), CRX, CRX, f, g) is a strict Morita-

Takeuchi context. In particular we have coalgebra isomorphisms:

ec_(C0Z)^Mc(n, C)se_c(C(g)Z)

3.2. Theorem. Let G be a finite group acting on the coalgebra D, then

DxkG* is a strongly graded coalgebra and there exist coalgebra isomorphisms:

(DxkG*)x＼kGsteD_(DxkG*)^Mc(n, D)

where n=＼G＼.

Proof. The map p:DRkG*, d^^e(g-d)Rpg, makes D into a kG*-

comodule. The comultiplication of D xikG* is given by A(d x px)=Tiuv=x (d >Jpv)

(g)(vd2>ipu). This establishes that DxkG* is a graded coalgebra of type G

with grading given by (Dx kG*)8 = DMp8-u The canonical morphism Dxp!-+
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{Dxpa-i)(^)(Dxpa), dxp^^Piid^pa-i^to^di-Apa), is clearly injective. Thus

DxkG* is a strongly graded coalgebra, and (DxkG*)1 = Dxp1^D. Applying

the Morita-Takeuchi context (constructed in Section 2) to DxkG*, we have a

strict context and so it provides us with coalgebra isomorphisms:

(D x kG*) xkG = eWAPl)_{D x kG*)=eD_(D xkG*).

The left(Dx/jj-structure of DxkG* is given by dxpx^^{d1xp1)^){dixpx),

and this yields exactly the left D-comodule structure of D<^X where X=kG*

is a k-space of dimension n. Proposition 3.1 yields the second isomorphism. □

A similar result holds for graded coalgebras (or coactions).

3.3. Theorem. Let C be a coalgebra graded by the finitegroup G. Then

G acts on the coalgebra CxkG and there are coalgebra isomorphisms:

(CxkG)xkG* = ecJCxkG) = Mc(n, C)

Proof. An action of G on the coalgebra CxkG is given by h-(c>ig)=

cxgh~＼ g, h<=G and c^C. Thus CxkG becomes a &G*-comodule coalgebra

via the map:

cxg^^y-icxg)Rpy= 23(cxigy~x)<S>Pv･

The comultiplicationof (Cx^G)xi^G* is given by

A((cxx)xpg)= S ((ciXdegCz-^xj&.OfgKCcaXxir1)*/^)

for any x, geG and homogeneous ceC. Now let {ex,y,x, y<^G＼ be a basis

for Mc(n, £). Define a map F: (Cx kG)-AkG*-*Mc(n, C), (cxx)xpg ->c0ea,p

where a=degc-x, fi= xg~lfor x, gsG and homogeneous cgC. Let us check

that F is a coalgebra morphism. Indeed,

A(F((cx *) x />,))=A(c0ea.̂ )

= Y>{ciRea,z)R{czRez,p)
Z,(C)

and also

(FRF)mexx)xpg)= S (Cl^Sdegc1degC2xdegc2xr-i)^(C2^^degc2xv-i,^u-i, m-i)

2(CiRea.degc2*B-i)R(C2<8tedegc,zi>-l.|8)-

Since {deg c2xv ＼v^G}=G, both sums are equal.

(CxkG)yikG* for x, g<=G and c homogeneous.

(CxkQxkG* and s' for the co-unitof Mc(n, C).

Now, consider (oix)xpg^

Write s for the co-unit of

Then we have:



406 S. DAscAlescu, C. NAstAsescu, S. Raianu and F. Van Oystaeyen

e((c xx)x pe)=£c(c)ddes c.iSg, i

£'(c(g)ea,p)=ec(c)ddegc,iSdegcx, xg-r

= £c(c)ddegc,l^x,xg-l ― £c(c)8iegc,lSi,g

= £c(c)8iegC, idgli

Therefore F Is a coalgebra map as claimed. Now define H: Mc(n, C)-^(C>skG)

■AkG* by putting H(c(g)cu,v) = (cxi(degc)"1M)xi/)l,-i(degC)-iK, for u, feG and

homogeneous cgC. Again H is a coalgebra morphism because:

A(H(c<S>eu,v)

=S≪t=t,-Kdege)-iu ((ci xdeg c2(deg c)"1**)xi ££)<8>((e2xs(deg c^wr'Cxj pt)

(HRH)(A(cReu.v))

~Sft
((Ci X (deg CO"1!*) X pn-Hdeg

Cl)-1≪)0((C2
XI(deg Ca)"1/*) XI />B-i(deg c2)-ift)･

For fixed cx and m we have that {h~＼degc^u), h^G}=G and if we write

t=h~1(degCi)~1u, z=v~＼dQgcz)~lh, then the above sums are clearly equal as

desired. The fact that H preserves the co-unit too is obvious. Finally it is

clear that F-H and H-F are the identities so that we do arrive at a coalgebra

isomorphism. The isomorphism involving ec_(Cxj^G) is obvious because of

Proposition 3.1 (the left C-comodule structure of CxkG is given bp cxg>―>

S Ci<gXcB x g)). □

3.4. COROLLORY. There exists a strict Morita-Tekeuchi context connecting C

and (CxkG)xkG*.

Proof. C~xkG is a left C-comodule that is a quasi-finiteinjective co-

generator (in view of Proposition 3.1 and [T]). Moreover CxkG is a right

(Cx£G)x&G*-comodule via c x gv->2u (cx x deg c2gu)(g)(cz>4gu)x pu-i, for g^G

and homogeneous ceC. Hence Cx kG is a C―(Cx&G)x&G*-bicomodule. The

assertion now follows from [T, Theorem 3.5 iv]. n

3.5. Remarks. The Morita-Takeuchi context of the above corollary may-

be given in detail. This may have an independent interest because it provides

another proof of Theorem 3.3 and provides a hint for establishing a more

general duality result we do not dwell upon here. The second bicomodule is

also CAkG with right C-comodule structure given by the map: exg>―>

2 (ci x deg c2g)Rc2 (for homogeneous c) and left (Cx&G)x&G*-comodule struc-
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ture given by: c xsg>-≫2ft(cx x deg c2g) x phR{cz x gh) (for homogeneous c) we have

/: C-*(CyikG)n(cxkG)xkG*(CxkG), /(c) = Sft (ci^deg c2/i)(g)(c2><j/i2)for homo-

geneous ceC, g: (Cx^G)xi^G*^(Cxi^G)nc(Cxi/feG), g((cMg)xph) = S(ctx

degc2g")<8)(c2X^/i), for homogeneous cgC. It is also easily seen that / and g

are injective maps.
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Added in proof. A general duality result for crossed coproducts was proved

by S. Dasoalesae, S. Raianu, Y. Zhang in "Finite Hopf-Galois coextensions,

crossed coproducts and duality", to appear in J. Algelma.


